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A collection of genetically 
engineered Populus trees reveals 
wood biomass traits that predict 
glucose yield from enzymatic 
hydrolysis
Sacha Escamez   1, Madhavi Latha Gandla2, Marta Derba-Maceluch3, Sven-Olof Lundqvist4, 
Ewa J. Mellerowicz3, Leif J. Jönsson2 & Hannele Tuominen   1

Wood represents a promising source of sugars to produce bio-based renewables, including biofuels. 
However, breaking down lignocellulose requires costly pretreatments because lignocellulose is 
recalcitrant to enzymatic saccharification. Increasing saccharification potential would greatly contribute 
to make wood a competitive alternative to petroleum, but this requires improving wood properties. To 
identify wood biomass traits associated with saccharification, we analyzed a total of 65 traits related 
to wood chemistry, anatomy and structure, biomass production and saccharification in 40 genetically 
engineered Populus tree lines. These lines exhibited broad variation in quantitative traits, allowing for 
multivariate analyses and mathematical modeling. Modeling revealed that seven wood biomass traits 
associated in a predictive manner with saccharification of glucose after pretreatment. Four of these 
seven traits were also negatively associated with biomass production, suggesting a trade-off between 
saccharification potential and total biomass, which has previously been observed to offset the overall 
sugar yield from whole trees. We therefore estimated the “total-wood glucose yield” (TWG) from whole 
trees and found 22 biomass traits predictive of TWG after pretreatment. Both saccharification and TWG 
were associated with low abundant, often overlooked matrix polysaccharides such as arabinose and 
rhamnose which possibly represent new markers for improved Populus feedstocks.

Sugars extracted from wood biomass represent a promising source of renewable biofuels and other green chem-
icals to sustainably replace petroleum-based products1–4. In particular, the biochemical conversion of lignocel-
lulosic biomass holds great potential3, although improvements are needed at every step of the process3, starting 
with the feedstocks.

Tree species from the Populus genus represent interesting lignocellulosic feedstocks because they exhibit rapid 
growth even on marginal lands and are widely and efficiently cultivated5,6. Furthermore, the genomes of several 
Populus species have been sequenced5,6. Research efforts have focused on improving the biomass production 
of Populus feedstocks7–10. However, for biochemical conversion it is important to also consider woody biomass 
recalcitrance to enzymatic saccharification, requiring harsh pretreatments and therefore higher costs in industrial 
processes11.

Biomass recalcitrance has been studied in natural variants of the Populus genus12–14, showing that lignin 
amount and composition affect saccharification14, and revealing parts of the genetic relationships underlying 
lignin properties and other biomass traits, as well as their impact on wood recalcitrance12,13. Parallel approaches 
have relied on targeted genetic engineering of xylem cell walls, resulting in trees less recalcitrant to enzymatic 
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saccharification, although sometimes at the expense of growth15–22. In particular, saccharification or the subse-
quent sugar conversion could be improved by genetic engineering altering the composition of matrix polysaccha-
rides16,17, reducing the amount of lignin18 or modifying lignin composition20,21. Together, these studies provide 
useful information for future breeding or genetic engineering programs as well as a source for new, improved 
feedstocks. However, translating these tools and knowledge into practice requires further research into aspects 
such as trade-off between the reduction of recalcitrance and biomass production.

The present study contributes to bridging this knowledge gap by characterizing the relationship between bio-
mass traits and susceptibility to enzymatic saccharification in a population of transgenic hybrid aspen (Populus 
tremula x tremuloides; hereafter Populus) known as the BioImprove collection. We estimated the glucose yield 
after pretreatment and 72 h enzymatic hydrolysis from the total wood biomass of each tree to identify diagnostic 
traits for the creation and selection of not only less recalcitrant but overall superior trees with increased sugar 
yield. Such selection could be applied in current breeding programs to enhance biochemical conversion rates. 
Furthermore, our collection of transgenic trees theoretically comprises combinations of traits that are not cur-
rently found in nature, paving the way for a deeper biological understanding of woody biomass and of the ways 
to improve it.

