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Abstract

Coarse-grained models represent attractive approaches to analyze and simulate RNA molecules, 

for example for structure prediction and design, as they simplify the RNA structure to reduce the 

conformational search space. Our structure prediction protocol RAGTOP (RNA-As-Graphs 

Topology Prediction) represents RNA structures as tree graphs, and samples graph topologies to 

produce candidate graphs. However, for a more detailed study and analysis, construction of atomic 

from coarse-grained models is required. Here we present our graph-based fragment assembly 

algorithm (F-RAG) to convert candidate 3D tree graph models, produced by RAGTOP into atomic 

structures. We use our related RAG-3D utilities to partition graphs into subgraphs and search for 

structurally similar atomic fragments in a dataset of RNA 3D structures. The fragments are edited 

and superimposed using common residues, full atomic models are scored using RAGTOP’s 

knowledge based potential, and geometries of top scoring models is optimized. To evaluate our 

models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue 

interactions) with respect to experimentally solved structures, and compare our results to other 

fragment assembly programs. For a set of 50 RNA structures, we obtain atomic models with 

reasonable geometries and interactions, particularly good for RNAs containing junctions. 

Additional improvements to our protocol and databases are outlined. These results provide a good 

foundation for further work on RNA structure prediction and design applications.
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Introduction

Ribonucleic acid (RNA) molecules play a myriad of crucial and essential roles in cellular 

biology, from their traditional roles as mRNAs, tRNAs, and rRNAs [1] to catalysis as 

ribozymes [2], and gene regulation as miRNAs and siRNAs [3, 4]. Single-stranded RNA 

chains can adopt complex three-dimensional (3D) structures composed of single and double 

stranded regions that dictate their biological functions. Naturally, their structure-function 

relationships are of crucial importance to interpret their activities. Such information can be 

utilized for RNA design, with tremendous potential for therapeutic, industrial, and 

biomedical applications.

The availability of high-quality RNA 3D structures is a prerequisite for RNA structural 

studies and analysis. The process of RNA structure determination using experimental 

methods like X-ray crystallography, Nuclear Magnetic Resonance (NMR), and more 

recently cryo-EM, is challenging and laborious. In addition, a large percentage of available 

RNA structures are far from perfect in terms of structural validation criteria like steric-

clashes, sugar pucker, and other geometry measures [5]. The study of RNA structure using 

complementary computational approaches is an exciting area of research that has the 

potential to greatly improve our understanding of the fundamental forces behind RNA 

structure-function relationships [6, 7, 8, 9, 10, 11, 12].

One effective approach to study RNA structure, folding, and dynamics is to use coarse-

grained models to represent RNA structures [13]. Instead of working with the atomic 

representation of RNA molecules, the representation of the RNA structure is simplified to 

reduce the number of degrees of freedom. Most coarse-grained approaches model each 

residue in the RNA structure by one [14, 15], three [16, 17, 18, 19, 20, 21] or multiple beads 

[22, 23, 24, 25, 26, 27], followed by molecular dynamics (MD), energy minimization (EM), 

or Monte Carlo (MC) simulations. They may use knowledge-based (derived from known 

RNA structures) or force-field based potentials to score the candidate conformations. 

Employing coarse-grained approaches reduce the RNA conformational search space and 

makes the problem of sampling different topologies and conformations of the RNA structure 

more tractable.
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However, the compactness of the RNA representation and reduced conformational search 

space also necessitates another step: generation of atomic models from the simplified 

candidate RNA structures. Fragment assembly is a common approach used in modeling, and 

is widely used for molecular systems, for example in Rosetta [28]. Specialized programs for 

RNA, like iFoldRNA [16, 17, 18], SimRNA [22, 23], HiRe-RNA [26, 27], and the method 

by Ren and coworkers [24, 25] derive atomic models residue by residue by using the coarse-

grained beads to map atomic units of individual nucleotides, followed by energy 

minimization. Vfold3D [20, 21] uses sequence and secondary (2D) structure information to 

build a coarse-grained model of the RNA molecule from fragments of helices and loops 

from a template library, and then converts this coarse-grained model into an atomic model 

residue by residue as above. C2A [29] builds atomic models using fragments of single and 

double stranded 2D structure regions from an RNA 3D reference structure database. This 

database contains fragments in both coarse-grained and atomic formats; fragments are 

selected from this database based on structural similarity to the given RNA candidate (in 

coarsegrained form), and the energy of the assembled fragments is minimized.

Apart from the above coarse-grained methods, other fragment assembly based approaches 

also build RNA 3D structure from sequence and/or 2D structure. FARNA/FARFAR [30, 31] 

uses MC simulations and knowledge-based energy functions to assemble 3-residue 

fragments into atomic models. Program 3dRNA [32] builds atomic models from fragments 

of smallest 2D structure elements (base pairs, hairpins, internal loops, junctions, and 

pseudoknots) derived from the SCOR and RNA junction database, followed by energy 

minimization. The MC-fold/MC-sym pipeline [33, 34] identifies nucleotide cyclic motifs 

(NCM) for a given RNA molecule and builds atomic models by assembling the NCM 

fragments from a dataset of RNA structures. RNAComposer [35, 36] divides the given RNA 

sequence and 2D structure into helices, hairpins, internal loops, and junctions and uses best 

matching fragments from the RNA Frabase dictionary to build the atomic model.

Our coarse-grained approach relies on the RNA-As-Graphs (RAG) library that represents 

RNA 2D structures as planar, undirected tree graphs [37]. Unpaired regions or loops in the 

RNA structure correspond to vertices of the tree graph, and helical regions connecting the 

loops correspond to edges of the graph. Graphs for RNA were introduced in the 1970s by 

Waterman [38], Nussinov [39, 40], Shapiro [41], and others; see recent reviews [8, 42, 43]. 

This simplified representation of the RNA structure reduces the conformational search space 

drastically, and allows us to study RNA structure using methods and algorithms from graph 

theory [11]. We have successfully applied RAG to predict RNA junction stacking and 

orientations using a data-mining, random forest approach [44, 45, 46], simulate in vitro 
selection of RNA molecules [47, 48], and partition graphs to define recurrent RNA motifs 

[49].

