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Spermatogenesis is a multifactorial process that forms differentiated sperm cells in a complex
microenvironment. This process involves the genome, epigenome, transcriptome, and proteome to
ensure the stability of the spermatogonia and supporting cells. The identification of signaling pathways
linked to infertility has been hampered by the inherent complexity and multifactorial aspects of
spermatogenesis. Systems biology is a promising approach to unveil underlying signaling pathways
and genes and identify putative biomarkers. In this study, we analyzed thirteen microarray libraries of
infertile humans and mice, and different classes of male infertility were compared using differentially
expressed genes and functional enrichment analysis. We found regulatory processes, immune response,
glutathione transferase and muscle tissue development to be among the most common biological
processes in up-regulated genes, and genes involved in spermatogenesis were down-regulated in
maturation arrest (MArrest) and oligospermia cases. We also observed the overexpression of genes
involved in steroid metabolism in post-meiotic and meiotic arrest. Furthermore, we found that the
infertile mouse model most similar to human MArrest was the Dazap1 mutant mouse. The results of this
study could help elucidate features of infertility etiology and provide the basis for diagnostic markers.

Infertility is defined as the inability to have children after one year of unprotected sexual intercourse'. Ten to fif-
teen percent of couples face infertility, which is related to male factors in almost 50% of cases®. The most common
causes of male infertility are varicocele (37-40%), endocrine disorders (>20%), genital duct infection (8-35%),
testicular defects (9%), genetic problems (15-30%), antisperm antibodies (8-19%), and idiopathic male infertility
(15-25%)5.

Semen deficiencies in male infertility are often characterized as 1) oligospermia, in which there are fewer than
15 million sperm cells per milliliter, 2) azoospermia, which is the absence of sperm in ejaculate and which can
be categorized into two major classes, obstructive azoospermia (OA) and non-obstructive azoospermia (NOA),
3) teratospermia, a condition in which less than 4% of sperm are morphologically normal, and 4) asthenosper-
mia, which is when sperm have motility problems®. Idiopathic male infertility is a complicated condition with
abnormal semen parameters that probably has a genetic basis”®. Some cases are classified as “unexplained male
infertility;” in which all characteristics of routine semen analysis and sexual history are normal®. Despite abundant
studies, the origins of many infertility cases are still not known because spermatogenesis is a multifactorial and
complex process. The cause of 21-29% of azoospermia cases is related to genetic factors, and 12-41% of azoo-
spermia cases are idiopathic azoospermia!’. The genetic basis of azoospermia involves numerous causes, such as

. abnormality, single and multiple gene disorders and epigenetics, and Y chromosome defects have a major role in

. male infertility™.

: NOA patients go through four stages, such as pre-meiotic arrest (PreMA), meiotic arrest (MA), post-meiotic
arrest (PostMA) and sertoli cell only syndrome (SCOS)". Unlike NOA cases, we do not have enough information
about the transcriptome of testis tissue for oligospermia and teratospermia cases because they are not a candidate
for testis biopsy. Our knowledge about these cases should be based on the genome, the transcriptome of sperm
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Table 1. The number of common up- and down-regulated genes between infertile male human and mouse
models.The red numbers are common up- regulated genes and blues are common down-regulated genes. In
up-regulated genes the most similarity was between Etv5 and Pou3fl KD (53 genes) and in down-regulated
genes the most common genes was between MArrest and oligospermia (32 genes). Note: KO =Knockout,
KD = Knockdown; MArrest = maturation arrest azoospermia.

cells, the genome of somatic cells of infertile men and the testis tissue of infertile mouse mutants!?. Furthermore,
unlike oligospermia and teratospermia cases, NOA cases are unable to create sperm, so we do not know about the
transcriptome and proteome of NOA sperm'?.

Based on current knowledge, the spermatogenesis process is regulated by 1500 to 2000 genes, and every alter-
ation in these genes may disturb fertility'>'%. Several studies have investigated the biology of spermatogenesis
and identified many key genes involved in spermatogenesis pathways. There are some comprehensive reviews
about the dependency among the genome, epigenome, transcriptome and proteome'® and the genes and path-
ways involved in male infertility®!>!¢. High throughput technologies, such as gene expression profiling assays,
have been extensively applied to investigate the molecular mechanisms associated with male infertility'”. In 2006,
in one of the first microarray experiments on SCOS and MA cases, 10 novel genes were identified that had been
down-regulated in male infertility cases'®. In 2008, Okada et al. revealed differentially expressed genes (DEGs) in
NOA cases, investigated the top 10 biological processes (BP) of gene ontology (GO) terms for separate up- and
down-regulated gene lists, and suggested some novel therapeutic targets for NOA treatment. A transcriptome
analysis of NOA and hypospermatogenesis (HS) (with and without AZFc [azoospermia factor c] region deletion)
by Gatta et al. revealed that the transcripts of all cases with AZFc deletion were clustered together independently
from the phenotype of testes (SCOS or HS). Furthermore, the transcripts of half of the idiopathic HS cases were
clustered with the AZFc deletion cases, and many of the genes with post-meiotic functions were down-regulated
in AZFc deletion cases®. In 2010, Saito et al. studied the microarray data of Ing2 knockdown (KD) mouse testes
and showed that Ing2 plays a crucial role in spermatogenesis®!. In 2013, Malcher et al. extracted the DEGs of
PreMA, MA, PostMA and SCOS and focused on the expression of genes involved in the immune system?>%.
In another study in 2015, Bansal et al. analyzed the GO of mixed up- and down-regulated genes in sperm gene
expression profiles of idiopathic oligospermia and asthenospermia®*. A bioinformatics analysis of four microarray
datasets of NOA testes was conducted by Ansari-Pour et al. in 2016. They reconstructed a protein-protein interac-
tion network of spermatogenic failure genes with a Y-centric focus base of DEGs®. A gene set enrichment analysis
(GSEA) establishes whether an a priori defined set of genes shows statistically significant differences between two
biological states or phenotypes?.