Results
The BioImprove Populus collection provides a trait library for characterizing wood biomass 
properties and glucose yield.  We investigated the relationships between wood traits and the potential of 
woody biomass for enzymatic saccharification in Populus trees by altering the expression of genes putatively reg-
ulating wood biomass properties. For this purpose, we utilized a collection of 40 transgenic Populus lines whose 
genetic modifications aimed at modifying the expression of 39 different genes (Dataset S1). These lines, as well as 
the wild-type T89 clone, were analyzed for three growth-related traits, 20 cell wall chemistry traits, 20 wood anat-
omy and structural traits and 22 saccharification traits (Dataset S2), thus generating a broad wood-related trait 
library. Notably, a wide variation was observed for major growth traits such as height and diameter (Fig. 1a,b), for 
traits critical for biomass recalcitrance such as lignin content and lignin monomer composition (Fig. 1c,d) and for 
analytical saccharification traits such as glucose release after 72 h of enzymatic hydrolysis without pretreatment 
or after a severe acidic pretreatment (Fig. 1e,f). This variation in quantitative traits between lines is valuable as it 
allows us to decipher how wood properties influence traits of interest, such as glucose yield.

Notably, saccharification is usually expressed as the relative amount of sugar released per unit of biomass, 
which reflects the recalcitrance rather than the sugar yield of an entire tree. Trees with high saccharification may 
concomitantly suffer from growth defects, which may nullify the in fine sugar yield. Instead, ideal trees for bio-
chemical conversion of biomass should combine high saccharification with sufficient growth to ensure superior 
yield from their total wood biomass. Therefore, we created a combinatorial trait – a tree’s “total-wood glucose 
yield”, which represents glucose yield after enzymatic saccharification either after acidic pretreatment (TWG; 
Fig. 2a; Dataset S2) or without pretreatment (TWGnp; Fig. S1a; Dataset S2). Our focus on glucose yield is justi-
fied by the fact that glucose is the most prominent product of saccharification. Interestingly, several BioImprove 
Populus lines exhibited significantly different TWG and TWGnp compared with the wild-type trees, and sev-
eral lines outperformed the wild type both without and after pretreatment (Fig. 2b; Fig. S1b). Both the glucose 
released from saccharification without pretreatment and the corresponding TWGnp yielded only about half of 
what could be obtained after the severe acidic pretreatment condition (Fig. 2b; Fig. S1b; Dataset S2). Although 
we analyzed both conditions, we will place more emphasis on the pretreated samples which are more relevant to 
potential applications.

To identify variation in traits that could separate the lines based on TWG, we first performed a principal 
component analysis (PCA). The resultant PCA model displayed nine significant principal components (PCs; 
Dataset S3) explaining 78.6% of the variation in the data: 30.2% were explained by the two first PCs. Neither of 
the two first PCs (Fig. S2) nor any other combination of PCs (Dataset S3) could separate the lines based on their 
TWG. Hence, the variation in TWG was not associated with the main biological variation separating the lines in 
the PCA, implying the need for a different method to identify biomass properties associated with TWG.

Certain traits are associated with total-wood glucose yield.  To overcome the limitations of the PCA 
analysis, we compared the 38 Populus lines whose TWG could be calculated (Fig. 2b; Dataset S2) using a super-
vised, predictive multivariate analysis. Orthogonal projection of latent structures (OPLS23) enables us to distin-
guish the variation related to a variable of interest, for instance TWG, from the unrelated (orthogonal) systematic 
variation. An OPLS model relying on all of the 65 recorded traits was generated which could separate the Populus 
lines with respect to TWG (Fig. 3a) in a significantly predictive manner (Q2 = 0.75).

In order to identify the traits that contribute most to predicting TWG in the BioImprove collection, we 
calculated each trait’s VIP (variable importance for the projection) values for both the TWG-predictive and 
TWG-orthogonal parts of the OPLS model (Fig. 3b; Dataset S3). Attempts to use VIP in order to reduce the 
number of traits used to predict TWG also strongly reduced the model’s predictivity. Although the model relied 
on all 65 traits, VIP values (Fig. 3b) indicated that some traits contributed more to predicting TWG than others. 
We therefore relied on significantly high VIP values (VIP > 1; Fig. 3c) to identify traits which appeared important 
for TWG prediction. We preferred to focus on predictive traits that are easily measurable, and hence applicable 
in current forest tree breeding practices. Therefore, the saccharification traits which are difficult to measure were 
not considered as feasible traits for TWG prediction. Among all the other traits, 12 traits were significantly asso-
ciated with TWG in the OPLS model (Fig. 3c). Height, diameter and wood density were positively associated with 
TWG (Fig. 3c), as expected on the basis of the fact that TWG is a composite feature which integrates these traits. 
Consistent with the contribution of density to TWG, increased wood stiffness (modulus of elasticity) and cell wall 
thickness were also associated with higher TWG (Fig. 3c). Interestingly, galacturonic acid content was positively 
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associated with TWG while arabinose, rhamnose and fucose contents were negatively associated with TWG 
(Fig. 3c), showing that quantitatively minor cell wall compounds could influence TWG under our pretreatment 
condition. Increases in S-type lignin content and in the ratio of S- to G-type lignin were weakly but significantly 
negatively associated with TWG in the OPLS model.

