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Abstract

Purpose of Review—\We offer an in-depth discussion of the time-varying confounding and
selection bias mechanisms that give rise to the healthy worker survivor effect (HWSE).

Recent Findings—In this update of an earlier review, we distinguish between the mechanisms
collectively known as the HWSE and the statistical bias that can result. This discussion highlights
the importance of identifying both the target parameter and the target population for any research
question in occupational epidemiology. Target parameters can correspond to hypothetical
workplace interventions; we explore whether these target parameters’ true values reflect the
etiologic effect of an exposure on an outcome or the potential impact of enforcing an exposure
limit in a more realistic setting. If a cohort includes workers hired before the start of follow-up,
HWSE mechanisms can limit the transportability of the estimates to other target populations.

Summary—We summarize recent publications that applied g-methods to control for the HWSE,
focusing on their target parameters, target populations, and hypothetical interventions.
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Introduction

Determination of exposure limits to protect workers’ health requires accurate estimates of
the risks of occupational exposures. Assessments of workplace risk are generally based
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directly on observational studies of occupational cohorts [1]. Estimates from these studies,
however, are often subject to bias due to the Healthy Worker Survivor Effect (HWSE), a
ubiquitous process that results in the healthiest workers accruing the most exposure over
their lifetimes [2—7]. It is therefore critical to attempt to control for the potential downward
bias caused by the HWSE [1,8].

The HWSE can be conceptualized as bias due to either time-varying confounding or a
selection process [5,7,9-11]. In a previous review, Buckley et al. detail recent applications of
analytical approaches that control for the HWSE [8]. To emphasize the resultant loss of
study validity, Buckley refers to the phenomenon as Healthy Worker Survivor Bias. In the
epidemiologic literature, biasis used to refer to the mechanisms that cause results to deviate
from the truth [12,13]. However, we want to preserve the distinction between the
mechanisms we refer to collectively as the Healthy Worker Survivor Effect, and the
statistical b/asthat it often causes, for which we will reserve the terminology Healthy
Worker Survivor Bias. These two ideas are discussed in more detail below.

In this paper, we expand on Buckley’s review by discussing the mechanisms that give rise to
the bias in more depth [8]. We highlight the role that identification of both target parameters
and target populations plays in allowing occupational epidemiologists to estimate unbiased
exposure effects from cohorts affected by the HWSE mechanism. We then review recent
applied papers published since Buckley’s review (Table 1) that attempt to remove Healthy
Worker Survivor Bias, focusing on their target parameters and populations [14-22].

Target Parameters

Epidemiologic studies try to answer questions about the relationship between an exposure
and a health outcome in a population. Target parameters provide answers to those questions;
they summarize the relationship of interest with a single number, or a series of numbers [23].
Familiar target parameters include standardized mortality ratios, odds ratios, hazard ratios,
and regression slopes.

The directed acyclic graph (DAG) presented in Figure 1a describes the data generating
process for a simplified occupational cohort study with two time points. Researchers use this
study design to estimate the effect that long term workplace exposure has on an adverse
health outcome, with the ultimate goal of evaluating limits to mitigate lifetime risk in the
workforce [9,11,13,24]. Measured variables for these data are: exposure assessed at the two
time points (A1 and Ay), time-varying health status measured at the end of time point 1 (H),
and an outcome measured at the end of time point 2 (). There also are unmeasured shared
predictors (U) of underlying health status and the outcome, representing differences in
susceptibility or other risk factors within the population.

There are two direct pathways by which exposure causes the outcome: A; — Y and A,
—Y. There are also two indirect pathways by which exposure causally affects the outcome:
Ay — H— Yand Ay > H— Ay — Y. We represent the pathways in the DAG that
constitute the Healthy Worker Survivor Effect mechanism using hollow arrows.
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One of the basic processes by which the Healthy Worker Survivor Bias perpetuates itself is
via the arrow between H and A,. Workers in poorer health tend to accrue less exposure,
whether by reducing the amount of time that they work, by switching to lower exposed jobs,
or by leaving the workforce entirely. The workers who tend to survive in the active
workforce and to accrue the most exposure, conversely, are the healthiest ones. The variable
H acts as a time-varying confounder on the causal pathway: it both contains a portion of the
effect of past exposure (A; — H — Y) and acts as a confounder of the future exposure-
response relationship (A, < H — Y). Estimation of unbiased causal effects of exposure
from data structures including these pathways requires the use of a class of modern
statistical estimation approaches known collectively as g-methods [25-28].

