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Abstract

Mental representations of everyday experience are rich, structured, and multimodal. In this article, 

we consider the adaptive pressures that led to humans’ construction of such representations, 

arguing that structured event representations enable cognitive systems to more effectively predict 

the trajectory of naturalistic everyday activity. We propose an account of how cortical systems and 

the hippocampus interact to construct, maintain, and update event representations. This analysis 

throws light on recent research on story comprehension, event segmentation, episodic memory, 

and action planning. It also suggests how the growing science base can be deployed to diagnose 

impairments in event perception and memory, and to improve memory for everyday events.
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Representations enabling the efficient prediction of behavior

The last two decades have seen the emergence of a vibrant and robust body of research on 

event cognition—how people perceive, remember, think about, and respond to events [1]. 

One consistent conclusion from studies of event perception, memory, and action planning is 

that cognition uses structured representations of events, called event models, to capture 

information about the spatio-temporal framework, entities and objects, and other salient 

features of a situation. In particular, humans appear to maintain event models representing 

the current “state of play” of their immediate environment, called working models. Working 

models are actively-maintained, multimodal working memory representations that are stable 

most of the time but are updated at boundaries between perceptually-identified events. In a 

2008 TiCS paper, Kurby and Zacks summarized studies that to that point had provided 

evidence for the existence and nature of working models, and began to characterize the 

mechanisms of their construction and updating [2]. Here, we address a fundamental question 

about these representations: Why does the brain have them? As cognitive representations go, 

event models are elaborate and resource-intensive. What unique capacities do they enable? 
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We will give a speculative answer to these questions, integrating some recent developments 

in the field of event cognition.

Our hypothesis starts from the observation that adaptive behavior is predictive. Organisms 

across the phylogenetic spectrum anticipate how their environments will change and how 

their behaviors will affect those changes. Even the simplest predictions are of dramatic 

adaptive benefit—a fish that darts under a rock in response to a bird-shaped shadow is more 

likely to survive predation, and a bee that flies to plants whose color signals pollen is more 

likely to feed. However, humans (and other species) demonstrate predictive processing that 

is qualitatively more complex and subtle than these sorts of associations. Suppose you come 

across a friend in the middle of changing a bike tire. After a brief look at the scene, you can 

probably predict all kinds of things about the situation: that there is a bike pump or CO2 

inflator around, even if none is visible; that your friend will put the wheel back on the bike; 

that your friend would respond positively if you offered assistance. We make detailed, subtle 

predictions about everyday events constantly and often do so with little awareness; 

predictions are a powerful feature of human cognition. Moreover, the brain appears to spend 

a substantial amount of its energy budget on predictive processing that puts it in a position to 

respond to predicted environmental features [3]. Thus, a re-representation that makes such 

predictions more accurate, more efficient, or both may be a worthwhile investment for the 

brain.

Psychologists have been interested in predictive mechanisms since Pavlov characterized 

classical conditioning [4], and in recent years there has been intense interest in predictive 

mechanisms in neuroscience [3, 5, 6]. One thing that is striking about these literatures is how 

powerful simple learning mechanisms can be—prediction has been observed in diverse 

domains including classical conditioning [4], visual feature detection [7] motion perception 

[8], motor control [9], scene perception [10], and language comprehension [11]. A common 

feature of models of prediction, across domains, is that they learn from experience, tuning 

their predictions based on a history of sequences in which cues or actions are followed by 

consequences [12]. We can view what these models learn as a representation of the statistical 

structure of a particular domain—motions of arms or distributions of objects in a scene, for 

example. It is often helpful to think about such structures as being shapes in a mathematical 

space. For example, observed arm movements could be represented in terms of the positions 

of joints, in terms of the angles between joints, or in terms of muscle torques [13]. A given 

action is a trajectory in a space whose dimensions are positions, angles, or torques. By 

observing a large number of reaching actions, a model can learn to anticipate based on the 

recent history of the arm’s location in the space where it is likely to be a moment later. For 

reaching, the dimensionality of the space is modest; for other problems, as in the predation 

example given earlier, it may be much larger. However, whether the dimensionality is large 

or small, the structures that models of these domains learn tend to be smooth. The trajectory 

that is predicted does not jump wildly from one location to another. Many aspects of 

behavior and other natural phenomena are characterized by smooth dynamics. If one wants 

to predict how a reaching motion will unfold, smooth dynamics are a good bet. Research in 

motor control and embodied cognition has shown that learning systems can learn shapes in 

the relevant perceptual and motor spaces that allow for prediction by extrapolation. This sort 

Richmond and Zacks Page 2

Trends Cogn Sci. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of prediction-by-smooth-extrapolation is effective for performing perceptually-guided motor 

behavior [14] and can also be used offline for imagery and reasoning [15].

However, many aspects of everyday activity are not smooth. Suppose one observes Rebecca 

and Zach sitting across a table, and Rebecca is passing a carton of milk to Zach (see Figure 1 

for an illustration of this scenario). If one were to represent their movements in terms of 

muscle torques, it would be very difficult to predict when Zach’s arm would transition from 

resting to reaching; this onset is discontinuous, and challenging to relate to the other 

variables. More broadly, intentional agents in complex everyday environments produce 

many sequences that are very jumpy in the space of the relevant perceptual and motor 

variables. These sorts of functions are difficult for systems to learn and represent.