In this study, we elicited the DEGs involved in each type of human male infertility and multiple genes involved
in certain infertile mouse mutants and several stages of arresting in meiosis and SCOS. Then GO and KEGG
pathway analyses were performed on the DEGs. Furthermore, we performed a GSEA for each type of male infer-
tility for humans and mice to discover the most important gene sets in male infertility. This study is a step toward
finding a diagnostic biomarker for male infertility and could help explain the etiology of male infertility.
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Figure 1. Venn diagram of similarities of DEGs, GO, KEGG pathway enrichment analysis between MArrest-
oligo-terato-spermia. (a) Common up-regulated genes which the most similarity was between M Arrest-terato-
spermia (12 mutual genes). (b) Common down-regulated genes. The most similarity was between MArrest-
oligo-spermia (27 mutual genes). (¢) Common up-regulated BP that the common genes between MArrest-
oligo-spermia were about regulatory process, immune system process and muscle tissue development. (d)
Common down-regulated BP which mostly was between MArrest- oligo-spermia by spermatogenesis process.
(e) Mutual up-regulated CC which common CC between MArrest- oligo-spermia related to plasma membrane.
(f) Common down-regulated CC. (g,h) Common up- and down-regulated ME. (i,j) Common up- and down-
regulated KEGG pathways.
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Figure 2. Venn diagram of similarities of DEGs, GO, KEGG pathway enrichment analysis between PostMA,
MA and SCOS. (a) Common up- regulated genes with 21 mutual genes between all three groups. (b) Common
down-regulated genes which 17 mutual genes were between all groups and 42 common genes were between
PostMA and MA. (c,d) Common up and down-regulated BP, 10 BP terms were common between all PostMA,
MA and SCOS, 14 BP terms were common between MA and PostMA, and 6 BP term was common between
PostMA and SCOS. In down-regulated gene lists for BP, 8 BP terms were common between all PostMA, MA
and SCOS. (e,f) In up-regulated CC, no common terms found. In down-regulated gene lists for CC, 5 CC terms
were common between all PostMA, MA and SCOS and 7 CC terms were common between MA and PostMA.
(g,h) Common up- and down-regulated MF. (i,j) Common up and down-regulated KEGG pathways.

SCIENTIFICREPORTS |7: 15778 | DOI:10.1038/s41598-017-16005-0 4



www.nature.com/scientificreports/

Male infertility In Human and Mouse | Count | Common Up-regulated Genes
ACVR2A- Al256396- ALCAM- ANKRD29- ARF6- ARPC1B- ASPH- ATP1B1- BCL2- CAMK2NI1- CASP3- CCNG2- CCNH- CCNY- CHMP3- CRLS1-

Etv5 KD Pou3fl KD 53 D030029]20RIK- EIF4E2- EPS15- EXOC4- FAM8AL1- FBN1- HIF1A- IKBKG- KCTD14- LAGE3- LGALS8- MACROD2- MFSD1- PHEX- PIGN- PIK3IP1- PKIA-
PLSCR3- POLR3E- PPARGCIA- PPP1R21- PWP2- QK- RRAGD- SDPR- SH3GLB1- SURF4- TCFL5- TK2- TNC- TNRC6A- TRAPPC2- TUBB2B- UBE2Q2- USP22-
YWHAH- ZFP667

Bcl6b KD Etv5 KD 19 2810043003RIK- ALCAM- ANKRD29- ARPC1B- CAMK2N1- CCNY- CRLS1- D030029J20RIK- E330037MO01RIK- EXOC4- ITGB8- MALAT1- MMP13- PHEX-
PPARGCIA- QK- TCFL5- TK2- ZBTB20

Bcléb KD Pou3fl KD 14 ALCAM- ANKRD29- ARPC1B- CAMK2N1- CCNY- CRLS1- D030029J20RIK- EXOC4- PHEX- PPARGC1A- QK- TCFL5- TK2- ZFP292-