Researchers can apply most g-methods with standard software using the traditional tools of
epidemiologic research: standardization, weighting, and regression. Each of the g-methods
(including inverse probability weighted estimation of marginal structural models, g-
computation, targeted maximum likelihood based estimation (TMLE), and g-estimation of
structural nested models) can be applied to estimate different target parameters. These
parameters are often defined using the language of interventions to articulate questions that,
if answered, capture the causal relationship between exposure and outcome. Target
parameters for these methods are structured as answers to questions about disease
occurrence under counterfactual scenarios. They estimate the outcome(s) in a target
population if the specified intervention(s) had been imposed. The ability of researchers to
estimate these parameters from their observed data relies on the key assumptions of
consistency, conditional exchangeability, and positivity [11,29].

Consider two possible interventions on the system described in Figure 1a. In each
intervention, all workers experience the same fixed level of exposure: in the first, exposure is
always high, and in the second, exposure is always low. If these two interventions were
implemented, health status would not act as a time-varying confounder in the resulting data.
Workers who in reality would tend to transfer to jobs with more or less exposure as a
function of this health status would instead remain at their original exposure level for the
entire study period. The effect of exposure could be inferred from the comparison of the
outcomes experienced by the same worker cohort under each intervention. By defining these
structural parameters with reference to an intervention of interest, epidemiologists can
identify questions that isolate the causal effect of the exposure under study [30]. To be clear,
some of these interventions are not intended to be implemented; they are clearly infeasible
due to both practical and ethical considerations. Rather they are chosen because, if they were
to be implemented, their resulting data would provide an easily interpretable way to estimate
the causal effect of the exposures under study.

By contrast, target parameters from traditional approaches, such as Standardized Mortality
Ratios or Cox proportional hazards, evaluate risk by comparing observed groups who
actually experienced different exposure histories [11,13]. The risk among the highest
exposed subset is evaluated among a select group of the healthiest and most robust workers.
It is no surprise, therefore, that these estimands underestimate the risk for the entire
population.
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We define bias as an expected difference between an estimand ( ¢) and the true value of its

target (&o). For an unbiased estimand, the two values are equivalent ( £=&).
Counterintuitively, some estimation targets (i.e. some &gs) are affected by the mechanisms of

the HWSE. Thus, a parameter can be unbiased, in that £=&p, even though the value of €
might depend on the strength of the HWSE mechanisms (for example, the causal
relationship between H and Ay).

We distinguish between two types of causal parameters corresponding to interventions. A
causal contrast that corresponds to the biologic effect of exposure on an outcome is an
example of a target parameter whose true value is not affected by the HWSE mechanisms. A
valid way to evaluate this etiologic effect would be to compare the outcomes of two
hypothetical interventions, one with high exposure, and one with low exposure, in a working
population. All workers would remain at work for the duration of both interventions and
receive their assigned exposure. In an occupational context, the controlled direct effect [31]
estimated by contrasting the outcomes under these two interventions would represent the
etiologic effect of exposure.

By contrast, a target parameter corresponding to a more realistic intervention might be
affected by the HWSE mechanisms. For example, researchers may be interested in
interventions that reduce occupational exposure limits to specific levels. These interventions
are typically of the nature ‘if at work then exposure is set at or below the exposure limit’.
These are dynamic interventions dependent on a subject’s employment status, in contrast to
static ‘always at work and always exposed’ interventions [32,33]. These realistic
interventions allow workers to leave work and be unexposed if not at work, as would be
expected in a real world setting where workers can opt to leave work (the interventions may
be unrealistic in other ways). The counterfactual outcomes under these realistic interventions
can be compared to the observed outcome (under the natural course of events), and causal
parameters such as the risk difference can be obtained. Under such interventions and
comparisons, the true value of the estimand is affected by the strength of the associations
denoted by the hollow arrows in the DAG in Figure 1a.