It is to address this challenge, we think, that event models evolved. An event model re-
represents a situation in a space that is nonlinearly transformed from the spaces of the 
sensory and motor variables, yielding structures for typical everyday activities that afford 
efficient learning and robust extrapolation. An event model is not an arbitrary fabrication of 

the mind— to be useful, it needs to be closely coupled to the evolving state of affairs in the 

real world [16]. However, it is a re-representation of the world that alters its computational 

affordances. In our milk example, if one represents the situation not in terms of muscle 

torques but in terms of agents, objects, and intentional actions, then the transition from 

Rebecca’s offering to Zach’s accepting is smooth. The cost, here defined as ‘computational 

effort’ of building, maintaining and updating event models is the cost of going from a 

representation in the space of modality-specific perceptual and motor variables to a 

multimodal space of distal objects and entities. We propose that the answer to the question 

“Why does the brain have event models?” is this: in the transformed space of an event 

model, the trajectories of everyday activities are smooth and learnable.

In the following sections we will first review some historical foundations for research on 

event models. Then, we turn to current work in event cognition and its connections to other 

areas of cognitive science.

From situation models to event models

A substantial influence on current event model research has been older work in discourse 

processing on situation models [17–19]. These studies showed that both relatively deliberate 

and conscious inference mechanisms and fast and automatic predictive mechanisms 

contribute to text comprehension. For example, readers will sometimes draw predictive 

inferences from phrases such as “suddenly the actress fell,” allowing faster processing of a 

phrase such as “The actress was pronounced dead” [20]. However, similar effects can also be 

produced by faster, simpler mechanisms such as semantic spreading activation and 

associative retrieval [21].

Situation models help the reader to make predictions about relations between elements in a 

text [17]. Bransford and colleagues asked participants to listen to sentences such as: 1) 

“Three turtles rested beside a floating log, and a fish swam beneath them” or 2) “Three 

turtles rested on a floating log, and a fish swam beneath them”. Next, they were asked 
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whether they recognized having read “Three turtles rested (on/beside) a floating log, and a 

fish swam beneath it.” Those individuals who heard sentence 2 were more likely to falsely 

recognize “swam beneath it,” and Bransford and colleagues suggested that this was because 

they were more likely to have predicted that the fish was beneath the log based on their 

model of the situation described by the text. People often make similar types of predictions 

about spatial relations among objects. For example, given the input “The book is to the right 

of the clock. The glass is on top of the book” one can easily predict that the glass is also to 

the right of the clock [22] even though this spatial relation between the glass and the clock 

was not directly stated.

Individuals also can use knowledge of semantic relations between items to drive predictions 

about plausible action plans and the objects likely to be involved in that action plan. 

Altmann and Kamide [23] designed a clever paradigm to investigate this, in which 

individuals were shown still images and listened to sentences that pertained to the images 

while their gaze location was tracked. For example, a participant might be shown a scene of 

a child sitting on the floor surrounded by a motorized train, a toy car, a ball and a cake. 

Participants might hear “The boy will move the cake” or “The boy will eat the cake”. They 

found that individuals fixated on relevant objects prior to the object being mentioned when 

the spoken verb (e.g., ‘eat’) has a strong association with only one of the objects (cake) 

present in the scene [23, 24].

Situation models were originally described as representations constructed by readers of a 

narrative text, but similar considerations have been found to apply in the context of the 

comprehension of movies or interactive events. The term event model, thus, is a more 

general one referring both to event representations constructed during text comprehension 

and to representations formed from movies or live experiences [1]. Much of the recent 

research on event models has focused on the perception and remembering of visual events, 

though important studies of events in text comprehension continue. Quantitative research on 

event model construction from real life is still exceedingly rare—in part because live events 

cannot be repeated for multiple test sessions. However, two lines of evidence suggest that 

mediated events are a good proxy for live ones. First, as we have just seen, many 

manipulations have a similar effect on event cognition in reading and in movie viewing. This 

convergence across two kinds of mediated events with very different surface properties leads 

us to suspect that the effects might also generalize to unmediated events. Second, laboratory 

measures of event comprehension predict actual action performance [25].

Recent research on scene construction, episodic memory, and episodic future thought has 

highlighted the central role of event representations in memory and reasoning. Recalling 

something from the past or imagining something in the future appears to trigger a common 

scene construction mechanism, resulting in a structured mental representation complete with 

spatio-temporal context and vivid semantic and sensory details [26, 27]. Many of these same 

elements are present in building, maintaining and updating working models to re-represent 

the dynamics of the physical world. This suggests that a common representational medium 

for constructing event representations may be critical for ongoing comprehension, memory 

retrieval, and thinking about future or potential events. One suggestive finding consistent 

with this hypothesis concerns boundary extension, the phenomenon that people often 
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remember pictures as having contained more of the world than they actually did [28]. People 

with amnesia do not show boundary extension, even when tested immediately following 

study [29]. This suggests that a common dysfunction can affect both online scene 

construction and episodic memory.

The link between remembering past events and imagining potential futures has led to the 

suggestion that one primary function of memory might be to predict and plan for the future 

[30], possibly by projecting one’s self into a possible future [31]. If so, to what extent do 

these models re-use perceptual and motor systems for online perception and action control to 

do offline computations for memory and planning? This is a central concern of the current 

interest in embodied cognition; Box 1 discusses the role of embodied content in event 

models.

Segmentation

The segmentation of ongoing activity into meaningful events is importantly a matter of 

phenomenology: people spontaneously experience ongoing activity as consisting of 

meaningful events punctuated by boundaries between events [for an overview, see 2]. This 

subjective experience corresponds with phasic activity throughout the cortex [42], and can 

be easily and reproducibly captured by asking people to mark off the boundaries as they 

occur [43, 44]. Viewers of movies and readers of stories identify boundaries when more 

features of a situation are changing [45–48]. Choosing placement for event boundaries that 

tends to match those of other observers has downstream consequences for memory: the 

better an individual’s segmentation matches that of the group, the better memory for the 

event is [49, 50].