Recently, we have developed a hierarchical graph sampling methodology, called RAGTOP 
(RNA-As-Graphs Topology Prediction), to predict RNA 3D graph topologies corresponding 

to a given RNA 2D structure [50]. Our Junction-Explorer data mining program [44, 45] is 

first used to determine the junction orientation (co-axial stacking and family) of the 

candidate sequence and 2D structure, as classified in our junction analysis work. The 

resulting 2D RNA tree-graph is converted to a 3D graph, followed by Monte Carlo/
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Simulated Annealing (MC/SA) sampling of 3D graph topologies using a knowledge-based 

scoring function. This function includes bend and twist terms for internal loops as well as a 

radius of gyration term. The former terms for internal loop geometry were recently enhanced 

to distinguish internal loops that contain kink-turn motifs [51]. The candidate graphs 

selected after the MC/SA simulations show good performance with respect to other RNA 

prediction algorithms in predicting RNA structure topologies. RAGTOP has also been 

successfully applied to predict tertiary structures of riboswitches [52].

In this paper, we present the next step in the RAGTOP methodology called F-RAG 

(Fragment-Assembly for RNA-As-Graphs): automatic generation of atomic coordinates of 

RNA structures from coarse-grained candidate graph topologies. This task is performed 

using fragment assembly, where the candidate graph is partitioned into subgraphs, and the 

best matching atomic fragments are assembled using common graph vertices. This assembly 

is made possible by our program RAG-3D that employs tree graph partitioning techniques 

[49], and contains a search tool (also available as a web-server) for finding similar 3D 

structural fragments for a given RNA molecule or motif from a database of RNA structures 

and substructures [53]. In our fragment assembly, the atomic models are edited to match 

sequences and lengths of the candidate graphs. The generated models are then scored 

according to the knowledge-based potential, and the geometries of the top 20 models are 

optimized.

Here, we apply F-RAG to build 3D structures for 50 RNA 2D structures, ranging from 17 to 

111 nucleotides. These RNAs contain different numbers and types of hairpins, internal 

loops, and junction motifs. We assess our atomic models with respect to the experimentally 

determined structures by calculating the all-atom Root Mean Square Deviations (RMSD) 

and Interaction Network Fidelity (INF) [54]. The latter is a measure of how accurately the 

computed 3D structure captures various canonical and non-canonical interactions present in 

the reference structure. We also compare our results to the Vfold3D program that combines 

coarse-grained modeling with fragment assembly, and the 3dRNA program that uses 

fragment assembly to combine atomic fragments of elemental 2D structural motifs. For this 

RNA test set, F-RAG produces best atomic models (chosen from the top 20 scoring models) 

with RMSDs less than 10 Å for 46 out of the 50 structures. On average, our models have 

better geometries and less steric-clashes compared to structures generated using Vfold3D 

and 3dRNA. These results show good potential for our RAG approach for the study and 

analysis of RNA structures, especially for junction structures due to good initial junction 

orientation prediction using JunctionExplorer [44, 45]. Further improvements can be 

envisioned by additional structure refinement to deal with chain breaks, improving our RNA 

structure databases, and adding missing residues to 5′ and 3′ ends and to junctions motifs.

Results

Computational experiments

To assess the results of F-RAG, we generated 3D atomic models for 50 RNA structures, with 

17 to 111 nucleotides, and compared our results to the experimentally solved structures, i.e., 

the reference structures obtained from the PDB. Our representative RNA set includes 

structures with hairpin loops, internal loops, junctions and dangling ends of various sizes. 
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For RNA structures solved using Nuclear Magnetic Resonance (NMR), the first model was 

considered as the reference structure. Table 1 provides the list of 50 RNA structures, along 

with a description of their structural complexity.

We apply F-RAG to candidate graph models predicted by RAGTOP [50, 51]. RAGTOP uses 

the 2D structure as input (here determined by RNAView [55] using the reference structure). 

JunctionExplorer is then applied to predict the junction co-axial stacking and family. Graph 

sampling by MC/SA is performed for 50,000 steps (“random moves”, as recently optimized 

[51]). The lowest scoring graph is taken as the candidate graph (see the subsection titled 

“Junction prediction and graph-topology sampling” in Materials and Methods). This 

candidate graph is partitioned into subgraphs by RAG-3D, and the top 10 fragments for each 

subgraph are computed. For each candidate graph, we run RAG-3D both with and without 

the additional requirement on the atomic fragment to have the same loop types as the target 

graph (see the subsection titled “Graphpartitioning and RAG-3D search” in Materials and 

Methods). Next, F-RAG is performed separately for each combination of 1, 2 or 3 subgraphs 

assembled to form the complete graph, and atomic models are generated for each subgraph 

decomposition.

Starting from a candidate 3D tree graph predicted by RAGTOP, the computational time 

required by F-RAG scales with the number of associated subgraphs used in F-RAG. For 1 

subgraph (generating a maximum of 10 atomic models), F-RAG requires 1–2 minutes. For 2 

subgraphs (generating a maximum of 100 atomic models), F-RAG requires 5–7 minutes. For 

3 subgraphs (generating a maximum of 1000 atomic models), F-RAG requires 20–30 

minutes.

Among all the candidate models, we select all models with the highest number of residues, 

and sort them in increasing order based on scores using our knowledge-based RAGTOP 

potential described in [51]. The geometries of the 20 top models (lowest scores) are 

optimized using PHENIX [56] (version 1.10.1, with sugar-pucker specific geometry 

parameters).

The Root Mean Square Deviations (RMSDs) for all non-hydrogen atoms computed with 

respect to the reference structure for each of the top 20 models are calculated using PyMOL 

[57]. Base-pairing and base-stacking interactions are determined using MC-Annotate [58].

Besides RMSD, we also use other metrics for comparing RNA structures, as described by 

Parisian et. al. in [54], as also used in the RNA-Puzzles exercise [59, 60, 61]: Specificity 

(PPV), Sensitivity (STY), Interaction Network Fidelity (INF), and Deformation Index (DI). 