MArrest Teratospermia 12 ADAMTS5- BCORL1- CCNG1- DCN- DICERI- GRK5- HNRNPU- LSP1- MLC1- PDE1A- RBMS3- RPL6

MArrest Ing2 KO 9 ACSS3- COMMDE6- CYP11A1- DCN- HSD17B3- HSD3B1- HSPA8- MGARP- MSMO1-

MArrest Oligospermia 5 ABI3BP- DTNA- PMP22- RPS6KA3- SPARCL1

MArrest Etv5 KD 4 CASK- MALAT1- SC5D- TUBB2B

MArrest Pou3fl KD 4 HMGBI- IGFBP5- RDX- TUBB2B

Ikbkap KO Ing2 KO 3 ADHI- BCAT2- LIP

Oligospermia Teratospermia 3 POU2F3- SRGAP2C- TERF1

Bcl6b KD Ing2 KO 3 ARPCI1B- LRP1- MID1

MArrest Ikbkap KO 2 ELAVL3- PAPSS2

Dazapl Mutant | Etv5 KD 2 ALCAM- PLAGL1

Dazapl Mutant | Teratospermia 2 SLC26A3- SORBS1

Etv5 KD Ikbkap KO 2 IGHM- ITGB

Ing2 KO Teratospermia 2 DCN- GPM6B

Pou3fl KD Teratospermia 2 COLI11A1- LPAR4

MArrest Bcl6éb KD 1 MALAT1

Bcléb KD Dazapl Mutant 1 ALCAM

Bcl6b KD Ikbkap KO 1 ITGB8

Bcléb KD Oligospermia 1 CUX1

Bcléb KD Teratospermia 1 FAMI72A

Dazapl Mutant | Pou3fl KD 1 ALCAM

Etv5 KD Ing2 KO 1 ARPC1B

Etv5KD Oligospermia 1 SNX13

Ikbkap KO Pou3fl KD 1 TCL1

Ing2 KO Pou3fl KD 1 ARPC1B

Male infertility In Human and Mouse | Count | Common Down-regulated Genes

I e e e S A S T R

MArrest Dazapl Mutant | 21 g\j};@[}j{lT%I;IIIéRI%LISSOBEOl DDI1- DYDCI1- GALNTLS5- GTSF1L- HMGB4- IQCF5- KIF2B- LYZL1- NT5C1B- ODF1- ODF3- PLCZ1- PRM1- PRR30- SPAG6-

MArrest Teratospermia 13 ADAM32- CLGN- DYNLRB2- KLHL10- KRT23- PCYT2- RIMBP3C- SEPTIN12- SMCP- SPINK2- TIMD4- TSACC- TTC25

MArrest Ikbkap KO 8 ANO1- DMRTBI- LCA5L- MARCH11- PPP3R2- SPATA4- SPATS1- SUN3

Etv5 KD Pou3fl KD 8 AGPAT3- EVI2A- GALNT10- LMNB2- PTPRE- SCLY- SEMA7A- TM4SF1

Oligospermia Teratospermia 8 CLGN- HRASLS- KRT23- LIMS3-LOC440895- MRPL42- PCYT2- SMCP- SPINK2-

Bcléb KD Etv5KD 7 Bcl6b KD- EDNRA- LMNB2- SGCB- SSPN- USP44- ZC4H2

MArrest Etv5 KD 5 HOXB5- NEFM- PPM1]J- PRKAR2A- SPTBN

MArrest Ing2 KO 3 CCDC110- CYLCI-ITGA1

Dazapl Mutant | Oligospermia 3 ANKRD?7- PLCZ1- TSSK2

Bcl6éb KD Pou3fl KD 2 GPR137B- LMNB2

Etv5 KD Teratospermia 2 CXCR4- PAIP1

Ikbkap KO Oligospermia 2 DMRTBI- OTX1

MArrest Pou3fl KD 1 BBS5

Bcl6éb KD Oligospermia 1 WIPIL

Bcl6b KD Teratospermia 1 GPR137B

Dazapl Mutant | Ing2 KO 1 HYAL6

Dazapl Mutant | Teratospermia 1 GLIPRIL1

Etv5KD Ikbkap KO 1 MPPED2

Ikbkap KO Ing2 KO 1 GM5622

Pou3fl KD Teratospermia 1 GPR137B

Table 2. Common up- and down-regulated genes between infertile male human and mouse models. Note:
KO =Knockout (mouse), KD = Knockdown (mouse); MArrest = Maturation Arrest(human); Oligospermia =
(human); Teratospermia = (human).