Studies of the brain’s phasic response at event boundaries have provided evidence that some 

resource-intensive activity takes place at the points where readers and viewers identify event 

boundaries [42, 51, 52]. Recently, interest has turned to identifying and characterizing the 

neural dynamics of event representations themselves. One approach has focused on the 

cortex. Hasson, Yang, Vallines, Heeger, and Rubin [53], using a creative movie-scrambling 

manipulation, characterized the duration over which representations in various parts of the 

cortex were sensitive to prior context. They discovered a hierarchy of temporal receptive 
windows, such that brain regions close to the sensory surfaces appeared to maintain 

information only for short durations, whereas association areas in parietal and frontal cortex 

maintained information for much longer durations. Baldassano and colleagues [54] used a 

data-driven method to identify points in time where the activity in a brain area shifted from 

one stable pattern to another. They found evidence for such regions throughout the brain, 

and found that their transition points corresponded with viewers’ subjective event 

boundaries. Different regions transitioned on different timescales, in a way that 

corresponded well with the temporal receptive windows identified by Hasson and colleagues 

[53].

Another approach to the neural dynamics of event representations has focused on the 

hippocampus and surrounding structures. Building on work on place cells in the 

hippocampus [55], and on work on hippocampal representations of temporal context in 
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human verbal memory [56, 57], Eichenbaum and colleagues have used electrophysiology in 

rodents to characterize time cells, which respond to specific timepoints within a temporal 

sequence [56]. Hsieh, Gruber, Jenkins, and Ranganath [58] trained humans on a picture 

memory task in which participants viewed a stream of pictures that contained repeating 

sequences, and individual pictures appeared at predictable locations within a sequence. 

Using fMRI, they found that hippocampal representations coded for specific objects in 

specific learned temporal positions, but not for object identity or temporal position alone. 

Further, they found that the pattern of activity in the left hippocampus changed more at 

boundaries between sequences than at picture-to-picture transitions within sequences (see 

also [54].

To investigate the causal link between the neural activity observed in fMRI studies and 

segmentation ability, segmentation was tested in a group of patients with brain injuries from 

the Vietnam head injury study [59]. Individuals with penetrating traumatic brain injury 

(pTBI) had lower segmentation performance, and those with larger lesions were especially 

impaired. A strong association between lesion size and coarse-grained segmentation was 

observed. However, there was little regional specificity with respect to specific aspects of 

impairment. For example, it was predicted that lesions in the ventromedial prefrontal cortex 

would result in poorer scores on videos that contained social information compared to 

nonsocial videos; this hypothesis was not supported [60].

In naturalistic activity, people are not simply passive observers but are also actors. Do people 

segment their own activities in the way as they segment the actions of others? Researchers 

have tended to implicitly assume the answer is “yes,” but little empirical research has tested 

this hypothesis. There is good reason to think that actors’ and observers’ representations of 

an activity often differ substantially, because actors and observers have access to different 

features of the activity [61, 62]. As an actor, one often has better access to the state of one’s 

plans and goals; as an observer, one often has better access to the larger physical context of 

action. Does this affect segmentation? A recent study from Swallow and colleagues suggests 

not: No differences were observed in segmentation of the event based on vantage point [63].

Viewpoint becomes a particularly acute issue when one considers the immensely important 

affective dimension of experience. Barrett and colleagues have proposed a theory of 

emotional experience that sees affect as a component of a predictive internal model that has 

much in common with working models as described here [64, 65]. A key feature of this 

account is the role of interoception—registering of one’s internal states—in constructing this 

internal model. When perceiving emotions, actors have access to interoceptive features, 

cognitions, and goals not available to observers, but observers have access to contextual 

features and facial expressions that may be less available to actors. Verbal labels can play an 

important role in aligning the features available to actors and observers [66]. An important 

question for future research is how the updating of affective aspects of internal models 

relates to the updating of event representations in actors and observers. Are they temporally 

coupled? Are they determined by the same mechanisms?

In short, people parse ongoing streams of activity into events, characterized by stable neural 

states that transition discretely at event boundaries. (See Box 2 for a discussion of structures 
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richer than simple segmentation.) People segment others’ activity as they observe it, and 

recent research suggests that they segment their own activity using similar mechanisms.

Prediction error-based updating

For working models to be helpful, they need to be updated at appropriate times. Failure to 

update leads to perseveration on a situation that has now changed; too-frequent and too-

infrequent updating render working models unable to retain relevant situational features; and 

updating in the wrong places leads to working models that are a mishmash of information 

that is relevant and irrelevant, accurate and inaccurate. An event model system that 

perseverates, that jumps around constantly, or that fails to carve activity at its joints cannot 

facilitate smooth prediction. Thus, the mechanism by which working models are updated is 

crucial. One account of this mechanism is given by event segmentation theory [EST; 70] . 

EST proposes that working models are updated in response to transient increases in 

prediction error (see Box 3). As we have noted, a well-fitting working model improves a 

cognitive system’s ability to make predictions about the near future. However, when things 

change in the world, the current working model’s contents will become out of date, leading 

to errors in prediction. At such moments, it is adaptive to update one’s working model. EST 

proposes that this updating is regulated by monitoring ongoing prediction error. When 

prediction error spikes, the current working model is flushed and information is gated into a 

new working model from (a) currently activated sensory and perceptual representations, (b) 

activation carried over from the previous working model, (c) associative retrieval from 

episodic memory, and (d) associative retrieval from semantic memory (see [2], Box 1).