If exposure is an irritant, some workers might leave work earlier under a high exposure
scenario, become subsequently unexposed, and as a result accumulate less exposure than
they would have under a low exposure scenario. The higher exposure scenario may then
result in lower risk for the population than the lower exposure scenario even though
exposure is harmful. Assessment of such interventions is therefore aimed not necessarily at
estimating the etiologic effect of exposure on an outcome, but rather at estimating what
would happen in a realistic or real-world intervention on the target population.

Target Populations

A group of people who all start work on the same day may include workers with varying
degrees of susceptibility to the health effects of exposure. If workers who are more
susceptible leave work and/or experience the outcome prior the start of follow-up, then the
subset of workers who remain eligible for the study at the start of follow-up will have a
greater proportion of “immune” workers, or survivors, than the population of workers from
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which they came. If the study population is then defined to include only the workers who
were still employed at the start of follow-up, the study population consists of all surviving
workers: those who do not yet have the exposure-related outcome of interest. One could use
these data to obtain an unbiased estimate of the target parameter for a population of workers
culled of the susceptible, but the estimate would likely not be generalizable to a population
of all workers, potentially dampening its utility in guiding health-based exposure limits. If,
instead, the target population is a//workers ever employed in that workplace, then a study
population of surviving workers may be a biased sample of the target population, and any
resulting target parameter will suffer from selection bias.

Many occupational cohorts are defined to include a cross-sectional sample of workers
already employed at the start of follow-up [14-16,18,21,22,34,35]. These workers constitute
a left-truncated cohort [34,36-39]. The DAG in Figure 1b demonstrates how this choice of
analytical cohort, in combination with the HWSE mechanisms, can result in bias due to
selection. The DAG includes a conditioning on active employment at the start of follow-up.
This defines a cohort based on a cross-sectional sample of the workers who began
employment prior to the start of follow-up. The variable W, an indicator representing active
employment, serves as the time-varying confounder on the causal pathway between
exposure at time 0 and the outcome. The box around W represents the selection criterion for
entry into the cohort (only workers with W =1 are included in the study population). This
conditioning opens up a pathway from previous exposure through the unmeasured
confounder to the outcome (Ag —>W<— U — Y) and, without additional assumptions,
prevents identification of the causal effect of exposure prior to start of follow-up [9]. That is,
conditioning on a descendent of exposure usually results in selection bias that affects any
estimates derived from the resultant cohort [10]. In reality, many occupational cohorts
include those still at work at the beginning of follow-up as well as any workers hired during
follow-up, and therefore will only be proportionally affected by this mechanism.

We can also view this effect as an instructive example of the concept of transportability, or
external validity. Bareinboim and Pearl have given transportability a formal definition and
demonstrated the use of DAGs to identify systems whose measured effects are transportable
to each other [40]. If we apply this principle to our DAG in Figure 1b, we can see that the
unblocked pathway between exposure prior to follow-up start (A0) and the outcome prevents
simple transportability, or generalizability, between the left-truncated cohort and the original
group of workers from which they were selected. This implies that effect measures estimated
in the left-truncated cohort will not necessarily be the same as might be observed from the
original ‘inception’ population. A clear discussion of the target population should
acknowledge that any cross-sectional cohort may have been subject to a selection process
that distinguishes it from the original full cohort from which it was sampled.

The question of external validity is fundamental to all epidemiologic research [13,41]. We
emphasize it here to highlight the fact that the same HWSE structural mechanisms (cf
Figures 1a and 1b) that cause time-varying confounding can also cause bias due to sample
selection. Despite the commonalities in their origins, successfully addressing both biases
requires distinct epidemiologic approaches. In the following sections, we discuss the roles
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that identification of target parameters and target populations played in addressing potential
bias due to the HWSE mechanisms in recent published research.