Mathematical modeling predicts TWG, saccharification and biomass production from a subset 
of traits.  The OPLS analysis revealed the possibility of predicting TWG from wood biomass traits in our 
dataset. However, our OPLS model relies on all traits, making it informative but difficult to apply to predict TWG 
from future datasets. Hence, we attempted to generate a mathematical model to predict TWG from only a subset 
of wood biomass traits. Such a model relying on a limited set of traits, especially traits which are easier to measure 
than saccharification, could indeed be used with future datasets to verify the general applicability of the model 
and to serve potential future applications.

Figure 1.  The BioImprove Populus collection provides a wide variation in major traits. (a,b) Growth-related 
traits: stem height (a) and stem diameter (b). (c,d) Biomass recalcitrance-related traits: proportion of lignin 
within the detected pyrolysate from biomass (c) and ratio of S- to G-units within the lignin polymer (d). 
(e,f) Saccharification-related traits: glucose release after a 72 h enzymatic hydrolysis without (e) or after (f) 
pretreatment. Histograms represent the average value for transgenic lines (color) and wild type (black). Error 
bars represent standard deviation. * and ^ indicate statistically significant differences from wild type (p < 0.05 
and p < 0.1 respectively) following a post-ANOVA Fisher’s test (n = 3–5).
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First, distinct individual models were generated for each of the four traits, height, diameter, wood density 
and glucose release after acidic pretreatment, from which TWG is calculated (Dataset S4). Then, by replacing 
each term in the TWG equation (Fig. 2a) with the corresponding model, we obtained a composite model to 
predict TWG (Dataset S4). In that way, the potential effect of predictive traits on TWG could be traced down to 
an effect on saccharification, on biomass production, or even both. The resulting composite model could predict 
TWG (Fig. 4) with significant accuracy (Q2 = 0.61). In contrast to the OPLS model, which included all the traits 
in the dataset, our composite mathematical model relied solely on 22 biomass traits (Table 1). Following the 
same procedure, another composite model was generated that could predict total-wood glucose yield without 
pretreatment (TWGnp; Fig. S2c) from a subset of 19 traits, with significant prediction accuracy (Q2 = 0.64). 
Any attempt to reduce the number of traits used in either of the composite models also greatly reduced the 
models’ predictivity, suggesting that TWG and TWGnp are complex traits emerging from intricate biological 
interactions.

The use of four individual models to construct either of the composite models enables predicting the four 
individual variables which compose TWG and TWGnp. While stem height, diameter and wood density are 
easily measured traits and therefore do not need to be predicted from wood biomass traits, the corresponding 
individual models identify wood anatomical and chemical traits that are associated with these three traits, thus 
providing useful information for feedstock improvement. Of great applied relevance, saccharification of glucose 
without and especially after a severe acidic pretreatment were predicted by individual models with good accuracy 
(Q2 = 0.70 and 0.49, respectively), based only on five and seven traits, respectively (Dataset S4).

As expected14, the individual models revealed that the ratio of S- to G-type lignin correlated positively with 
glucose release after pretreatment, but negatively with stem diameter (Dataset S4). Given that TWG integrates 
both stem diameter and glucose released by saccharification, the relationship between TWG and S- to G-lignin 
ratio was non-monotonic. In this case, the general influence of the S- to G-lignin ratio on the predicted TWG was 
determined by the direction of association in the range of values around the wild-type levels, which was negative 
(Table 1). This varying, albeit generally negative relationship between TWG and S- to G-lignin ratio in the com-
posite model is consistent with the fact that the OPLS model displayed a small but overall negative relationship 
between TWG and the S- to G-lignin ratio (Fig. 3c). The relationship between lignin and TWG on the one hand, 
or saccharification on the other hand, will be discussed later in this article.

In addition to the S- to G-lignin ratio, three other traits that predicted glucose release after pretreatment were 
also associated with stem height and/or diameter (Dataset S4), demonstrating the interplay between biomass 
recalcitrance and biomass production. Of particular interest, low abundance cell wall monosaccharides such as 
rhamnose and arabinose were associated with both glucose release after acidic pretreatment and at least one of 
the biomass production traits - height, diameter and wood density (Dataset S4). While rhamnose was negatively 
associated with both biomass production and saccharification, and therefore with TWG (Table 1), arabinose 
had a non-linear relationship to saccharification and a negative impact on biomass production (Dataset S4), also 
resulting in a mainly negative impact on TWG (Table 1), consistent with the OPLS model. Hence, our modeling 
approach points towards quantitatively minor matrix polysaccharides as putative targets for selection or engi-
neering of woody biomass in Populus.