In brief, PPV is the percentage of base pairing and stacking interactions in the predicted 

atomic model that are found in the reference structure; STY is the percentage of interactions 

in the reference structure that are found in the predicted atomic model. These measures are 

calculated as PPV = |TP|/(|TP| + |FP|), and STY = |TP|/(|TP| + |FN|). |TP|, |FP|, and |FN| 

define the number of base pairing and stacking interactions present in: both the reference 

and the predicted structure (|TP|), predicted structure but absent in the reference structure (|

FP|), reference structure but absent in the predicted structure (|FN|). INF combines PPV and 

STY to describe the interaction prediction accuracy of the atomic model 
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( ). PPV, STY, and INF take values between 0 and 1, with a higher 

number indicating better prediction accuracy. DI combines the atomic (RMSD) and 

interaction prediction accuracy (DI = RMSD/INF), with smaller values indicating better 

prediction. The clashscore (calculated as the number of steric clashes per 1000 atoms [62, 

63]), and bond-length and bond-angle outliers were calculated using PHENIX [56].

Comparison with reference structure

When using fragments from RAG-3D without the additional requirement of same type of 

loops, F-RAG generated atomic models for 49 of the 50 RNA structures (see Table S1 in 

Supplementary Information for the lowest RMSD and lowest DI atomic models). For the L1 

ribozyme RNA ligase (PDB ID: 2OIU), none of the top atomic fragments from RAG-3D had 

the same type of dangling end loop as required by the target (3 strands and 2 adjacent 

helices), so they could not be used by F-RAG. However, when using fragments produced by 

RAG-3D with the additional requirement of same types of loops, our fragment assembly 

procedure generated atomic models for all 50 structures, with better RMSD and DI values 

on average. The atomic models with the lowest DI have an average RMSD of 4.46 Å, and an 

average DI of 5.90 Å, which is better than the average RMSD (4.60 Å) and DI (6.20 Å) 

values generated by the former run. Hence, we use the results from the second run for 

comparison.

Figure 1 shows the RMSD, DI, and other metrics for the lowest DI (of the top 20) atomic 

model generated by F-RAG (see Table S2, Figures S2 and S3 in Supplementary Information 

for comparison metrics for the top scoring models). For 45 of the 50 structures, the lowest 

DI model has an RMSD of less than 10 Å. We also see that the metrics for structure 

comparison of atomic models with the reference structure do not depend on the total number 

of residues in the RNA molecule, but rather on the structural similarity between the fragment 

and the reference structure. For example, for the yeast U2/U6 snRNA complex (PDB ID: 

2LKR), the RMSD is very high (20.26 Å) because the fragment used to generate the atomic 

model had 2 residues missing from one of the strands of the 3-way junction, and extra 

residues in the other two strands. Similarly, for the 3-way junction from the VS ribozyme 

(PDB ID: 2N3Q), the RMSD is high (17.13 Å) because the fragment used has 1 residue 

missing from the dangling end, and has extra residues in the junction strands. Moreover, 

most of the atomic models that have low RMSDs (between 0–4 Å) with respect to the 

reference structure use fragments from related RNA structures found by the RAG-3D search. 

This highlights RAG-3D’s ability to locate fragments containing similar submotifs as the 

target structure, using just 3D tree graphs. Table S3 in Supplementary Information illustrates 

the candidate graph and the lowest DI atomic model generated for 50 RNA structures by F-

RAG.

The average INF values for the lowest DI atomic models is 0.82, but the INF value is as low 

as 0.62 for some structures (see Figure S1 in Supplementary Information). This is is partly 

due to missed interactions present in the reference structure (indicated by low STY values). 

These missing interactions are both canonical and non-canonical in nature. Some of the 

missing interactions are single base pairs and interactions involving residues in the internal 

loop and bulges that are ignored in the 2D tree representation of the RNA 2D structure. Note 
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that single base pairs are also ignored in the 3D tree graph. The best atomic model for 11 

RNA structures with large chain breaks (> 5 Å distance between O3′ and P atoms of 

consecutive residues) are not resolved by optimizing the geometry.

Of the 50 structures, reference structures of 25 of them are also a part of the RAG-3D 

database, i.e., RAG-3D selects fragments from the reference structures as part of the top 10 

fragments, that are then used as input to FRAG. Table 2 lists the best RMSD and DI values 

when we remove such models from consideration, re-calculate the top 20 atomic models, 

and then select the best models with lowest RMSD and DI values. We see that the lowest DI 

values change for 11 out of the 25 structures, with a significant change (> 2 Å) for 6 

structures.

Comparison with Vfold3D and 3dRNA

We also compare our generated atomic models to two other RNA 3D structure prediction 

programs, Vfold3D [20, 21] and 3dRNA [32]. Vfold3D uses sequence and 2D structure 

information to build coarse-grained models of RNAs from fragments of helices and loops 

from a template library, and then converts this coarse-grained model into an atomic model, 

one residue at a time, using coarse-grained beads to map to atomic models of individual 

residues. 3dRNA builds atomic models from fragments of small 2D structural elements 

(base pairs, hairpins, internal loops, junctions, and pseudoknots) derived from SCOR and 

RNA junction databases, followed by energy minimization. We provide the same sequence 

and 2D structure information to Vfold3D and the 3dRNA server as to RAGTOP and F-RAG. 

We ran the Vfold3D program using default parameters, and 3dRNA with fragment assembly 

and optimization. All structures generated by the Vfold3D webserver were considered, and 

the models with the lowest RMSD and DI were selected for comparison. Vfold3D generated 

between 1 and 50 structures for each RNA. The 3dRNA webserver generates 5 structures by 

default, and the models with the lowest RMSD and DI were selected for comparison.

Table 3 lists the best RMSD and DI atomic models generated by the three fragment 

assemblies for all 50 RNA structures. Out of 50 structures, F-RAG and 3dRNA generated 

atomic models for all 50 structures, whereas Vfold3D generated atomic models for 44 

structures. The six structures that Vfold3D fails to generate atomic models are: 3-way 

junction from the VS ribozyme (PDB ID: 2MTJ), L1 ribozyme RNA ligase (PDB ID: 2OIU) 

with a dangling end with 3 strands and 2 adjacent helices, U4 snRNA (PDB ID: 2XEB) with 

one residue hairpin, a 3-way junction from VS ribozyme (PDB ID: 2N3Q), SAM-I 

riboswitch (PDB ID: 2GIS) with a 4-way junction, and yeast U2/U6 snRNA complex (PDB 

ID: 2LKR). For the 44 common structures, F-RAG generates the lowest DI atomic model for 

25 structures, Vfold3D for 10 structures, and 3dRNA for 9 structures. For the 6 structures 

for which Vfold3D does not generate atomic models, both F-RAG and 3dRNA generate the 

lowest DI atomic model for 3 structures each. Overall, F-RAG generated the atomic model 

with lower DI values for a larger number of structures (28 structures) than Vfold3D (10 

structures) and 3dRNA (12 structures).