Binding features into event models

When a working model is updated, some mechanism needs to bind together disparate 

features into a coherent representation in a space that will afford smooth prediction. In the 

example in Figure 1, simply representing “R holding milk” as an isolated feature does not 

afford smooth prediction; it is the multidimensional representation of the current milk 

holder, the state of the coffee cups, and so forth that makes prediction feasible.

The problem was articulated clearly by Baddeley in his description of the episodic buffer 
[92], a construct that has much in common with the working model construct we describe 

here. As Baddeley noted, such a representation probably leverages long-term memory to 

boost its capacity and durability [see also 93]. Baddeley suggested that one natural place to 

look in the brain for such representations is the PFC [92]; see also [70]. This possibility fits 

with neurological studies identifying action disorganization impairments with lesions to the 

PFC [94] and also with classical monkey and human physiology studies identifying 

sustained firing in the lateral PFC with working memory maintenance [95–98].

However, a growing body of evidence suggests that the hippocampus (HPC) and adjacent 

structures also play a critical role in rapidly binding disparate features into coherent 

complexes. The HPC has classically been conceived as a structure specialized for long-term 

episodic memory, spatial memory, or some combination of the two. However, a large and 

growing body of evidence supports the idea that the HPC is important for binding together 
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disparate features of a situation [99–101], even when the retention interval is essentially zero 

[99–103]. For example, when people with HPC lesions were asked to view simple arrays of 

objects and then reconstruct them after a 4 s delay, they were disproportionately likely to 

swap the positions of two objects, indicating that they successfully retrieved the objects’ 

locations, but had failed to bind individual objects and locations accurately [104]. 

Recognizing objects presented recently in movies selectively activates the HPC when it is 

necessary to reach back across an event boundary to identify the object [87]. On this view, 

the HPC is specialized for binding together activated representations instantiated by other 

brain systems, particularly cortical representations of features of events that could combine 

in multiple different possible ways. Ranganath and Ritchey [105] have proposed, 

specifically, that the HPC’s interactions with adjacent regions in the medial temporal lobes, 

and in the medial posterior cortex, are crucial for binding information about individual 

entities with information about spatiotemporal context to form a coherent event 

representation. In their account, the perirhinal cortex is the main hub for representing entity 

information, the parahippocampal cortex and retrosplenial cortex are the main hubs for 

representing context, and the HPC binds their representations together into an event model. 

Each of these systems is proposed to interact with a distinct set of lateral cortical regions. 

Consistent with this view, Baldassano and colleagues [54] found that shifts in cortical 

patterns in both sets of lateral cortical regions were associated with phasic increases in the 

HPC. Other models suggest that communication between the HPC and the PFC (specifically, 

the ventrolateral PFC) may also be important for within-event binding: In a sequential 

picture memory paradigm, Dubrow and Davachi [106] found that interactions between HPC 

and ventrolateral PFC predicted within-event sequential memory.

Binding information into event models is, of course, crucial for episodic memory formation 

because it provides a route for a retrieval cue to call up appropriate information from a 

related previously-experienced episode, as laid out by context models of episodic memory 

[107]. One possibility is that the within-event binding function of the HPC (in collaboration 

with other brain systems) and its episodic memory formation function are complementary, 

reflecting distinct components of the cascade that occurs at an event boundary. Ben-Yakov 

and colleagues [108–110] have proposed that phasic activity in the HPC at the ends of events 

implements a “now print” function, compiling accumulated bound event representations in a 

way that enables their retrieval after a delay. They found that univariate activity in the HPC 

was time-locked to the ends of movie clips, and that the magnitude of this activity predicted 

the likelihood of remembering the just-ended clip (see also [111]. This is consistent with the 

findings of Dubrow and Davachi [106], who found that phasic responses in the HPC at event 

boundaries in the sequential picture paradigm predicted subsequent sequential memory.

Together, these results suggest a model in which the HPC plays two related but distinct roles 

in event model maintenance and updating. During an ongoing event, the HPC may bind 

disparate concurrently-activated cortical representations into a coherent complex. At an 

event boundary, the HPC may perform a “now print” function [108–110] or “sharpening” 

function [105] that stabilized the bound pattern in a way that preserves it for subsequent 

recall, before abandoning the current binding to make room for binding a new working 

model (see Figure 4).
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Action planning and control

Having described a role for working event models in perception and memory, we turn to 

their role in action planning and control. We start from a working hypothesis that the 

structured representations that humans and other animals use to control action are the same 

event models that they use to understand others’ actions [112], and that the predictions we 

need to make as observers seeking to understand overlap heavily with the predictions we 

need to make in order to guide action adaptively. This is eminently plausible, especially 

because in naturalistic behavior observation and comprehension are tightly coupled to 

action. The idea that complex action control requires structured representation of events has 

a rich history in artificial intelligence [113] and in psychology [114]. Recent work in 

computational and experimental neuroscience has begun to link structured representations in 

perception and in action.

In the context of reinforcement learning, it is possible to give a formal analysis of the costs 

and benefits of maintaining structured representations of situations. One important contrast 

is between model-free and model-based learning [115]. In model-free learning, the system 

attempts to learn directly the optimal action given all the possible states it experiences. This 

can lead to optimal behavior if the environment is appropriately structured, but the 

sequential organization of the behavior has to be determined by the structure of the 

environment—all the system can learn is the overall value associated with each state. In 

contrast, a model-based learning system attempts to simultaneously learn the structure of the 

environment along with the optimal action to be taken in each state. This allows the system 

to take into account the potential sequence of states the learner might pass through, 

providing a basis for planning based on predicted future states. The costs and benefits of 

model-based learning are analogous to the costs and benefits of event models that we 

described at this paper’s opening: Model-based learning is more complex and costlier, but 

allows the system to learn complicated structures that cannot be tractably learned with 

model-free learning. Reviewing research on the neural underpinnings of model-based 

learning, Daw and colleagues [71] associate it with structures in the prefrontal cortex 

(among others).