Results

DEGs and pathway analysis in maturation arrest azoospermia (MArrest), oligospermia and
teratospermia. We extracted 597, 154 and 283 up-regulated genes and 525, 144 and 292 down-regulated
genes from the libraries of MArrest, oligospermia and teratospermia (MArrest-oligo-terato-spermia), respec-
tively (Supplementary Table S1). We found 26 up-regulated miRNAs for MArrest (miR-15A, miR-18a, miR-21,
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KEGG_RETINOL_METABOLISM
LIN_MELANOMA_COPY_NUMBER_UP
NIKOLSKY_BREAST_CANCER_8Q23_Q24_AMPLICON
MIKKELSEN_ES_HCP_WITH_H3_UNMETHYLATED
MCCLUNG_COCAINE_REWARD_5D

Common gene sets between MA and PMA GUTIERREZ_MULTIPLE_MYELOMA_DN

DAUER_STAT3_TARGETS_DN
Common gene sets between MA and SCOS DARWICHE_PAPILLOMA_PROGRESSION_RISK
MOSERLE_IFNA_RESPONSE

Table 3. Common gene sets between DEGs of NOA types. Note: MA = meiotic arrest; PMA = post meiotic
arrest; SCOS = sertoly cell only syndrom.; DN = down.

miR-23b, miR-27b, miR29c, miR-30e, miR-31, miR-32, miR-99a, miR-99AHG, miR-128-1, miR-107, miR-145,
miR-154, miR-186, miR-197, miR-199a-2, miR-214, miR-218-1, miR-503, miR-509, miR-LET7A2, miR-LET7C,
miR-LET7F1 and miR-LET7G), two up-regulated miRNAs for teratospermia (miR-9-2 and miR-181A2HG) and
one down-regulated miRNA for teratospermia (miR-6805). There was no common up-regulated gene among
MArrest-oligo-terato-spermia disorders, but five down-regulated genes (CLGN, KRT23, PCYT2, SMCP and
SPINK2) were common among MArrest-oligo-terato-spermia disorders.

In up-regulated genes, the maximum similarity was between MArrest and teratospermia, with 12 com-
mon genes among 880 genes (0.014%) (MLCI, LSP1, GRK5, BCORL1, DICERI, CCNG1, RBMS3, DCN, RPL6,
ADAMTS5, HNRNPU and PDE1A). Five genes (SPARCL1, ABI3BE, PMP22, DTNA and RPS6KA 3) were common
between MArrest and oligospermia among 751 genes (0.007%), and three genes (POU2F3, SRGAP2C and TERF1I)
were common between oligospermia and teratospermia among 437 genes (0.007%), as shown in Fig. 1a.

In down-regulated genes, five genes among 960 genes (0.005%) were common in all three
MArrest-oligo-terato-spermia disorders. The maximum similarity was between MArrest and oligospermia, with
27 common genes among 668 genes (0.04%) (ACSBG2, ACTL7B, ACTRT2, ALS2CR11, ANKRD7, ARMC12,
Cllorf71, C220rf23, CCDC54, CENPU, CFAP74, CRISP2, DMRTBI, FSCB, GK2, GKAPI1, IRGC, LINC00467,
MS4A6E, OLAH, PCSK4, PLCZ1, RIMBP3, SLC25A51, SOX5, SPATA22 and TSSK2). Eight genes among 817
genes (0.01%) (ADAM32, DYNLRB2, KLHL10, RIMBP3C, SEPT12, TIMD4, TSACC and TTC25) were common
between MArrest and teratospermia, and three genes among 435 genes (0.007%) (HRASLS, LIMS3 and MRPL42)
were common between oligospermia and teratospermia. The common down-regulated genes are listed in Fig. 1b.

We found 541 BP terms for MArrest up-regulated genes, 122 BP terms for oligospermic up-regulated genes
and 98 BP terms for teratospermic up-regulated genes. There were 155, 44 and 147 common BP terms for
MArrest, oligospermia and teratospermia down-regulated genes, respectively (p-value <0.01) (Supplementary
Table S2).

In the up-regulated gene lists for BPs, one BP was common among all MArrest-oligo-terato-spermia disor-
ders, 18 BPs were common between MArrest and oligospermia, 20 BP terms were common between MArrest and
teratospermia, and four BPs were common between oligospermia and teratospermia, as can be seen in Fig. 1c.

As observed in Fig. 1d, in the down-regulated gene lists for BPs, one BP term was common among all
MArrest-oligo-terato-spermia disorders, 10 BP terms were common between MArrest and oligospermia, eight
BPs were common between MArrest and teratospermia, and two BP terms were common between oligospermia
and teratospermia.

We investigated 66, 9 and 14 cellular component (CC) terms for up-regulated genes and 42, 8 and 57 CC terms
for down-regulated genes of MArrest, oligospermia and teratospermia, respectively (Supplementary Table S2).
In the up-regulated gene lists for CC, as depicted in Fig. le, one CC term was common between MArrest and
oligospermia, one CC was common between MArrest and teratospermia, and one CC was common between
oligospermia and teratospermia. In the down-regulated gene lists for CC, two CC terms were common between
MArrest and oligospermia, three CCs were common between MArrest and teratospermia, and one CC term was
common between oligospermia and teratospermia (see Fig. 1f).