Figure 2.  The BioImprove lines display a range of total-wood glucose yield (TWG). (a) Formula for estimation 
of a tree’s total-wood glucose yield after pretreatment and 72 h enzymatic hydrolysis, assuming conical shape, 
negligible bark contribution to diameter and homogeneous wood density. (b) TWG of the BioImprove Populus 
lines. Each histogram represents the average value for a transgenic Populus line (color) or wild type (black). 
Error bars represent standard deviation. * and ^ indicate statistically significant differences from wild-type 
(p < 0.05 and p < 0.1 respectively) following a post-ANOVA Fisher’s test (n = 3–5).
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Figure 3.  Certain traits contribute more than others to predicting TWG. (a) OPLS scatter plot showing the 
separation of the Populus lines (dots) horizontally along the predictive component for total-wood glucose yield 
(TWG). Vertical separation indicates variation not correlated with TWG. The lines were coloured by TWG. 
(b) Plots showing the variable importance for the projection (VIP) value for each trait for the predictive part of 
the model (up) and for the orthogonal part of the model (down). VIP values over 1 indicate important traits. 
(c) Contribution of each trait to the OPLS model. Apart from saccharification traits, traits with a VIP value 
over 1 for the predictive part of the model were emphasized by black text and arrows. Traits marked by (*) and 
annotated in grey are important (VIP value over 1) for both the predictive and the orthogonal part of the model. 
Q2 scores over 0.5 indicate significant predictivity of a model.

Figure 4.  TWG can be predicted by a specific subset of traits in a composite model. Scatter plot showing 
for each Populus line (dots) the observed total-wood glucose yield (TWG, x-axis) versus the predicted TWG 
(y-axis). Q2 scores over 0.5 indicate significant predictivity of a model.
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In the composite models for TWG and TWGnp, the individual models for stem height, stem diameter and 
wood density were conserved (Dataset S4), which means that TWG and TWGnp only differ based on the indi-
vidual models for glucose release. Most of the traits predicting saccharification of glucose were different between 
the pretreated and non-pretreated samples (Dataset S4). Furthermore, four out of the five traits predicting glu-
cose release without pretreatment were related to cell wall chemical composition, while glucose release after 
pretreatment was associated with compositional and anatomical features in nearly equal parts (Dataset S4). Only 
one trait, rhamnose content, was associated with the prediction of both saccharification without and after pre-
treatment (Dataset 4). However, while rhamnose content was negatively associated with glucose release following 
pretreatment, it was positively associated with glucose release when no pretreatment was applied (Dataset S4). 
The relationship between TGWnp and rhamnose content was non-monotonic due the fact that rhamnose content 
is both positively associated with glucose release in the absence of pretreatment and negatively associated with 
stem diameter (Dataset S4). Hence, rhamnose content associated differently with the glucose yield from entire 
trees depending on pretreatment conditions, but the recurrence of rhamnose content among the identified pre-
dictive traits in both conditions exemplifies anyway the importance of such low abundant matrix component for 
total-wood glucose yield.

Discussion
Our study identified putative diagnostic wood traits for the selection of trees with overall enhanced glucose yield, 
by taking into account biomass production and glucose release from enzymatic saccharification after a severe 
acidic pretreatment. Previous studies had started unravelling the links between saccharification and other wood 
properties by studying populations of natural variants12–14. The population of trees presented here was smaller 
and the trees were younger than in these previous studies12–14. Nevertheless, our work provided new information 
thanks to a different approach. We measured numerous traits from transgenic lines, which allowed us to analyze 
biological replicates and to generate combinations of traits which may not occur in nature. Furthermore, the 
estimated TWG enabled us to circumvent potential trade-offs between biomass production and recalcitrance. 
Examples exist in the literature of (genetically modified) trees with improved saccharification18,20 which is offset 
by a concomitant growth reduction20 or counter-acted by defects in xylem hydraulics18,19,22. Consequently, the use 

Traits (contributing to either of the individual models,  
hence to the composite model)