Methods for estimating exposure effects in cohorts with Healthy Worker

Survivor Effect present

Using recent applications in the literature (summarized in Table 1), we describe several
different estimation approaches used to address Healthy Worker Survivor Bias and focus on
how the applications relate to the key ideas of target parameters and target populations
developed above.

Inverse probability of treatment weighting (IPTW)

IPTW estimation reweights observed data using weights that are inversely proportional to
the probability that each subject received their observed exposure history, creating a pseudo-
population in which measured confounders no longer predict exposure [42-44]. Exposure
effects can then be estimated from this re-weighted population using marginal structural
models that include exposure as the only predictor for the outcome.

In a cohort of actively employed aluminum manufacturing workers, Neophytou et al. 2014
used marginal structural Cox models to estimate the effect of exposure to particulate matter
<2.5um in diameter (PM, 5) on the incidence of ischemic heart disease while still employed,
adjusting for time-varying confounding by a composite health score [14]. The target
parameter was the ratio of the average hazard of heart disease during follow-up that would
have been observed if all workers in the target population were always exposed above the
PM,, 5 cutoff while at work, to the average hazard that would have been observed if all
workers were always exposed below the cutoff while at work. Results from this analysis
were protected from potential bias caused by time-varying confounding by the health risk
score. The analytic cohort was a population of surviving workers and new hires. The results
are considered unbiased if the target population is defined as this analytic cohort, but may
have limited transportability to all workers. Results based on the survivor population vs. the
inception population were explored further in Costello et al., discussed below [19].

G-computation/the parametric g-formula

G-computation, or the parametric g-formula, is an extension of standardization for time-
varying exposures. G-computation allows the estimation of the risk of an outcome as a
weighted sum (or integral) of the probability of the outcome conditional on its risk factors.
The parametric g-formula relies on parametric models to predict the probabilities of the
outcome and all other risk factors.

Keil & Richardson apply the parametric g-formula to estimate the effect of hypothetical
interventions modifying occupational exposures to arsenic in a cohort of copper smelter
workers [21]. Cumulative incidences (from age 20 onwards) for respiratory cancers, heart
disease, and other causes were estimated under each intervention and compared to the
natural course (observed cumulative incidence). The interventions of interest allowed
workers to leave work, so the tfrue value of the target parameter was affected by the strength

Curr Environ Health Rep. Author manuscript; available in PMC 2018 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Brown et al.

Page 7

of the relationship between exposure and leaving work and the association between leaving
work and the outcomes. However, this does not mean that the findings were biased due to
time-varying confounding by employment status, as the realistic target parameter of interest
was identifiable from the observed data. Both the analytic population and target population
included workers hired before start of follow-up. Thus their results may have limited
generalizability to the population of all workers at this smelter.

Neophytou et al. 2016 use a similar approach to estimate risk of lung cancer under
interventions modifying occupational exposure to diesel exhaust in a cohort of underground
non-metal miners [22]. The authors report risk differences and risk ratios comparing each
intervention to the natural course of each disease, as well as the attributable fraction of lung
cancer cases for the exposure of interest. The intervention of interest allowed workers to
leave work, so the true value of the effect being estimated was affected by the strength of the
relationship between exposure and leaving work, but again, the findings are not affected by
bias resulting from time-varying confounding by employment status. Start of follow-up in
the analytic population coincided with dieselization of participating mines, but included
workers hired before start of follow-up. Although this may be considered as an ‘inception’
cohort from the point of view of the exposure of interest, the results may still not be
transportable to a population of all underground non-metal miners.

Targeted maximum likelihood estimation

Targeted maximum likelihood estimation is a generalized methodology for performing
causal inference introduced by van der Laan and colleagues [45]. Applied to a longitudinal
cohort, TMLE uses a sequential estimation process to remove the time-varying confounding
at each time point, allowing the estimation of intervention-based target parameters [46,47].
Each sequential estimation is targeted to the parameter of interest, providing efficient
estimation and double robustness.