We found 62, 7 and 26 molecular function (MF) terms for up-regulated genes and 33, 8 and 39 MF terms for
down-regulated genes of MArrest, oligospermia and teratospermia, respectively (Supplementary Table S2). In
the up-regulated gene lists for MEas shown in Fig. 1g, one MF term was common among MArrest-oligo-spermia
disorders. In the down-regulated gene lists for ME, one MF term was common between MArrest and terato-
spermia (see Fig. 1h). In the up-regulated gene lists for the KEGG pathway, as depicted in Fig. 1i, one pathway
was common between MArrest and oligospermia (type I diabetes mellitus). In the down-regulated gene lists for
the KEGG pathway, as illustrated in Fig. 1j, two pathways (fatty acid biosynthesis and metabolic pathways) were
common between MArrest and oligospermia, one pathway was common between oligospermia and teratosper-
mia (Propanoate metabolism), and one pathway was common between MArrest and teratospermia (Huntingtons
disease).
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Figure 3. Gene set enrichment analysis (GSEA) of PostMA, MA and SCOS. (a) Common gene sets for up-
regulated genes. (b) Common gene sets for down-regulated genes with 10 gene sets common between PostMA
and MA.

DEGs and pathway analysis in PostMA, MA and SCOS. We extracted 152, 255 and 310 top
up-regulated genes and 163, 255 and 309 top down-regulated genes from the libraries of different stages of
NOA: PostMA, MA and SCOS, respectively (Supplementary Table S3). For the up-regulated genes, 21 genes
among 717 genes (0.029%) were common among PostMA, MA and SCOS, and half of these genes were miRNA
(LOC100130428, LOC100131541, MALAT1, MGC24103, miR-145, miR-199a-2, miR-21, miR-27b, miR-30e,
miR-32, miR-99a, miR-LET7A2, miR-LET7C, miR-LET7G, PP12719, PWAR6, SNX2, TET2, ZEB2, ZNF189 and
ZNF737). The maximum number of common genes was found between PostMA and MA, with 45 up-regulated
genes among 407 genes (0.11%). Fourteen up-regulated genes among 565 genes (0.025%) were common between
MA and SCOS, and five up-regulated genes among 462 genes (0.011%) were common between PostMA and
SCOS. The common up-regulated genes have been shown in Fig. 2a. In down-regulated genes, 17 genes among
727 genes (0.023%) were common among PostMA, MA and SCOS, 45 genes among 564 genes (0.08%) were com-
mon between MA and SCOS, and 42 genes among 418 genes (0.1%) were common between PostMA and MA, as
shown in Fig. 2b. We found 82 BP terms for PostMA up-regulated genes, 152 BP terms for MA up-regulated genes
and 360 BP terms for SCOS up-regulated genes. We also discovered 59, 24 and 117 BP terms in PostMA, MA and
SCOS for down-regulated genes, respectively (p-value <0.01) (Supplementary Table 4). In the up-regulated gene
lists for BPs, 10 BP terms were common among PostMA, MA and SCOS, 14 BP terms were common between
PostMA and MA, six BP terms were common between MA and SCOS, and six BP terms were common between
PostMA and SCOS. The common BP terms for up-regulated genes are illustrated in Fig. 2c. As shown in Fig. 2d,
in the down-regulated gene lists for BPs, eight BP terms were common among PostMA, MA and SCOS, four BP
terms were common between PostM A and MA, six BP terms were common between MA and SCOS, and three BP
terms were common between PostMA and SCOS. We investigated 9, 16 and 48 CC terms for up-regulated genes
and 18, 16 and 37 CC terms for down-regulated genes of PostMA, MA and SCOS, respectively (Supplementary
Table S4). In the up-regulated gene lists for CC, we found one common CC term between PostMA and MA and
one common CC term between MA and SCOS (see Fig. 2e). As Fig. 2f indicates, in the down-regulated gene lists
for CC, 5 CC terms were common among PostMA, MA and SCOS, seven CC terms were common between MA
and SCOS, three CC terms were common between PostMA and SCOS, and one CC term was common between
PostMA and MA. We found 13, 20 and 40 MF terms for up-regulated genes and 13, 10 and 15 MF terms for
down-regulated genes of PostMA, MA and SCOS, respectively (Supplementary Table S4). In the up-regulated
gene lists for ME, we observed three common MF terms among PostMA, MA and SCOS, and one MF term
was common between PostMA and MA (see Fig. 2g). In the down-regulated gene lists for ME, two MF terms
were common between PostMA and MA, and two MF terms were common between MA and SCOS, as shown
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Infertility Type Tissue | Series ID Platform ID | Number of Controls | Number of Cases | Platform Name
1 | Oligospermia & NOA Testise | GSE14310 | GPL7870 3 23 Agilent-012097 Human 1 A Microarray (V2) G4110B
2 | NOA Testise | GSE9210 GPL887 11 47 Micro-CRIBI Human Oligo Array
3 | NOA Testise | GSE45885 | GPL6244 4 27 Affymetrix Human Gene 1.0 ST Array
4 | NOA Testise | GSE45887 | GPL6244 4 16 Affymetrix Human Gene 1.0 ST Array
5 | NOA Testise | GSE21613 | GPL2891 | 4 17 Sglgle‘iagﬁf;;/ gﬁisggrfi;“iemes CodeLink™
6 |NOA Testise | GSEG023 | GPL2891 |3 6 Sgilgeetaﬁgfg;ff‘;é‘;ﬁ;‘:fg’fcwnms CodeLink™
7 | Noa Testise | GSE45887 | GPL6244 | 12 5 Sgig‘:taﬁgf:;i/?(;“gfgﬁ)“;rﬂ;“ien“s CodeLink™
8 | OAT Sperm | GSE26881 | GPL6244 11 7 Affymetrix Human Genome U133 Plus 2.0 Array
9 | Teratospermia Sperm | GSE6872 GPL570 13 8 Affymetrix Mouse Exon 1.0 ST Array
10 | Teratospermia Sperm | GSE6967 GPL2507 5 8 Sentrix Human-6 Expression BeadChip
11 | Teratospermia Sperm | GSE6968 GPL2700 4 6 Sentrix HumanRef-8 Expression BeadChip
12 | Mouse knockout (Ing2) Testise | GSE18610 | GPL6246 3 5 Affymetrix Mouse Gene 1.0 ST Array
13 | Mouse knockout (Ikbkap) Testise | GSE42230 | GPL6246 3 3 Affymetrix Mouse Gene 1.0 ST Array
14 | Mouse knockdown (Bcl6b-Etv5-Pou3fl) | Testise | GSE30683 | GPL1261 4 12 Affymetrix Mouse Genome 430 2.0 Array
15 | Mutant Mouse (Dazapl) Testise | GSE42601 GPL1261 3 3 Affymetrix Mouse Genome 430 2.0 Array