Impact of the trait on TWG in  
the composite model

Proportion of S lignin Positive

Ratio of S-type to G-type lignin Negative**

Arabinose content Negative**

Rhamnose content Negative**

Fucose content Negative

Modulus of elasticity (stiffness) Positive**

Cell wall thickness Positive**

Xylose content Negative

Mannose Content Negative

4-O-methylglucuronic acid content Negative

Galactose content Positive

Extractable glucose content (non crystalline) Negative

Proportion of G lignin Positive

Proportion of H lignin Positive

Proportion of non-annotated phenolic compounds Positive

Proportion of overall lignin Positive

Ratio of cell wall carbohydrates to lignin Positive

Fraction of wood (cross-sectional) area occupied by fibers Positive

Average (cross-sectional) longest radial width of fibers Negative

Average (cross-sectional) longest tangential width of fibers Negative**

Average number of fibers per wood area Negative

Average cross-sectional area of fibers Negative

Table 1.  Wood traits predicting TWG* in the composite model. *TWG (total-wood glucose yield) relates the 
glucose released from saccharification after pretreatment to the estimated wood biomass per tree. In this way, 
TWG provides an estimate of the glucose yield from saccharification of all the wood from an entire tree. **This 
trait’s relationship to TWG is non-monotonic (i.e. the direction is not constant) over the full range of values and 
was therefore set to the direction of the relationship in the range of values encompassing the wild type, following 
usual conventions. In other words, traits marked with ** can be negatively correlated with TWG for a range of 
values and positively correlated with TWG for the rest, in which case the direction of the correlation around the 
wild-type value was reported here. This partly explains, for example, the apparent contradiction between the 
positive relationship for the proportion of S-lignin and TWG on the one hand and the “negative**” relationship 
of the S- to G-lignin ratio and TWG on the other hand.
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of the TWG calculation or of similar proxies that integrate biomass production and sugar release, in addition to 
traditionally monitored saccharification, may help future studies to identify superior trees.

Lignin content and composition are considered major determinants of biomass recalcitrance to saccharifi-
cation, as verified in a large population of undomesticated Populus trichocarpa in which the S- to G-lignin ratio 
was positively correlated with glucose release after hydrothermal pretreatments14. Consistently, in our individual 
model for glucose release after acidic pretreatment the S- to G-lignin ratio was a positive contributor (Dataset S4), 
confirming the relationship between lignin composition and biomass recalcitrance. However, when considering 
TWG, which integrates biomass production and saccharification, both our OPLS model and composite model 
revealed an overall negative impact of the S- to G-lignin ratio (Fig. 3c, Table 1), likely because of its detrimental 
effect on stem diameter (Dataset S4). This observation interrogates the usefulness of increased S- to G-lignin ratio 
to improve the overall sugar yields in biochemical conversion of feedstocks.

In an earlier study, lignin content negatively correlated with saccharification in Populus trees with a ratio of 
S- to G-lignin below 214, a range within which nearly all our trees fell (Fig. 1d). Unexpectedly, lignin content did 
not negatively correlate with glucose release after pretreatment in our PCA analysis (Fig. S1; Dataset S3) or in a 
pairwise comparison (Spearman’s rank correlation rs = −0.09). Furthermore, lignin content did not contribute to 
predicting glucose release after pretreatment in the corresponding model (Dataset S4), indicating that lignin con-
tent did not greatly contribute to recalcitrance in our trees. Such discrepancy between the different studies on the 
effect of lignin content may be explained by differences in methods, age of the trees, genetic background, degree 
of domestication, and/or growth environment. Indeed, analysis of a set of Populus trichocarpa trees grown at two 
locations revealed different degrees of negative correlation between lignin content and glucose release depending 
on growing site12. On the other hand, these negative correlations between lignin content and saccharification were 
never statistically significant12. In addition, Studer et al.14 noted that a number of trees did not follow the general 
correlations between lignin content or composition and saccharification, leading them to propose that factors 
other than lignin can greatly influence biomass recalcitrance. Hence, the above observations are consistent with 
the emerging view that the woody biomass recalcitrance to saccharification is more complex than previously 
thought (for review see11), and that variations in lignin do not necessarily affect sugar release.