Figure 2 compares the lowest DI atomic models generated by all three programs for the 44 

RNA structures generated by all. Recall that DI combines RMSD and interaction measures. 

Figure 2a compares RNA structures with only internal loops and hairpins, and Figure 2b 

Jain and Schlick Page 7

J Mol Biol. Author manuscript; available in PMC 2018 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compares RNA structures with junctions. For structures with only internal loops and 

hairpins, the lowest DI F-RAG and Vfold3D atomic models have DI values within 1.5 Å of 

each other for 14 of 35 RNAs; Vfold3D performs better than F-RAG (> 1.5 Å) for 12 

structures, and F-RAG performs better than Vfold3D for 9 structures. Comparing F-RAG to 

3dRNA, the lowest DI F-RAG and 3dRNA atomic models have DI values within 1.5 Å of 

each other for 13 of 35 RNAs; 3dRNA performs better than F-RAG for 8 structures, and F-

RAG performs better than 3dRNA for 14 structures. However, F-RAG performs significantly 

better than other programs for RNAs with junctions, with F-RAG generating atomic models 

with lower DI values for 9 structures compared to Vfold3D, and for 8 structures compared to 

3dRNA.

Figure 3 compares the PPV, STY (both are interaction measures, with higher values better), 

and clashscore values for the atomic models with lowest DI values for the 44 structures 

generated by all the three fragment assembly approaches. On average, all three programs 

have similar PPV values, but F-RAG and 3dRNA have lower STY values (0.79) as compared 

to Vfold3D (0.87), indicating more missed base-pairing and stacking interactions. However, 

atomic models generated using F-RAG have significantly less steric clashes as compared to 

atomic models generated using Vfold3D and 3dRNA. Most of the steric clashes in the 

atomic models generated by Vfold3D and 3dRNA come from bond-length outliers. That is, 

two atoms of a covalent bond are far enough that their vdW spheres overlap is considered a 

steric clash. Thus, our models have better covalent bond geometry, likely due to optimizing 

the geometry with PHENIX.

Discussion

In this work we have presented our RNA graph-based procedure for generating atomic 

models from RAGTOP’s predicted coarse-grained 3D graph candidates using fragment 

assembly. The fragment assembly relies on available tools, such as RAG-3D’s search for 

common motifs and RAG-3D’s partitioning into subgraphs. Our F-RAG procedure works 

well compared to other available tools, especially for RNAs with junctions. Its limitations 

include a dependence on the input 2D structure and treatment of pseudoknots, which are not 

represented in tree graphs. However, pseudoknots could be part of the atomic fragments of 

the experimental subgraph substructures in the RAG-3D database and hence our final atomic 

model. Furthermore, the RAG-3D database may not contain atomic fragments to match 

every subgraph for any given 2D structure. However, we have not encountered this problem 

for the 152 different subgraph decompositions used for 50 RNA structures in this paper.

To improve performance of F-RAG further, improvements can be considered to our scoring 

functions, energy minimization, and fragment library (greater variety of loop types and 

number of residues). We also could improve residue number editing for junctions and 

dangling ends. For example, the lowest DI atomic model generated for a 3-way junction 

structure from VS ribozyme (PDB ID: 2N3Q) has 1 residue missing from the dangling end; 

the atomic models generated for another 3-way junction from the VS ribozyme (PDB ID: 

2MTJ) and for the yeast U2/U6 snRNA (PDB ID: 2LKR) have 3 and 2 missing residues as 

compared to the reference structure respectively. None of the top fragments for these 

structures had the same number of residues as the target structure. Replacing the junction or 
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the dangling end motifs with a new motif from the non-redundant dataset that has the 

required number of residues is not yet implemented in F-RAG. This is more difficult for 

junctions, because in addition to the number of residues, we have to preserve the co-axial 

stacking and family of the target junction. The combination of all three requirements makes 

junction motif fitting more restrictive. Implementing the ability to fill in the missing residues 

one at a time (rather than replacing the entire loop) is a better solution and will likely lead to 

better results for structures with various loop types. In addition, we need to implement better 

ways to remove extra residues from the junction strands so that they do not leave chain 

breaks, which is also true for the above three examples.

On average, the DI and RMSDs for atomic models generated by F-RAG are better when 

using fragments selected by RAG-3D with the additional requirement for the atomic 

fragment containing the same number and types of loops as the target subgraph. However, 

there are a few structures where this is not the case. For example, for the structure of a 

hairpin from the influenza A virus (PDB ID: 2MXL), the lowest RMSD increases from 5.25 

Å to 8.42 Å when using fragments with this additional requirement. Thus, less similar 

fragments, with the additional ability to substitute loop types during the fragment assembly 

procedure can lead to models with better scores. As of now, the RAG-3D fragments are 

treated as input to F-RAG. Implementation of a feedback mechanism between the RAG-3D 

search and F-RAG should lead to better integration between the two components so that we 

do not miss fragments that can potentially lead to better results.

Improvements to our MC/SA procedure and knowledge-based scoring potential can also be 

envisioned. The MC/SA simulation currently samples only the bend and torsion angles at 

internal loop vertices. Addition of junction flexibility (while preserving the co-axial stacking 

and family) during the MC/SA simulation and terms to score different junction topologies 

will likely lead to better graph RMSDs and better atomic fragments. Adding more structural 

diversity to the non-redundant dataset of hairpins and internal loops, and using only high-

quality atomic fragments and a non-redundant RAG-3D database could lead to better atomic 

models, and eliminate the potential bias of RAG-3D search to return structurally similar 

fragments. However, the final model may contain chain breaks, and thus further refinement 

may be needed before subjecting the atomic models to energy minimization or molecular 

dynamics simulations by standard biomolecular programs. Minimizing the energy of the 

atomic models may lead to better STY values and can resolve chain breaks in the atomic 

model that are too large to be fixed by optimizing only the geometry.

Conclusion

We have described an efficient fragment assembly approach, F-RAG, to generate atomic 

models from coarse-grained 3D tree graph candidates generated by our program RAGTOP. 