Table 4. Information for the analyzed microarray libraries and infertility types'®-*>"'-74, NOA = Non
Obstructive Azoospermia, OAT = Oligo-Asterno-Teratospermia.

in Fig. 2h. We found 6, 9 and 47 KEGG pathways for up-regulated genes and 2, 1 and 10 KEGG pathways for
down-regulated genes (Supplementary Table S4). In up-regulated genes, we observed common miRNAs among
PostMA, MA and SCOS that are involved in cancer. Three pathways were common between MA and SCOS for
up-regulated genes (antigen processing and presentation, Epstein-Barr virus infection and longevity regulating), and
the pathways of steroid biosynthesis and taste transduction were common between PostMA and MA up-regulated
genes (see Fig. 2i). As can be seen in Fig. 2j, we did not find any common pathways for down-regulated genes.

Comparison of infertile human and mouse. We compared nine types of infertility in male humans and
mice, including MArrest, oligospermia and teratospermia in humans and Ing2 Knockout (KO), Bcl6 KD, Etv5
KD, Pou3fI KD, Ikbkap KO and Dazapl mutant in mice. As shown in Table 1, the higher number of common
up-regulated genes was found between Etv5 KD and Pou3f1 KD, with 53 genes, Bcl6b KD and Etv5 KD, with 19
genes, Bcl6b KD and Pou3fl KD, with 14 genes, MArrest and teratospermia, with 12 genes, and MArrest and
Ing2 KO, with nine common genes. Additionally, the Arpclb gene was up-regulated in Bcl6b, Etv5, Pouf31 and
Dazap1 KD, and Alcam was up-regulated in Bcl6b, Etv5, Pouf31 and Ing2 KD infertile mice. The highest number
of common down-regulated genes was found between MArrest and oligospermia, with 32 genes, MArrest and
the Dazapl mutant, with 21 genes, MArrest and teratospermia, with 13 genes, and MArrest and Ikbkap KO, with
8 common genes. Three down-regulated genes (PLCZ1, TSSK2 and ANKRD?) were common between MArrest,
oligospermia and the Dazapl mouse mutant. DMRTBI was a down-regulated common gene among MArrest,
oligospermia and Ikbkap KO, GPR137B was common among teratospermia, Bcl6b and Pou3fI KD, and LMNB2
was common among Bcl6b, Etv5 and Pou3f1 KD infertile mice (Table 1 and Table 2).

GSEA. Weinvestigated gene sets based on all DEGs for MA, PostMA and SCOS (Fig. 3). In up-regulated gene
sets, one gene set was common among PostMA, MA and SCOS, one gene set was common between PostMA and
MA, and two gene sets were common between MA and SCOS. In the down-regulated gene sets, 10 gene sets were
common between MA and PostMA, and one gene set was common between MA and SCOS. Common gene sets
between each type of NOA are shown in Table 3.