Brown et al. studied the effects of airborne exposure to PM, 5 on the development of
ischemic heart disease while employed in an active cohort of aluminum workers [18]. They
estimated the marginal 12-year cumulative incidence of heart disease under different
exposure interventions. The target parameter compared the incidence that would have been
observed if all workers had remained at work and were continuously exposed above the
median PM, 5 compared to what would have been observed if each worker were
continuously exposed below the median PM, 5 and remained at work. They adjusted for
potential time-varying confounding of the exposure assignment and employment termination
processes by the underlying health risk score, hypertension, dyslipidemia, and diabetes. The
cohort included previously hired workers, thereby limiting the transportability of the results
to the cohort of all workers ever employed.

G-estimation of structural nested (accelerated failure time) models

Instead of combining exposures over time to compute cumulative exposure and then
estimating its composite effect on the outcome, g-estimation of a structural nested
accelerated failure time model removes time-varying confounding by estimating the effect of
exposure at each time separately, adjusting only for past covariates, and then combining
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those effects together over time. In this way, the effect estimate is free from confounding by
measured time-varying covariates [48,49].

This approach assumes that the effect of exposure (if such exposure could occur) would be
the same after leaving employment as it is during employment: employment status is not an
effect measure modifier [50]. This allows us to estimate an etiologic effect, and avoid
considering interventions on employment status. In the papers discussed below, the models
chosen assume that there is no effect measure modification by any covariate. These
applications of structural nested accelerated failure time models yield a parameter
corresponding to the ratio of median survival times comparing what would have happened
under two counterfactual exposure interventions. The exact nature of the scenarios depends
on the model and exposure metric. Because this ratio compares two interventions on
exposure, ignoring employment status, the true value of the target parameter does not
depend on the observed strength of the relationship between employment status (or other
variables H) and later exposure. Nevertheless, estimation of this target parameter still
requires correct adjustment for time-varying covariates.

Keil et al. use this approach to assess effect of occupational exposure to radon on lung
cancer mortality in a cohort of male uranium miners in Colorado [15]. The authors estimated
the ratio of median survival times that would have been observed for an increase in
cumulative exposure equivalent to 100 working level months, assuming the relationship
between exposure and survival time to be linear. The analysis adjusted for employment
status as the main time-varying confounder. The analytic population included workers hired
before study initiation, possibly limiting generalizability of the results to a population of all
workers in these mines.

The estimate of the primary parameter of an accelerated failure time model has also been
used to derive estimates of other target parameters. Examples include (a) the hazard ratio
comparing everyone being exposed for the first 15 years of follow-up to everyone never
being exposed [15] and (b) the total and/or average number of person-years of life that could
have been saved in the cohort by enforcing various exposure limits [16,17,20]. These other
target parameters generally require additional assumptions and depend on other properties of
the observed data, such as the distribution of survival time or exposure; those listed under (b)
compare what would have happened under an intervention to what actually happened, and
are therefore affected by the HWSE mechanisms in the observed data.

Excluding workers hired before start of follow-up

If the target population is all workers, one would ideally study an inception cohort (a group
of workers followed from their very first day at work) in order to completely eliminate the
selection bias induced by the HWSE. Such a cohort emulates features of a randomized
controlled trial where follow-up time, exposure, and eligibility all start at the same time [51—
53]. In some situations, study design or statistical power considerations may prohibit
analysis of an inception cohort; nevertheless, the inception cohort from which the study
sample was drawn is often the target population.
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In a recent paper, Costello et al. analyzed data from a cohort of aluminum manufacturing
workers exposed to PMs 5 and followed for ischemic heart disease while still employed [19].
When follow-up started, most workers in the cohort were currently employed; 38% were
hired after the start of follow-up. Results were presented for the full cohort, for the sub-
cohort hired after the start of follow-up, and for those hired 10 and 25 years prior to start of
follow-up. Restriction to those hired after the start of follow-up yielded the strongest hazard
ratios for PM, 5 and heart disease incidence, consistent with reduced selection bias. Results
suggest that restriction by hire date also reduces the magnitude of the selection bias. Thus,
even if restriction to an inception cohort is not feasible, partial restriction can help alleviate
the bias if the target population includes all workers.