F-RAG relies on our RAG-3D graph partitioning and search utilities to obtain structurally 

similar atomic fragments. The combined atomic models are scored by our statistical scoring 

function, and the covalent bond geometry is optimized using PHENIX. Overall, F-RAG 

works well when compared to other programs, especially for RNAs with junctions due to 

our initial application of JunctionExplorer to predict the relevant coaxial stacking and 

junction family [44]. The favorable performance on junctions combined with the modularity 
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of our programs provide good foundations for further work on RNA structure prediction as 

well as design applications.

Materials and Methods

This section provides the definitions and background information on the RNA-As-Graphs 

(RAG) resource, including details of our hierarchical approach for sampling RNA 3D graph 

topologies (RAGTOP), graph-partitioning, RAG-3D search tool and database, template loop 

library created from the non-redundant database obtained from NDB, and our F-RAG 

procedure.

RAG 2D and 3D tree graphs

RNA bases form hydrogen bonds with each other upon folding of the ribonucleotide chain. 

The canonical base pairs are GC, AU, and GU wobble. Base pairs stack on one another to 

form stems or helices that are interrupted by single-stranded regions of unpaired bases called 

loops. The connectivity of stems and helices is called the secondary structure (2D) of the 

RNA molecule (Figure 4a). The 2D structure can be represented in the form of an undirected 

tree graph G = (V,E) [64]. The vertices V correspond to different loops: hairpin loops, 

internal loops and bulges (with at least two nucleotides in either strand), junctions, and 

dangling ends. A dangling end refers to an exterior loop that includes unpaired residues at 

the 5′ and the 3′ ends of the RNA sequence. The edges E correspond to helical stems, with 

at least two base pairs. Figure 4b shows a 2D tree graph with 5 vertices for a 57-residue 

fragment of rRNA (PDB ID: 1DK1). Our RAG resource enumerates and catalogs all 

possible graph topologies for graphs up to 13 vertices (≈ 260 nucleotides) [65], and each 

unique 2D graph topology is given a RAG ID by order of the Laplacian second eigenvalue 

[66]. In addition, the graphs associated with known RNA structures are classified as 

“existing RNA”. The remaining, hypothetical graphs are classified as “RNA-like”, or “non 

RNA-like” by clustering techniques [67].

To weigh the graphs by their residue content and incorporate additional features, we convert 

the 2D tree graph into a 3D tree graph with additional vertices and edges (Figure 4c). Two 

vertices are added to represent the 5′ and 3′ ends for each helix, along with vertices for 

internal loops and bulges that contain less than two nucleotides in either strand. Isolated 

single base pairs are ignored. The vertex set V now consists of vertices representing loop and 

helical ends. The edges of the graph now connect the two vertices representing each helix, or 

the loop vertices to the proximal end helical vertices. The lengths of each edge are scaled by 

the number of residues in the corresponding helices and loops [50]. (Note that while the 

initial 3D graph is in 2D space, the MC sampling moves transform the tree graph into 3D 

space). An atomic RNA 3D structure can also be represented using a 3D tree graph (Figure 

4d), by assigning 3D coordinates to the 3D graph vertices using the coordinates of the C1′ 
atom, the C6 atom for pyrimidine residues, and the C8 atom for purine residues as specified 

in [50].
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Junction prediction and graph-topology sampling

The co-axial stacking and family for helical arrangements for RNA junctions are predicted 

using data mining tools by JunctionExplorer [44] and modeled as graphs by RNAJAG [45]. 

The JunctionExplorer algorithm consists of training decision trees of a random forest 

procedure [44] on 3-way and 4-way junction data derived from known RNA structures. The 

decision criteria are based on the number of residues in the junction strands, adenine 

content, and free energy of the proximal base pairs. JunctionExplorer classifies a 3-way 

junction into one of three families [68], and a 4-way junction into one of nine families [69].

The next step in the RAGTOP hierarchical approach is the sampling and selection of 

candidate graph topologies that will serve as a target for atomic coordinates generation [50]. 

Monte Carlo/Simulated Annealing (MC/SA) sampling is performed at flexible internal loop 

vertices of the 3D tree graph. For each move, an internal loop and one of its adjacent helices 

is randomly selected for rotation along a randomly selected axis (x, y, or z). For local or 

restricted moves, the angle range is reduced gradually from 360° to 10°. For random moves, 

the range of angle is always full (i.e., 360°). The SA protocol involves cooling the ‘system 

temperature’ by the effective term Ti = c/log2(1 + i/s), where c = 1/(20 * log2(10)), i is the 

iteration number, and s is the total number of MC moves specified a priori. The junction 

orientation is kept fixed during the MC/SA simulation to preserve the co-axial stacking and 

the junction family predicted by JunctionExplorer. All sampled graph topologies are scored 

by a knowledge-based scoring function derived from known RNA structures. Terms include 

bend and twist potentials of helices around internal loops, and radius of gyration 

measurements. We have recently enhanced our scoring potentials by distinguishing internal 

loops that contain kink-turns, by identifying kink-turn sequence patterns [51]. Following the 

MC/SA sampling, candidate graphs are selected from the accepted graphs as either the graph 

with the lowest score or the last accepted graph. Figure 5 shows the candidate graphs (lowest 

scored and last accepted graph using the random moves SA protocol) selected after the 

MC/SA protocol on a fragment of the ribosomal RNA (PDB ID: 1DK1).

Graph partitioning and RAG-3D search

Representing RNA structures as graphs allows us to use graph-theory algorithms to partition 

RNA structures. The RNA 2D and 3D graphs can be partitioned into subgraphs to study 

submotifs in RNA structures. The Laplacian spectrum of the 2D graph of an RNA structure 

can be used to represent RNA graph topology, and graph-partitioning algorithms use the 

eigenvector associated with the second smallest eigenvalue of the Laplacian matrix to 

partition the graph into subgraphs [49]. We have found the gap-cut method (described in 

[49]) to be most effective in partitioning the graph into topologically distinct subgraphs. By 

design, we do not modify the junctions and the neighboring loops.