Principal component analysis (PCA). We found that in three teratospermia libraries, infertile samples
were completely distinguished from normal samples. In three libraries from the stages of before and after meiotic
arrest and SCOS, the clusters of normal samples and SCOS samples were separated, but there was an overlap
between some samples of PostMA, MA and control cases (Fig. 4).

Discussion

Understanding similarities among male infertility diseases could facilitate disease classification, help reveal hid-
den etiologies, and pave the way for new diagnostic tests and drugs. Toward this goal, we showed that in silico
analyses are in good agreement with previous experimental results. Several studies have shown a direct associ-
ation of an increase in steroid levels with azoospermia and oligospermia'®, and male hormonal contraceptive
trials use steroids to induce azoospermia and oligospermia*>?%. Furthermore, steroid sex hormones regulate the
spermatogenesis process and the development of skeletal muscles®. In this study, we observed that one of the
major common BPs of up-regulated genes in MArrest and oligospermia was the development of muscle tissue
and its regulation, and half of the common BPs of up-regulated genes in PostMA and MA were related to the
steroid process. The miR-145 regulates the development of smooth muscles®, and its high level of expression
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Figure 4. Principal component analysis (PCA) of eight human microarray libraries that show the visualization
of quality, similarity and overlapping of library samples.

leads to the inhibition of cell-cell adhesion and cell motility®!. We observed the overexpression of miR-145 in
NOA, and there were also up-regulated BPs related to muscle development in MArrest and oligospermia and
down-regulated BPs related to sperm-egg recognition and sperm motility in NOA and teratospermia. Fu et al.
found that several BPs of spermatogenesis-related genes were involved in sperm-egg recognition and fusion, and
a protein-protein interaction analysis showed that these genes were down-regulated genes in teratospermia®.
Moreover, a study on teratospermia suggested that the binding capacity of sperm to oocytes is low because of a
lower expression of adhesion molecules in teratospermic spermatozoa’. In our study, we showed that half of the
common down-regulated BPs in MArrest and teratospermia were related to sperm-egg adhesion.

Male germ cells are extremely sensitive to stress*. Glutathione is an important intracellular antioxidant, and
several studies have indicated that decreased glutathione and glutathione transferase null genotypes lead to oli-
gospermia and azoospermia*-*’. We observed an up-regulation in glutathione transferase genes, which reduces
the glutathione level in oligospermia and NOA (PostMA, MA and SCOS). Moreover, there are various results
confirming the direct association between abnormal spermatogenesis due to the response to a stimulus®*-** and
immune response*!. We observed that one of the major similarities in MArrest, oligospermia and teratospermia
was indeed overexpression of immune response, stimulus response and their regulation related genes. Bansal et al.
revealed that idiopathic male infertility and asthenospermia are associated with changes in the expression of
BPs, such as response to a stimulus, the immune system process, reproduction and the multicellular organismal
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Figure 5. The workflow of this study.

process®. In this study, we showed the same BPs in MArrest, oligospermia and teratospermia. Noveski et al.
determined that miR-23b, miR-32, miR-154 and miR-99 in MArrest and SCOS were up-regulated*?, and we found
that these genes were also up-regulated in NOA. SOX9 is an essential protein for the maturation of sertoli cells
and normal spermatogenesis, and it is a possible target of miR-145*>*. Furthermore, we observed that mir-145 is
one of the common up-regulated genes. Approximately half of the common up-regulated genes in PostMA, MA
and SCOS were miRNAs.

In 17 common down-regulated genes among PostMA, MA and SCOS, 9 genes were involved in spermato-
genesis (ADAM29%, DNAH17', FAM166A", FAM71F1%*, GAPDHS"®, GGN*, LYZL6", SMCP* and SPACA4*),
two genes were non-coding, and six genes (ABHDI, ARMC12, FAM205A, PRR30, TEX38 and TPPP2) did not
have specific and direct roles in spermatogenesis. GGN has a high level of expression in the late pachytene stage
and primary spermatogenesis®'. ABHDI is a member of the ABHD family, which has a role in spermatogenesis™.
TPPP2 has a high expression level in testes and has a role in testicular cancer®. In addition, in down-regulated
genes common among PostMA, MA and SCOS, there were eight BPs that were classified into three clusters,
including development and differentiation of spermatogenesis, sperm motility and sperm-egg recognition. Three
common down-regulated CCs among PostMA, MA and SCOS and four CCs between MA and SCOS were related
to the flagellum, which matches observations made by Fu et al.*.
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Okada et al., Zhuang et al., Fu et al. and Noveski et al. identified meaningful BPs by using separate enrichment
analyses for up- and down-regulated genes'*>#2%,