It is noteworthy that the traits predicting glucose release from saccharification greatly differed depending on 
whether the samples had undergone an acidic pretreatment or no pretreatment (Dataset S4). The pretreatment 
conditions have previously been shown to greatly affect saccharification yield for different feedstocks, as exem-
plified in Populus14 and from systematic studies on wheat straw24,25. This suggests that the predictive traits that 
we identified for saccharification after pretreatment may be specifically related to the pretreatment condition that 
we applied. On the other hand, our acidic pretreatment, which aims at deconstructing hemicelluloses, displayed 
a high combined severity as revealed by the fact that there was on average over five times more xylose in the pre-
treatment liquid than what was released by saccharification from solid residues (Dataset S2). Such severe acidic 
pretreatment likely reflects the higher end of the range of pretreatment conditions, so that the pretreatment is not 
a limiting factor for saccharification, as might be desired also in industrial applications. Hence, our results likely 
reflect what occurs following an acidic pretreatment within a range of varying conditions that are relevant for 
industrial applications, but these observations cannot be generalized to all different types of pretreatments (e.g. 
alkali pretreatment or hydrothermal pretreatment).

An important source of variation between our lines may have been associated with tension wood (Fig. S2). 
Tension wood is regarded as a determinant of wood recalcitrance because it has been found to improve sacchari-
fication in willow, although at the expense of biomass production26. In the Populus genus, tension wood is associ-
ated with changes in cell wall monosaccharide composition such as decreases in xylose and mannose contents and 
concomitant increases in rhamnose, galacturonic acid and galactose contents27,28. Monosaccharide contents were 
also associated with TWG in our models (Table 1). The negative association of TWG with xylose and mannose 
contents together with the positive association of galactose content with TWG (Table 1) are consistent with an 
overall beneficial role of tension wood on TWG. However, the negative associations of rhamnose, non-crystalline 
glucose and arabinose contents with TWG (Fig. 3c, Table 1) cannot be explained by tension wood, suggesting that 
differences in pectin and hemicelluloses composition that are unrelated to tension wood also influence TWG. 
This observation is in line with studies in Arabidopsis thaliana29,30 and Populus15,31 suggesting hemicelluloses as a 
promising target for biotechnological engineering of biomass to increase saccharification without growth penalty.

It is interesting to note that among the matrix polysaccharides significantly associated with TWG (Fig. 3c, 
Table 1, Dataset S4), fucose, mannose, rhamnose and arabinose constitute quantitatively modest components of 
the wood biomass. Neither mannose nor fucose contributed to predicting saccharification but they negatively 
correlated with stem diameter and stem height, respectively (Dataset S4). Consequently, the composite model 
identified mannose as a negative contributor to TWG (Table 1) while fucose negatively correlated with TWG 
in both the composite model and the OPLS model (Fig. 3c, Table 1). Arabinose and rhamnose were associated 
with both saccharification and biomass production in the individual models constituting our composite model 
(Dataset S4) such that they had an overall negative association with TWG in both the composite model (Table 1) 
and the OPLS model (Fig. 3c). Hence, lower arabinose and rhamnose contents represent putative markers for 
a combination of increased biomass production and lower recalcitrance under acidic pretreatment conditions.

The individual models predicting saccharification without or after pretreatment represent the only differences 
between TWG and TWGnp because the models for predicting height, diameter and wood density remain the 
same. Hence, differences between TWG and TWGnp can be discussed in terms of differences between sugar 
release after or without pretreatment. Interestingly, glucose release without pretreatment was mainly associated 
with wood chemistry traits while glucose release after acidic pretreatment was associated with both features 
of wood chemistry and structure (Dataset S4), consistent with the fact that pretreatments are designed to act 
primarily on the chemistry of the biomass. Traits related to biomass structure may become important factors 
for saccharification after pretreatment, at least after acidic pretreatments as used in this study. Such an effect of 
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especially acidic pretreatment on cell wall chemistry is also consistent with the observation that the predictive 
compositional traits differ to a large extent between pretreated and non-pretreated samples (Dataset S4).

A notable exception to the lack of overlap of predictive traits between pretreatment conditions is rhamnose 
content which associates with both, although in opposite directions (Dataset S4). Rhamnose content may there-
fore affect positively enzymatic saccharification in the context of non-pretreated wood biomass, while having a 
negative influence on acidic pretreatment and/or on the subsequent enzymatic saccharification in the context of 
the pretreated biomass. Rhamnose content is not only associated with saccharification but also negatively asso-
ciated with stem diameter. The preponderance of rhamnose content in predicting wood biomass production as 
well as saccharification following two very different pretreatment conditions is somewhat surprising considering 
its low abundance in the cell walls. This result therefore exemplifies the importance of measuring quantitatively 
modest traits in future studies.