Graph partitioning is used in our context of fragment assembly. The RAG-3D database [53] 

is a set of all substructures (with associated graph and atomic fragments) for 1500 

representative RNA structures (obtained from the PDB as of March 2014). It consists of 

7169 graph and atomic fragments corresponding to 51 different RAG topologies. The 

RAG-3D database and search tool can be used to search for similar substructures of any 

given RNA [53]. A 3D graph is constructed for the query RNA, and all its subgraphs are 
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aligned with every 3D graph fragment in the RAG-3D database with the same RAG ID. The 

resulting graph RMSD is measured between the query subgraph and the graph fragment in 

the database. For each query subgraph, the RAG-3D search provides ten graph fragments 

with corresponding atomic fragments in order of increasing graph RMSDs. In this paper, the 

query to the RAG-3D search is the candidate 3D tree graph obtained by RAGTOP. When 

searching for matching fragments, RAG-3D as reported previously [53] takes into account 

the graph topology and the graph RMSD, but not the loop type and number of strands in the 

loops. Thus, for example, a hairpin loop vertex is indistinguishable from an internal loop 

vertex at the end of a subgraph, and the dangling end loop vertex with three strands and two 

adjacent helices is indistinguishable from an internal loop vertex. Therefore, we added a 

criterion to RAG-3D to identify atomic fragments with the same number and same loop 

types as the target subgraph. Figure 6 illustrates RAG-3D’s partitioning of the candidate 

graph selected after MC/SA simulation for the 7S.S SRP RNA (PDB ID: 1LNG), and the 

top atomic fragments provided by RAG-3D search.

Non-redundant dataset for template loops

In addition to the RAG-3D database described above, we also use the non-redundant 

database obtained from the Nucleic Acid Database (NDB) to create a library of template 

loops to be used in the F-RAG procedure. The non-redundant database was first cited in [50] 

in connection to our derived statistical potential, and an updated version was used to develop 

statistical potentials for k-turn motifs [51]. For the purpose here to create a library of 

template hairpins and internal loops, the non-redundant list of RNA structures obtained from 

the NDB was filtered to remove structures with incomplete and modified residues. Duplicate 

chains and multiple models within the same PDB file were also removed. All hairpins and 

internal loops from the remaining 880 structures were classified into categories based on the 

number of residues and strand sequence (555 hairpin categories and 395 internal loop 

categories). One loop is selected from each category to form the library of template loops 

used in F-RAG.

For the F-RAG procedure, one template loop (from the template loop library constructed 

above) with the same number of residues and sequence is selected for each hairpin and 

internal loop in the target structure. If a loop with the same sequence does not exist, then a 

score is given to each loop with the same number of residues (0 for every nucleotide match, 

1 for every pyrimidine-pyrimidine and purine-purine mismatch, 2 for every purine-

pyrimidine mismatch), and the loop with the lowest score is selected as the template loop. 

Note that such a template loop is only used in F-RAG if the atomic fragments provided by 

the RAG-3D search do not meet all the requirements listed in the section below.

With the above tools, our F-RAG procedure can be described as follows:

Details of the F-RAG procedure

The target graph is defined as the candidate graph obtained from the RAG-TOP MC/SA 

simulation. For each target graph, we generate atomic models as follows:
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Input and Output

We apply RAG-3D partitioning and search utilities to the target graph to divide it into 

subgraphs and obtain the top 10 matching atomic fragments for each subgraph from the 

RAG-3D database. For each hairpin and internal loop in the target 2D structure, a template 

loop that best matches its number of residues and sequence is extracted from the non-

redundant dataset (as described above). The secondary structure, target graph, subgraphs, top 

10 fragments obtained by RAG-3D, and best matching template loops from the non-

redundant dataset all serve as input to F-RAG (sketched in Figure 7). The output of F-RAG 

consists of the atomic models generated by combining the different atomic fragments, each 

with a 3D graph, graph RMSD from the target 3D graph, and score according to the 

knowledge-based potential described above.

Algorithm description

Let the subgraphs of the target 3D graph be numbered in increasing order from the 5′ to the 

3′ direction. The algorithm proceeds by calling the recursive procedure below for each 

subgraph starting from the 5′ direction to generate atomic coordinates for that subgraph. 

The following steps describe the procedure to generate atomic coordinates for each subgraph 

and to connect its atomic coordinates to the partially built atomic model. Figure 8 illustrates 

the different steps in the procedure.

1. Identify the common subgraph vertex

Determine the vertex of this subgraph that is common to previous subgraphs, to 

serve as the link between this subgraph and the previous subgraphs. For the first 

subgraph, there is no such vertex.

2. Identify the main subgraph vertex

Determine the main vertex for the subgraph. For a subgraph that contains a 

junction, the main vertex is the first junction vertex. For a subgraph without 

junctions, the main vertex is the first internal loop vertex. If neither junctions nor 

internal loops exist, the main vertex is the hairpin loop vertex. Note that the 

common vertex identified in step 1 cannot be the main vertex.

Next, divide the vertices of the subgraph into two sets, the first containing all 

subgraph vertices that are 5′ of the main vertex, and the second set containing all 

subgraph vertices that are 3′ of the main vertex.

Then for each atomic fragment of this subgraph, perform the following steps:

3. Identify the main fragment vertex

Determine the loop vertex in the fragment graph that corresponds to the main 

vertex of the target subgraph, i.e., the vertex in the fragment graph that is of the 

same loop type (junction, internal loop, or hairpin loop) as the main target loop 

vertex. If there is more than one loop of the same type in the fragment graph, 

choose the vertex with the least difference in the number of loop residues 

between the fragment and the target loop. Similar to the target main vertex, 

divide the fragment graph vertices into two sets, the first containing all fragment 

Jain and Schlick Page 13

J Mol Biol. Author manuscript; available in PMC 2018 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vertices that are 5′ of the main fragment vertex, and the second set containing all 

fragment vertices that are 3′ of the main fragment vertex.

4. Check fragment type

Compare the two sets of target subgraph vertices calculated in step 2 to the 

corresponding set of fragment graph vertices calculated in step 3 to determine 

whether the fragment has the same 5′ to 3′ order of loops as the target 

subgraph. If the fragment does not match the target subgraph, remove the current 

fragment from consideration and go to step 3 for the next fragment. If the 

fragment matches the target subgraph, proceed to the next step.

5. Dock fragment graph onto the target subgraph

Dock the fragment graph, along with the the corresponding atomic fragment, 

onto the target subgraph, using three corresponding vertices from the fragment 

graph and the target subgraph. The three corresponding vertices used for docking 

are the main loop vertex, and the loop vertices 5′ and 3′ of the main loop vertex 

in both the target subgraph and the fragment graph. If the target subgraph 

contains only two loop vertices, then the third vertex is chosen to be the 5′ helix 

vertex of the main loop vertex in both the target subgraph and the fragment 

graph.