One important question about action representations is how the mind and brain capture the 

hierarchical structure of action. Studies of complex task performance in monkeys and 

humans suggest that the prefrontal cortex represents the structure of one’s current task 

simultaneously on multiple timescales, possibly with a temporal gradient such that shorter 

timescales are represented more posteriorly and longer timescales are represented more 

anteriorly [116–118].

If the same event representations underlie perception and action, then one would expect to 

find an association between the perception of structure in others’ actions and the ability to 

performed structured actions of one’s own. Suggestive evidence comes from recent work on 

event perception and action control in people with high-functioning autism spectrum 

disorder (ASD). People with ASD have selective impairments in event segmentation that are 

not accounted for by general intellectual dysfunction [119]. This population also has a 

selective impairment in the ability to use a current event context to guide action in a simple 
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decision-making task [120]. However, to our knowledge no one has tested whether 

individual differences in event perception predict individual differences in action 

performance in people with ASD.

Bailey and colleagues [25] tested the hypothesis that event perception predicts action 

performance directly in a population of older adults with varying degrees of cognitive 

impairment likely due to Alzheimer’s disease (AD). Participants viewed movies of everyday 

activities and segmented them into events. They also completed a standardized test of 

naturalistic action performance, which involved packing a child’s lunch and backpack [121]. 

As expected, healthy participants performed better on both the action perception and the 

action performance task. However, after controlling for differences in clinical cognitive 

impairment, those who segmented better were still substantially more successful in the 

action performance task. A converging result comes from a study of intellectually disabled 

people in a sheltered workplace, conducted by Sebastian and colleagues [122]. They found 

that a measure of event segmentation predicted workers’ abilities to perform an assembly 

task. See Box 5 for a further discussion of the potential utility of event cognition measures 

for diagnostic purposes and as a target for clinical intervention.

Conclusion

The Oxford English Dictionary [137] gives four senses of the word “parsimony.” One, rarely 

seen today, has to do with stinginess: “economy of action, effort, or process in an organism 

or natural system.” Another is the definition familiar to scientists: “the principle that no 

more entities, causes, or forces than necessary should be invoked in explaining a set of facts 

or observations.” Event models are unparsimonious in both senses: They are an added 

burden for an organism to construct, maintain, and update, and they add complexity to 

scientific accounts of perception, memory, and action. Nonetheless, the evidence drives to 

the conclusion that they are an important component of human mental life and a valuable 

theoretical construct for cognitive scientists (see “Outstanding Questions”). The research 

reviewed in this article provides strong evidence for the existence of event models and 

provides insight as to the types of problems that these cognitive representations may have 

evolved to deal with. Not only do event models afford the ability to understand and make 

predictions about complex systems, including social interactions and relations between 

actions and objects, but they also allow for the execution of efficient action plans. Although 

event models are computationally costly, the cost of creating, maintaining, and updating an 

event model is balanced by the benefit of being able to more easily the solve difficult 

scenarios that are part and parcel of everyday life.
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Box 1. Embodiment: What is the representational format of event models?

One important question is: To what extent event models are instantiated by the same 

modality-laden representations that underlie perception and motor control. One view is 

that structured mental representations, in order to achieve the computational power 

characteristic of human thought, need to be abstracted from the modalities of action and 

perception (Fodor, 1975). An alternative view notes that perceptual and motor systems 

provide a powerful platform for representing the world, and proposes that for the sake of 

efficiency cognitive representations re-use these platforms to comprehend, remember, and 

predict [32, 33].

In language comprehension, neurophysiological studies suggest that when people read 

about events they activate neural representations of motor properties of those actions [34–

36]. In action observation, experts in a motor skill such as dance show greater motor 

activation compared to novices when watching activities from their domain of expertise, 

suggesting they are using knowledge to form embodied representations [37]. In our 

laboratory, we have used fMRI to record brain activity while people read about everyday 

activities or watch movies, and have been struck by the parallels in the content-specific 

transient activations associated with features such as interacting with objects or changing 

locations [38, 39]. These results suggest that, at least some of the time, people do re-use 

circuits for online action and perception in an offline mode to represent the contents of 

events for language or visual comprehension.

This interpretation has been challenged, however. Mahon and Caramazza [40] noted that 

the fact that people tend to activate perceptual and motor representations when thinking 

about concepts with perceptual and motor contents does not entail that the perceptual and 

motor representations are causally related to the conceptualization. Instead, conceptual 

representations could be purely disembodied, but could tend to activate embodied 

representations through repeated association. Relatedly, one could worry that the task 

conditions in which such effects have been observed may have task demands that 

encourage strategic use of perceptual or motor representations in a way that is not 

characteristic of normal comprehension.

We think that, going forward, it will be critical to test embodied comprehension 

hypotheses using methods that directly assay representational format, in situations that 

are as naturalistic as possible. Moreover, we also think it is important to recognize that 

there may be many comprehension situations in which readers or observers do not 

construct rich event models [41]—they may skim an instruction manual for a key piece of 

information, paying little attention to the action sequences described in the text, or search 

a room for a dropped wallet, paying little attention to the activities going on around them. 

In these situations, there may be little evidence of event model construction, embodied or 

otherwise.