Our work relies on the use of transgenic lines designed to target specific genes, which allows us to discuss 
the potential genetic basis for the observed phenotypes. For instance, we found four Populus lines displaying 
significantly (p < 0.1) higher TWG than the wild type. While the causal link between the targeted genes and the 
improved TWG will require further investigation, three out of these four genes (in BI-2, BI-3 and BI-36) have 
not yet been characterized in relation to wood formation. This suggests that there probably remains a wealth of 
uncharacterized candidate genes which may provide markers for the selection of superior Populus trees or which 
represent targets for the biotechnological improvement of growth and biomass properties.

In conclusion, we uncovered a set of putative diagnostic traits for a combination of improved growth and bio-
mass properties for saccharification after acidic pretreatment, which provides tentative tools for selecting Populus 
genotypes with high TWG. Indeed, Populus trees have been subject to domestication for a long time and there 
consequently exist numerous breeding populations32–34 from which promising individuals could be selected.

Materials and Methods
Most of the data generated or analyzed during this study are included in this published article (and its 
Supplementary Information files). The rest of the raw data generated during and/or analyzed during the current 
study are available from the corresponding authors on reasonable request.

Plant material and growth conditions.  To create the BioImprove collection, transgenic hybrid aspen 
(Populus tremula x tremuloides Michx.) T89 clones were derived partially from a gene mining program performed 
at SweTree Technologies AB and partially from individual research groups at Umeå Plant Science Centre. The 
genes and the types of transgenic modifications are described in Dataset S1. Most of the lines in the BioImprove 
collection were hybrid aspen (Populus tremula x tremuloides Michx.) T89 clones that had been transformed by 
Agrobacterium-mediated gene transfer. Transformants were selected based on antibiotic resistance, grown and 
multiplied in vitro as previously described35. For each construct, three to five different lines were tested in an ear-
lier study for wood chemistry36. From this study, we selected one transgenic line for each construct on the basis 
of giving the largest difference in wood chemistry. Fifty-one wild-type trees and four to five biological replicates 
for each transgenic line were grown for two months in previously described greenhouse conditions17. Each tree’s 
height, diameter (10 cm above ground) and mean internode length were measured, and 8-cm-long sections of 
stem were harvested 20 cm above ground. The bark was removed and the wood was freeze-dried and ground as 
previously described17 to perform cell wall chemistry and saccharification analyses. The cut trees were allowed to 
re-grow one new shoot, which was repeatedly trimmed at the height of 1 meter. After 10 months (i.e. a total age 
of the plants of 12 months), an 8-cm-long piece of the main stem 10 cm above ground was collected, debarked, 
dried, and used to monitor the anatomical and structural features of the wood.

Cloning.  The cloning procedure used to generate already published constructs (Dataset S1) has been described 
in the corresponding publications (Dataset S1). In addition, the antisense constructs for the lines BI-20 and BI-22 
were generated using a similar procedure as described for BI-2337.

For down-regulation lines using RNAi (Dataset S1), a collection of previously identified38 hybrid aspen 
(Populus tremula x tremuloides) wood-expressed sequences (expressed sequence tags or ESTs) was used as a tem-
plate to amplify the target sequences (as described in39). Gateway® cloning (Thermo Fisher Scientific, USA) was 
used to transfer each amplified sequence into the vector pK7GWiWG2(I)39, thus generating a construct for RNAi 
down-regulation of the target gene.

For overexpression lines (Dataset S1), mRNAs were isolated from both leaves and stems of hybrid aspen 
(Populus tremula x tremuloides Michx.) T89 clones and the corresponding cDNA were synthesized. The cDNA 
of the target genes for overexpression were amplified and introduced into the overexpression vector pK2GW740 
using Gateway® cloning (Thermo Fisher Scientific, USA).

Cell wall compositional analyses.  Relative contents of cell wall lignin and carbohydrates, as well as lignin 
composition, were measured by pyrolysis-gas chromatography/mass spectrometry and the data were processed 
as previously described41.

Cell wall monosaccharides were extracted by methanolysis with 2 M HCl/MeOH, derivatized by trimethylsilyl 
and measured as previously described17.