6. Generate atomic coordinates for loop vertices

Generate the coordinates for loop vertices in the target subgraph using the atomic 

coordinates of the corresponding loops from the fragment by the following steps. 

The atomic coordinates are generated for subgraph loops in the 5′ to 3′ 
direction to maintain connectivity of the atomic model.

a. Edit the number and identities of base pairs in the 5′ helix

Adjust the length of the helix 5′ of the fragment loop (remove or add 

base pairs) to match the length of the helix 5′ of the target loop. To 

preserve the connectivity of this helix with the previously built model, 

overlap the 5′ base pair of this helix with the corresponding base pair 

in the partially built model. The base pairs are overlapped using three 

atoms from both base pairs: C1′ atom of base 1, C1′ atom of base 2, 

and the C6/C8 atom of base 1 (depending on whether the first base is a 

pyrimidine/purine). Edit the bases in the helix to match the sequence of 

the corresponding target helix.

b. Edit the number and identity of the loop residues

Compare the number of residues in each strand of the fragment loop to 

the corresponding strand of the target loop. If the number of residues is 

equal, edit the fragment residue to match the corresponding target 

residue. If the number of residues in the fragment loop is less than the 

target loop, select the template loop for hairpins and internal loops 

(taken as input from the non-redundant dataset) and overlap this new 

loop on the 5′ helix generated above. (For junctions, the atomic model 
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generated will have missing residues.) If the number of residues in the 

fragment loop is greater, remove extra residues for internal loops and 

junctions. For hairpin loops, select the template hairpin loop. Edit the 

residues in the fragment loop to match the target loop sequence.

c. Edit the identity of base pairs in the 3′ helices

For each 3′ helix of the target loop (there can be more than one if the 

loop is a junction), edit the identity and length of the corresponding 3′ 
helices of the fragment loop to match the sequence of the corresponding 

target helix. If any adjustment to the number of loop residues was made 

in step 6b, or a template loop was used, overlap the 5′ base pair of this 

helix on the 3′ base pair of the loop to maintain connectivity.

7. Apply the recursive procedure to the next target subgraph

Unless the subgraph is last, go to step 1 for the next subgraph. For the last 

subgraph, a full atomic model for the target 3D graph has been generated. 

Construct a 3D tree graph for this full atomic model (using coordinates of the 

C1′ atom, C6 atom for pyrimidines, and C8 atom for purines), and calculate its 

graph RMSD from the target 3D graph, and its score according to the 

knowledge-based potential. Produce the full atomic model, graph RMSD, and 

associated score.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RAGTOP RNA-As-Graphs Topology Prediction
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SA Simulated Annealing

PHENIX Python-based Hierarchical Environment for Integrated Xrytallography
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Highlights

1. Graph-based fragment assembly method to generate atomic from coarse-

grained RNA models

2. Good results, compared to two fragment-assembly based programs, especially 

for RNA junctions

3. Good foundation for future work on RNA structure prediction and design 

with compact representations
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Figure 1. Statistics for lowest DI models generated by F-RAG for 50 RNA structures
(a) Number of residues vs. RMSD (in °A) (b) Number of residues vs. Deformation Index (in 

°A) (c) Number of residues vs. Specificity (PPV) (d) Number of residues vs. Sensitivity 

(STY). See the main text for definitions of these measures.
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Figure 2. Comparison of lowest DI models generated for 44 RNA structures by F-RAG, Vfold3D, 
and 3dRNA
(a) Structures with hairpins and internal loops (b) Structures with hairpins, internal loops, 

and junctions.
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Figure 3. Comparison metrics for lowest DI models generated for 44 RNA structures by F-RAG, 
Vfold3D, and 3dRNA
(a) Number of residues vs. Specificity (PPV). (b) Number of residues vs. Sensitivity (STY). 

(c) Number of residues vs. Interaction Network Fidelity (INF) (d) Number of residues vs. 

Clashscore. See the main text for definition of these measures.
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Figure 4. 2D and 3D tree graphs for a fragment of ribosomal RNA (PDB ID: 1DK1)
(a) Secondary structure. (b) Corresponding 2D tree graph topology. (c) 3D tree graph 

constructed from the 2D tree graph by adding extra vertices for internal loop with one 

nucleotide (smaller blue vertex) and helical ends (green vertices) (d) 3D tree graph 

corresponding to the experimentally solved tertiary structure.
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Figure 5. Results of the MC/SA simulation on a fragment of ribosomal RNA (PDB ID: 1DK1)
The initial graph constructed after junction family and stacking prediction is subjected to 

MC/SA simulation. The graph shows convergence of the MC/SA simulations. The two 

potential candidate graphs are shown, along with their graph RMSDs from the 3D tree graph 

of the reference crystal structure.
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Figure 6. RAG-3D partitioning for 7S.S SRP RNA (PDB ID: 1LNG)
Subgraphs and best matching (lowest graph RMSD) atomic fragments for the candidate 

graph of the signal recognition particle (PDB ID: 1LNG) are shown as obtained by our 

RAG-3D graph partitioning and search (with added requirement for the fragment to have 

matching loop types).
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Figure 7. Sample F-RAG Input for the pentanucleotide AUUCU repeat expansion RNA (PDB ID: 
5BTM)
The 2D structure, candidate graph, corresponding subgraphs, and associated atomic 

fragments from the RAG-3D search that serve as input to F-RAG are shown. For this 4 1 

target, we obtain 4 subgraph decompositions as shown. For each subgraph decomposition, 

we run F-RAG using the 10 lowest graph RMSD atomic fragments for each target subgraph, 

to obtain many atomic models. We then select all atomic models that have the same number 

of residues as the target structure (or the highest number of residues in case of missing 

residues), sort them in increasing order of their score (based on our knowledge-based 

statistical potential), and select the top scoring models for geometry optimization with 
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PHENIX. In Figure 8, we illustrate the steps of F-RAG for one subgraph decomposition, 

namely III.
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Figure 8. Steps of the F-RAG procedure for a sample application to subgraph decomposition III 
(shown in Figure 7) for the pentanucleotide AUUCU repeat expansion RNA (PDB ID: 5BTM)
The steps of F-RAG illustrated for the two subgraphs are: main vertex for the target 

subgraph is identified, respective vertices for docking the fragment graph onto the target 

graph are identified, fragments are docked onto the target graphs, and base types and 

numbers are edited in all loops and helices. Atomic fragments are superimposed to produce 

the final model. The colors in the final model indicate the segment’s source: green - 

fragment of subgraph 1; red - template loops; purple - extra base pair added; magenta - 

fragment of subgraph 2.
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Table 1