An effective working model needs to be relatively stable through the duration of an event

—if the model’s state is as dynamic as the inputs from which it is constructed, it cannot 

enable smooth prediction. For example, if one observes someone else buttering a piece of 

bread, one will benefit from a working model that does not get disrupted by each swipe 
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of the knife. However, to be effective, a working model also needs to be updated when 

the represented situation transitions from one configuration to another—when the bread 

is buttered and the diner turns to drink water. Thus, working models need a particular 

kind of dynamics: stability punctuated by phasic transitions. These transitions segment 

ongoing experience into a succession of events represented by successive working 

models.
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Box 2. Hierarchies and strands

For the most part, in this paper we describe events in terms of a single segmentation of a 

timeline into chunks. This reflects the state of the science; however, it is clear that events 

have structure beyond a single sequence of chunks. One important feature of naturalistic 

activity is that it can be segmented according to different timescales. Within a single 

event, segmentation occurs simultaneously on multiple timescales, and different 

timescales are related hierarchically such that fine-grained events group into larger 

coarse-grained events [44, 67, 68]. For example, a coarse-grained event within the 

‘getting ready for work’ activity might be ‘brushing teeth.’ Within this coarse event, fine 

events might include putting toothpaste on the toothbrush or picking up the toothbrush.

Another important feature of naturalistic activity is that it includes thematically related 

events that are discontinuous in time. For example, a sculptor may work on a piece in 

sessions separated by hours, days, and weeks, but conceptualize the sculpting as one 

unified activity. However, most extant models lack mechanisms to account for structures 

that cohere despite being discontinuous in time. Kubovy [69] has recently called attention 

to this problem, and proposed a framework for describing such event structures. Within 

Kubovy’s ‘concurrent strands’ framework, one might have different representational 

strands for the many facets of one’s life, including home, work/school, errands and 

personal business.

Strands are specified according to the individual’s point of view [69]. Each strand is 

characterized in three ways: by the individual’s role, by the other people typically 

involved in activities that take place in this strand, and by where activities within this 

strand typically occur. For example, the ‘home’ strand may be characterized by the 

individual’s role in the nuclear family, the other individuals that live in the home, and the 

dwelling that is the setting for many of the ‘home’ activities. Importantly, Kubovy 

suggested that one’s experience of events within a strand is that events within the same 

strand are causally related to one another. Even when a time gap is introduced, such as 

going to work interrupting the home thread, events that occur after the gap are 

experienced as being related to the events that preceded it in that strand.

Individuals can also transiently activate different strands—being interrupted at work by a 

reminder to set up a play date for the children (‘home’ strand) wouldn’t be understood by 

the individual as comprising a causal relation between other events within the ‘work’ 

strand and the play date. Instead, the play date would be integrated into the causal chain 

of events experienced within the ‘home’ strand even though this event takes place away 

from the typical setting of events within this strand. In other words, although these events 

are experienced in a temporally interleaved fashion from the vantage point of the outside 

observer, the actor tags these events with different meanings and assigns each event to a 

different strand, thus separating these events experientially. An important question for 

future research is: How does organization by strands interact with hierarchical 

organization?
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Box 3. Mechanisms of event segmentation

Event segmentation theory [70] proposes a specific mechanism responsible for event 

segmentation. According to EST, working models are updated in response to spikes in 

prediction error. However, other mechanisms are possible.

Consider an agent that makes predictions about how activity will unfold, based on some 

combination of learning from previous experience and inbuilt predispositions. At any 

point in time, t, the agent makes a prediction about what will happen a short time later, t
+1. We denote the agent’s prediction at time t pt (where p refers to representation of a 

state of affairs). We describe the state of affairs the system subsequently experiences as 

st+1. The magnitude of prediction error, then, is given by the sum of squared error 

between pt and st+1. (In reinforcement learning models, this quantity is referred to as 

surprisal; [6].) In EST, spikes in this quantity trigger working model updating.

As just stated, pt is a point estimate. Cognitive systems may not just produce a point 

prediction but also generate a range of values based on previous experience and the 

system’s dispositions. If that range is large, this means the system has greater uncertainty 
[71]. A second possibility is that this high level of uncertainty about the prediction could 

trigger the updating processes. Rather than waiting for a prediction error at time t+1, the 

system updates at time t in anticipation that the upcoming situation is unpredictable.

A third possibility is that, rather than updating based on prediction error or prediction 

uncertainty, the system simply monitors for change. It could constantly compare the 

current state of affairs, st, to the recent past, st−1, and update when the change from t-1 to 

t is large [72, 73].

Finally, a fourth possibility is that the system tracks the history of sequences of states that 

it experiences, and clumps states based on their co-occurrence over time [74, 75]. A 

learning system could group states that tend to co-occur nearby in time in many 

sequences into communities, and to segment a sequence when it transitions from a state 

associated with one community to a state associated with a different community. In a 

sense, this amounts to segmenting based on change in the internal representation (rather 

than in the features of the world).
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Box 3, Figure I. 
Representation of community structure described by Schapiro, Rogers, Cordova, Turk-

Browne, & Botvinick [74]. Each node is associated with a particular state, and each edge 

is associated with possible transitions between states. States within a cluster tend to 

connect with one another and not with nodes outside of the cluster; however, it is possible 

to transition from a state in one cluster to a state in another cluster (represented by the 

dark outlined nodes).

In naturalistic activity, these mechanisms might make very similar hypotheses about how 

a system will segment. For most learning systems, prediction error is associated with 

uncertainty. In naturalistic activity, prediction errors tend to be larger when more features 

of the activity are changing. All of these features are associated with transitions from one 

community to another. For this reason, teasing apart these potential mechanisms is a 

major challenge. Nonetheless, we think it is an important one to tackle, because there are 

times in naturalistic activity when they do pull apart. For example, though larger changes 

usually lead to larger prediction errors, sometimes the absence of change is what is 

unpredicted. To make this concrete, imagine a child waiting for an ice cream truck. All 

summer, the truck has turned at the corner, onto the child’s street—so entropy is low. 