In human and mouse male infertility, we observed the highest similarity between Etv5 and Pou3fl KD in
the up-regulated gene lists. Furthermore, in the down-regulated gene lists, we observed the highest similarity
between MArrest and oligospermia among other types of male infertility, such as teratospermia and infertile
mouse mutants. DAZ is one of the most important genes, and its deletion leads to NOA®. Dazap1 is one of the
isoforms of DAZ, and we observed the highest number of common genes between Dazapl mouse mutants and
MArrest cases, with 21 common down-regulated genes, in comparison to other infertile mice. IKAP protein is
encoded by the Ikbkap gene, which is a subunit of the Elongator complex and plays a role in chromatin remode-
ling®. Lin et al. revealed that a loss of function of Ikbkap in mice was the cause of defects in synapsis and meiotic
recombination, leading to apoptosis and spermatogenesis arrest. In the present study, we observed that Ikbkap
KO mice were highly similar to MArrest cases, with eight common down-regulated genes in which the pro-
cess of meiosis was disrupted (Table 1 and Table 2). Tanespimycin or 17-allylamino-17-demethoxygeldanamycin
(17AAG) is an antitumor drug that works by inhibiting HSP90 (heat shock protein 90)*. In GSEA analysis, the
low level of expression of a gene list in MA, PostMA and SCOS is similar to a gene set in ovarian cancer cells when
treated with tanespimycin. However, there were no significant expression changes in HSP90 in MA, PostMA and
SCOS, although there were 17 gene sets related to spermatogenesis and 32 gene sets related to cancer in several
stages of spermatogenesis arrest (Fig. 3).

In conclusion, we revealed that when comparing MArrest and oligospermia, the genes associated with
immune response processes, muscle tissue development, and glutathione transferase and regulatory genes were
up-regulated, and the genes related to spermatogenesis were down-regulated. When comparing PostMA, MA
and SCOS, we found several common DEGs. Ten up-regulated miRNAs were common among all three NOA
types, and the expression of genes associated with the spermatogenesis process was down-regulated. The proteins
of these down-regulated genes have a function in sperm motility and flagellum development. Further work is
needed to investigate the epigenomics and proteomics of male infertility to complement gene expression studies.
Our study indicates which pathways one should focus on in future studies.

Methods

In this study, we emphasized on unveiling underlying genes and signaling pathways and identifying putative
biomarkers that are differentially expressed in male infertility microarray datasets. For this purpose, we used of
functional enrichment analysis approaches including pathway enrichment analysis and GSEA. Figure 5 depicts
the workflow used for this study.

Microarray datasets and analysis. The microarray datasets related to male infertility were collected from
the gene expression omnibus (GEO) repository”. Table 4 presents detailed information on the microarray data-
sets used. GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/), which employs a linear-based model for microar-
ray analysis (limma), was used to obtain DEGs between male infertile and control samples. The top 100 DEGs
were extracted in each infertile group against the normal group (p-value <0.01). Our expression study consists of
three comparison steps, including (i) MArrest, oligospermia and teratospermia, (ii) PostMA, MA and SCOS, and
(iii) nine types of human and mouse infertility.

Pathway enrichment analysis. After extracting up- and down-regulated genes from each library, the
enriched GO terms (BP, CC and MF) and KEGG pathways were determined. Up- and down-regulated genes were
then separately submitted to the Enrichr tool*®. The common enriched GO terms and KEGG pathways for each
comparison between an infertile group and a control group [such as NOA (PostMA, MA and SCOS), oligosper-
mia and teratospermia] were extracted (p-value <0.01). We applied Venn diagrams (http://bioinformatics.psb.
ugent.be/webtools/Venn/) for GO and KEGG pathway terms between three kinds of male infertility, MArrest,
oligospermia and teratospermia, and three types of NOA (PostMA, MA and SCOS).

There are two strategies for GO and pathway enrichment analysis of DEGs: the analysis of all DEGs together
or the split analysis of up- and down-regulated genes separately*®-°L. In this study, we used the second strategy, as
suggested by other recent works®2-*®. Hong et al. compared the two types of GO and pathway enrichment anal-
ysis strategies using gene expression profiles of microarray and RNA-Seq, and they indicated that the separate
strategy is more powerful and accurate®. When all DEGs are integrated together, the results might differ from
when up-regulated and down-regulated genes are analyzed separately. For example, if a pathway has a consider-
able number of up-regulated genes and few down-regulated genes, the complete number of differentially regu-
lated genes in the pathway might lead to statistically non-significant results, while computing the enrichment of
over-represented genes separately might highlight an implication of the pathway in the system under investiga-
tion®.. Therefore, we used the separated strategy to interpret the results.

GSEA. GSEA is a powerful analytical method for interpreting gene expression data. We used software from
the Broad institute®. All curated gene sets (C2.all.v 5.0 curated) were downloaded from the Molecular Signatures
Database (MSigDB) and used to select significant gene sets based on the measurement of expression data®. A
false discovery rate (FDR) less than 0.25 and p-values less than 0.01 were considered significant.

PCA. The quality of eight human microarray libraries was examined with PCA. PCA was applied to eight nor-
malized and log-transformed libraries of human male infertility using the R package”. All samples of each library
were placed in a specific two-dimensional scatter plot without selection or weighting.
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