List of 50 RNA PDB files whose 3D structures were generated in this paper

PDB Residues Molecule Structure

2M4W 17 HEV Genome Bulge Hairpin, Internal Loop

2MEQ 19 Helix 60 of 23S rRNA Hairpin

2M5U 22 P4 hairpin of CPEB3 ribozyme Hairpin

2N7X 23 miRNA 20bd element Hairpin, Internal Loop

1RLG 25 C/D box sRNP Hairpin, Internal Loop

2MIS 26 VS Ribozyme Hairpin, Internal Loop

2N0J 27 Neomycin riboswitch Hairpin, Internal Loop

2NCI 28 Metal binding loop Hairpin, Internal Loop

3SIU 28 U4atac snRNA Hairpin, Internal Loop

1OOA 29 Protein binding RNA Aptamer Hairpin, Internal Loop

2IPY 30 H IRE RNA Hairpin, Internal Loop

2OZB 33 U4 snRNA Hairpin, Internal Loop

2XEB 33 U4 snRNA Hairpin, Internal Loop

1MJI 34 5S rRNA fragment Hairpin, Internal Loop

2M57 35 Domain 5 of group II intron Hairpin, Internal Loops

4PCJ 35 CUG repeats Hairpin, Internal Loop

2HW8 36 mRNA bound to L1 protein Hairpin, Internal Loop

2N6S 36 CssA mRNA thermometer Hairpin

5KQE 36 Telomerase RNA P2ab Hairpin, Internal Loop

1I6U 37 16S rRNA fragment Hairpin, Internal Loop

1F1T 38 Malachite green aptamer Hairpin, Internal Loops

1ZHO 38 mRNA with L1 protein Hairpin, Internal Loop

2MXL 39 Hairpin from Influenza A Hairpin, Internal Loop

2N6T 42 CssA mRNA thermometer top Hairpin, Internal Loops

2N6X 43 CssA mRNA thermometer middle Hairpin, Internal Loop

5BTM 43 AUUCU repeats Hairpin, Internal Loops

1S03 47 spc Operon mRNA Hairpin, Internal Loop

1XJR 47 s2M element of SARS virus Hairpin, Internal Loops

2MTJ 47 Junction from VS ribozyme Hairpins, 3-way junction

2VPL 48 mRNA with L1 protein Hairpin, Internal Loop

1U63 49 mRNA with L1 protein Hairpin, Internal Loop

2PXB 49 SRP from E.coli Hairpin, Internal Loops

2N4L 53 HIV-1 Intron Splicing Silencer Hairpin, Internal Loops

2HGH 55 55-mer 5S rRNA fragment Hairpins, Internal Loop, 3-way junction

1DK1 57 rRNA fragment bound to S15 Hairpins, Internal Loop, 3-way junction

1MMS 58 58-mer fragment from 23S rRNA Hairpins, Internal Loop, 3-way junction

1Y39 58 58-mer fragment from 23S rRNA Hairpins, Internal Loop, 3-way junction

2N3Q 62 Three-way junction from VS ribozyme Hairpin, Internal Loops, 3-way junction

2MQT 68 U5-PSB domain of leukemia virus Hairpin, Internal Loops
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PDB Residues Molecule Structure

2N6W 68 CssA thermometer Hairpin, Internal Loops

1KXK 70 Domain of ai5g group II intron Hairpin, Internal Loops

2OIU 71 L1 ribozyme RNA Ligase Hairpins, Internal Loop, 3-way junction

4LCK 75 tRNA-Gly Hairpins, 4-way junction

1P5O 77 HCV IRES Domain II Hairpin, Internal Loops

3D2G 77 TPP Specific riboswitch Hairpins, Internal Loops, 3-way junction

2HOJ 79 thi-box riboswitch Hairpins, Internal Loops, 3-way junction

2GDI 80 TPP riboswitch Hairpins, Internal Loops, 3-way junction

2GIS 94 SAM-I riboswitch Hairpins, Internal Loops, 4-way junction

1LNG 97 7S.S SRP RNA Hairpins, Internal Loops, 3-way junction

2LKR 111 Yeast U2/U6 snRNA complex Hairpins, Internal Loops, 3-way junction
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Table 2

Lowest RMSD and DI models for 25 structures with and without models generated using fragments from the 

reference structures.

PDB

Lowest RMSD Model Lowest DI Model

With reference
fragments

Without reference
fragments

With reference
fragments

Without reference
fragments

1RLG 1.034 9.267 1.25 16.14

3SIU 3.480 3.480 4.55 4.55

1OOA 5.005 5.005 7.22 7.22

2OZB 3.291 3.291 3.76 3.76

1MJI 3.246 3.246 4.27 4.27

2HW8 0.450 0.450 0.50 0.50

1I6U 0.532 2.137 0.63 2.59

1F1T 5.060 5.060 7.30 7.30

1ZHO 1.089 1.315 1.21 1.46

1S03 5.088 5.186 6.38 6.66

1XJR 8.025 8.025 10.97 10.97

2VPL 0.428 10.427 0.48 12.55

1U63 3.408 3.408 4.37 4.37

2PXB 5.065 5.065 6.10 6.10

1DK1 1.008 1.060 1.18 1.18

1MMS 0.647 0.647 0.73 0.73

1Y39 0.717 1.018 0.81 1.15

1KXK 0.544 5.759 0.62 7.65

2OIU 1.004 17.768 1.06 23.20

4LCK 0.729 22.498 0.83 30.54

3D2G 1.460 1.460 1.64 1.64

2HOJ 2.504 2.504 3.03 3.03

2GDI 4.976 4.976 6.71 6.71

2GIS 0.919 0.947 1.05 1.07

1LNG 0.858 14.362 0.96 19.43

The bold values indicate a change in the lowest RMSD or DI when models using fragments from the reference structure are removed.
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