Richmond and Zacks Page 21

Trends Cogn Sci. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Today the truck continues straight. This lack of feature change would be associated with 

a large prediction error (as well, presumably, a disappointed child).

One piece of evidence for the role of prediction error in event boundaries comes from a 

series of experiments from our laboratory [76]. In these, participants watched movies that 

had previously been segmented by other viewers. From time to time, each movie was 

stopped and participants were asked to predict what would happen in 5 s, by selecting 

one of two still pictures. EST entails that prediction should be more difficult when 

participants have to predict across an event boundary, and that is what was found. fMRI 

indicated that these conditions were associated with greater activity in the midbrain 
dopamine system, which is involved in signaling prediction errors [77].

Turning to the updating process, the conditions and mechanisms of working model 

updating have been a topic of intense focus in recent research. However, they have 

antecedents in classical studies of discourse comprehension. These studies have been 

reviewed previously [70], so we will summarize only briefly (see also Box 4 for a 

discussion of incremental vs global updating). The main conclusion from this work was 

that in narrative text, when relevant dimensions of the situation change, readers update 

their working models. EST views these shifts as event boundaries; incoming information 

is less predictable than it was before, which should lead to working model updating. The 

most-studied dimensions are time, space and characters. After a shift in a narrative 

dimension, information presented prior to the shift is often less accessible, as measured 

by accuracy or response time on recognition tests or by reading speed (.e.g., [78, 79]. 

However, it is important to mention two important qualifications to this general pattern of 

results. First, features other than narrative shifts contribute substantially to memory 

accessibility. Readers often retrieve information that is no longer in a current working 

model in order to infer information that is missing from the local text, and sometimes 

simply reading a semantically related phrase is sufficient to retrieve information not in 

one’s working model [21]. Second, shifts do not always impair memory accessibility. For 

example, there is evidence that readers often do not track spatial shifts, and as a result 

information may be just as accessible after a spatial shift as before [80, 81]. Which 

narrative dimensions a reader tracks depends on that reader’s reading goals and previous 

knowledge.
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Box 4. Incremental and global working model updating

An important distinction regarding the updating of working models is between 

incremental and global updating mechanisms. An incremental updating mechanism 

replaces information in a working model selectively, affecting only unpredicted or 

changed information. By contrast, global updating affects all aspects of an working 

model, meaning that information that may be “innocent” of having caused an update can 

be affected along with information that led to the update.

Theories of narrative comprehension propose either solely incremental updating, or a mix 

of incremental and global updating [82, 83]. EST, however, includes only a global 

updating mechanism [70]. Surprisingly little empirical research has attempted to 

dissociate incremental from global updating. This is a substantial limitation, because the 

two mechanisms could contribute differently in different comprehension situations, and 

could be affected differently by neural dysfunction and individual differences in 

cognition.

Two recent studies have begun to address this gap using text comprehension paradigms. 

Kurby and Zacks [84] used a think-aloud paradigm in which participants described their 

thoughts after reading each phrase in a narrative. They found that when one aspect of the 

narrated situation changed—for example, moving from an indoor to an outdoor location

—readers were more likely to mention that dimension. However, they were also likely to 

mention also other aspects that had not changed—for example, the characters or objects. 

This suggests that the readers were updating those other dimensions. Bailey and Zacks 

[85] used a recognition memory probe design, in which younger and older participants 

read narratives with changes in two aspects of the situation: spatial location and 

characters. From time to time, they were probed to recognize a phrase describing one or 

the other aspect. Response times suggested that both incremental and global updating 

were taking place: Readers were slowest when probed for an aspect that had just 

changed, but were also slowed in responding to unchanged dimensions of the situation 

compared to a no-change condition. This study also illustrates the potential significance 

of the distinction between incremental and global updating: Older adults were just as 

slow in responding to probes of an unchanged dimension as to probes of a changed 

dimension, suggesting that they relied more on global updating.
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Box 4, Figure I. 
Data from Bailey & Zacks, 2015. Mean z-scored response time for younger and older 

adults, controlling for item-wise differences in number of words. Probes were presented 

after no shift, after a shift in the unchanged dimension, and after a shift in the changed 

dimension. Participants were slower to respond after a shift compared to the no-shift 

condition. Older adults were slowed similarly whether the probe tapped the dimension 

that had shifted or the dimension that had remained the same, suggesting that they 

globally updated both dimensions when either changed. In contrast, younger adults are 

slower for responding to the changed dimension after the shift compared to unchanged 

information after the shift, suggesting that they performed both local and global updating.

Incremental and global updating may have different consequences for long term memory. 

Huff, Meitz, and Papenmeier [86] presented readers with movies that included points 

with changes in 1, 2, 3 or 4 situational dimensions. They found that subsequent 

recognition memory was better for points with more changes, and interpreted this as 

evidence that more information had been updated, incrementally. (However, an 

alternative possibility is that updating was purely global, but occurred with higher 

probability when more things were changing.)