Discussion

Due to their common structural origins, time-varying confounding affected by prior
exposure and the potential for left truncation bias generally co-occur in occupational studies.
In several of the works we discussed above in the context of one of these issues, both were
actually addressed to a degree. Picciotto et al. 2015 and 2016 used g-estimation to address
confounding by both employment status and intermittent time off work; the study population
was also restricted to create an inception cohort, thus addressing both aspects of the problem
[17,20]. Similarly, Costello et al. used ITPW to address time-varying confounding affected
by prior exposure and cohort restriction to address left truncation in the aluminum smelter
worker sub-cohort in which both processes were operating [19].

There are cases in which the target population is not an inception cohort, but rather includes
workers hired before the start of follow-up. For example, a reasonable research question
might be to quantify the impact an intervention would have had if implementation had
occurred on a particular date and affected all current employees, similar to the interventions
discussed in Keil & Richardson [21] and Neophytou et al. 2016 [22]. This question concerns
a realistic workplace intervention that would have impacted both those workers employed
prior to start of follow-up and those hired afterwards. The transportability of such a
parameter to other worker populations including future workers, and its utility for guiding
the development of occupational exposure limits, should be carefully evaluated in future
research.

There are several steps that researchers can undertake in order to best address concerns
about bias arising from the HWSE. First, identify the target population and evaluate whether
it differs from the observed cohort. Determine if an incident cohort is a viable analytical
sample and if there is any information about workers who left prior to the start of follow-up.
Second, identify the target parameter, which might correspond to an intervention on
workers’ exposure and possibly employment status, and choose an analytic approach that
can estimate that target parameter in the particular dataset available. No single analytic
approach is sufficient to ensure unbiased estimation in every occupational setting. Each of
the estimation approaches we discuss above offers the ability to control for the time-varying
confounding that characterizes the HWSE.
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IPTW estimation is the simplest to implement, and has generally been used when there are
no concerns about structural non-positivity, such as when all follow-up time occurs among
employed workers. When follow-up extends past employment termination, g-computation or
longitudinal TMLE can be used, although the intervention definition should carefully
consider the role of leaving work. G-estimation also offers the ability to use follow-up time
after leaving work, but has thus far been applied only with a limited class of models.
Extensions of any of these estimation approaches to different target parameters should be
explored more in future research for various target populations. Deciding which to use may
come down to ease of implementation and the researcher’s willingness to make modeling
assumptions.

Conclusion

The HWSE has resisted easy classification because of its multifaceted origins. In this review,
we distinguish between the mechanisms of HWSE and the bias it can cause through
discussion of target populations and target parameters in the context of recent applications of
g-methods. We conclude with the hope that more occupational epidemiologists will structure
their research around these concepts and thereby better estimate the risks associated with
workplace exposures.
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Figurel.
Directed acyclic graphs describing the data generating processes for theoretical occupational

health cohort studies of exposure (A) on an outcome (Y). The subscripts under A represent
the time point of the exposure, so Al is exposure that occurs in the first year of follow-up,
A2 represents exposure in the second year, and AO represents exposure that occurs at time 0
prior to the start of follow-up. U represents an unmeasured covariate affecting either an
adverse health status (H) or work status (W) and the outcome (). Solid arrows represent the
relevant causal effect of exposure on the outcome unmediated by future exposure, while
hollow arrows represent pathways that constitute the Healthy Worker Survivor Effect
mechanisms. a) Displays the time-varying confounding on the causal pathway that occurs
via adverse health status (H). b) Displays the selection process that occurs when researchers
condition on work status (W) by choosing a population of active workers for follow-up.
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