Saccharification.  As described previously17, wood samples were freeze-dried and roughly ground. From 
the resulting powder, the fraction encompassing particle sizes from 0.1 mm to 0.5 mm was collected for further 
processing. For each sample, 50 mg dry weight of substrate were submitted (or not) to an acidic pretreatment (1% 
(w/w) sulphuric acid) during 10 min at 165 °C using a single-mode microwave system (Initiator Exp, Biotage, 
Sweden). The resulting samples were centrifuged 15 min at 14,100 g in order to separate the solid fraction from 
the so-called pretreatment liquid. The solid fraction from pre-treated samples was washed with deionized water 
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and with sodium citrate buffer (see details in17). Both pretreated and non-preteated samples were submitted 
to enzymatic hydrolysis 72 h at 45 °C under agitation, using a 1:1 (w/w) mixture of the liquid enzyme prepara-
tions Celluclast 1.5 L and Novozym 188 (Sigma-Aldrich). Celluclast 1.5 L had an activity of 74 FPU (Filter Paper 
Units)42 per g liquid enzyme preparation. Novozyme 188 had an activity of 15 β-glucosidase units (using 5 mM 
p-nitrophenyl glucopyranoside as substrate)43 per g liquid enzyme preparation. Reaction mixtures (total mass 
1000 mg) contained 50 mg of untreated dry wood powder (or the solid residue obtained after pretreatment of 
50 mg dry wood powder), the enzyme mixture (0.9 FPU and 0.18 β-glucosidase units), and sodium citrate buffer 
(pH 5.2, 0.05 M). The resulting liquid hydrolysates, as well as the above pretreatment liquid fractions, were ana-
lyzed using high-performance anion-exchange chromatography (HPAEC).

Wood anatomical and structural features.  SilviScan (CSIRO, Australia) measurements conducted at 
INNVENTIA/RISE were performed on all lines but three (BI-13, 21 and 26). Parallelepipedic radial pieces of 
wood were scanned with 2 mm increments as described previously44–46. The first measurement increment(s) cov-
ering not only wood but also the pith was (were) excluded from the analysis. Each remaining incremental meas-
urement was weighted to reflect the total cross-sectional area that it represents in the wood. For each tree, the 
radial average was calculated for each trait measured by SilviScan (Dataset S2).

Statistics and multivariate analyses.  Average trait values of all the lines were compared by ANOVA. 
The lines were compared pairwise by post-ANOVA two-tailed Fisher’s tests while Spearman’s rank correlations 
allowed the comparison of traits across lines, both using Minitab 17 (Cleverbridge AG, Germany).

The PCA and the corresponding post-PCA OPLS (23) analyses were performed on all lines and all but 3 lines 
(BI-13, 21 and 26), respectively, using SIMCA 14.1 (MKS Data Analytics Solutions, Sweden). In the OLPS, traits 
related to saccharification were disregarded in our interpretation of TWG prediction because the effort intensive 
process of measuring saccharification, in addition to other traits, would allow direct calculation of TWG.

Mathematical modeling.  Models were created for stem height, stem diameter, wood density and glucose 
release without or after pre-treatment and 72 h enzymatic hydrolysis. To model these five traits based on wood 
biomass traits, these five traits were excluded from the set of traits used for modeling. In addition, the 18 remain-
ing saccharification traits were also excluded from modeling for three reasons: (i) Our aim was to predict glucose 
yield from biomass properties which are not too difficult to measure so that they may already serve for application 
in the short term. (ii) In addition, measuring of the saccharification traits allows, for technical reasons, to measure 
the others at the same time. (iii) Finally, pairwise comparisons between saccharification traits suggested a lack 
of relationship between pre-treated and non-pretreated samples (compare e.g. Fig. 1e,f). Hence, glucose release 
would be measured at the same time as other saccharification traits, rendering its modeling superfluous.

Using R, numerous (≥30) models were generated with the aim of predicting each of the five traits used to cal-
culate TWG (i.e. height, diameter, wood density and glucose release after pre-treatment). More precisely, for each 
of the five traits, three types of models were generated: (i) linear models which rely on linear relations between 
variables, (ii) Generalized Additive Models (GAMs47,48; package”mgcv”49) which allow combining linear terms 
and different types of non-linear terms whose relations to the dependent variable can be represented by smooth 
functions, (iii) Random forests50 (package”Ranger”51) which rely on numerous tree predictors each using random 
subsets of independent variables in order to allow comparing the trees to reach an optimal prediction and to 
evaluate how much each variable contributes to this prediction. Numerous models from each type were generated 
for each trait by iteratively modifying parameters such as the input independent variables and the criteria for 
fitting (e.g. number of trees in Random forests or gamma for GAMs). Finally, the predictivity of each model was 
evaluated by calculating their Q2, using a”leave-one-out” approach. For each trait, the model from each type with 
the highest Q2 value among its kind was selected (Dataset S4). Next, for each trait the type of model used in fine 
was also selected based on having the highest Q2 compared with the other types of models (Dataset S4). Finally, 
the ultimately selected models for each trait were combined into a composite model to predict TWG and this 
composite model was evaluated for goodness of fit (R2) and predictivity (Q2).
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