Thus, the limited empirical data indicate the importance of distinguishing between 

incremental and global updating, providing evidence for both in the domain of reading 

comprehension. Going forward, models such as EST will need to address the role of 

incremental updating.
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The first studies to investigate event-based memory updating in dynamic audiovisual 

events used clips from commercial cinema, which were pre-tested to identify points that 

were widely judged to be event boundaries [87, 88]. In these experiments, visual 

recognition of objects was tested by waiting 5 s after a given object left the screen, then 

presenting the object and a contextually-appropriate foil and asking participants to make 

a forced-choice recognition judgment. Participants were less able to identify objects 

when an event boundary had occurred, and when they could identify the objects, retrieval 

was associated with selective fMRI activation of the hippocampus and parahippocampal 

cortex, areas associated with long-term episodic memory.

Recent studies from Radvansky and his colleagues have tested the hypothesis that 

moving from one spatial setting to another leads to working model updating. The 

walking-through-doorways effect shows that people are slower and less accurate in 

identifying recently-encountered objects after moving from one room to another. The 

effect holds after controlling for elapsed time, distance, and visibility [89]. It occurs both 

for objects that are left in the previous room and for objects that are carried along in a 

backpack but are not visible. It happens both in virtual reality and in real rooms. It does 

not seem to be highly dependent on task-specific strategies. Finally, it does not seem to 

simply be a mismatch between the encoding and retrieval context, because after walking 

through one doorway, returning to the encoding room does not rescue memory [90].

Studies such as these show that working memory representations are updated at event 

boundaries. However, there is as yet no direct evidence tying this updating to prediction 

error. One suggestive result comes from a study of long term memory editing [91], in 

which predictions in the medial temporal lobes were estimated using a multivariate fMRI 

method. When predictions were strong and wrong, indicating large prediction errors, 

participants had better delayed memory for the unpredicted information. However, 

updating effects in working memory have not yet been directly studied.

Thus, spikes in prediction error are thought to be related to working model updating, and 

when an working model is updated the observer has the phenomenological experience of 

one meaningful unit of activity coming to an end (and the next unit of activity beginning). 

Because prediction error is high at event boundaries, people have more difficulty 

predicting short-term future happenings across event boundaries compared to within an 

event. When working models are updated, information contained the previous working 

model becomes less accessible. What are the mechanisms that bind information together 

within an event, and that allow access to information from a previous event once it has 

ended? We turn to recent research on these questions now.
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Box 5. Diagnostics and intervention

Event models might at first blush seem too “messy” a basis for clinical diagnosis and 

intervention, but in fact they are quite easy to assess in the clinic and in the laboratory, 

and could be important diagnostic indicators of dysfunction in everyday life [123]. 

People differ reliably in their ability to segment everyday events in a normative fashion, 

and in their ability to subsequently remember those events when tested with recall or 

recognition measures (e.g., [49]. Event segmentation measures are less influenced by 

education and SES than many standard neuropsychological tests [124]. It is also possible 

to measure one’s ability to perform everyday actions reliably, using measures that give a 

detailed picture of the kinds of action errors a given individual makes [121]. These 

measures are sensitive to group differences including age, clinical dementia status, and 

genetic markers of dementia risk [25, 125]. Moreover, event segmentation measures 

reliably predict both subsequent memory [49] and action performance [25]. Thus, 

measures of event cognition may be attractive bases for future diagnostic instruments.

Event cognition is also an attractive basis for cognitive interventions. Simply asking 

individuals to attend to the structure of an event can improve memory for the event. A 

recent study by Flores and colleagues asked participants either to segment the events 

depicted in a video, to press a button every few seconds while the video was playing, or 

simply to intentionally encode the information in the video while passively watching. 

Memory for the event immediately after viewing did not differ by condition, but for 

participants in the segmentation condition, memory after a 10-minute delay was 

significantly better than the other two conditions. This benefit of segmentation for 

memory persisted through a 1-month delay [126]. Similarly, cueing of event boundaries 

improved memory for boundary information in both younger and older adults [127].
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Box 5, Figure I. 
Summary of 5 experiments comparing recognition memory after intentional encoding to 

memory after event segmentation. When tested immediately, intentional encoding was 

superior; however, at all other delays event segmentation led to better memory.

If event cognition interventions improve memory in healthy people, they may also prove 

valuable in the clinic. Deficits in event cognition have been identified in individuals with 

characteristics of autism [119], schizophrenia [128], Alzheimer’s disease [50], post-

traumatic stress disorder [129], and obsessive-compulsive disorder [130]. Researchers 
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studying several of these disorders have suggested that event-comprehension 

interventions have promise in remediating the disorders’ symptoms or compensating for 

their effects [124, 131, 132].

The dual role we are proposing for event models becomes very clear when one considers 

situations in which a person needs to coordinate with others to accomplish a task. 

Khemlani, Harrison, and Trafton [133] described an architecture to enable a robot to 

segment and represent events while coordinating its actions with a team of humans. In 

this architecture, segmentation is organized by goals, locations, and characters and 

objects; changes in these features correspond to event boundaries. The system actively 

maintains a structured representation of the events taking place, which includes 

information about the physical situation, the robot’s goals, and the goals of its human 

colleagues. In order for the robot to collaborate effectively, its representation needs to 

correspond with those of its human partners.

To build such shared event representations, people rely heavily on communication, both 

verbal and nonverbal. Recent work on gesture has shown how it can shape event 

representations adaptively and efficiently, complementing the affordances of verbal 

language [134]. People use gesture to highlight information to which we want their 

conversational partners to attend [135] and to communicate about abstract concepts 

[134]. The timing of gestures can highlight the segmentation structure of an event 

description; for example, in languages that can use serial verbs to describe a complex 

event with a single phrase, gestures cover just those constructions that correspond with 

single conceptual events [136].

In short, recent studies of action perception and action performance in people with ASD, 

healthy aging and early AD, and intellectual disability all suggest that individual 

differences in the ability to form event representations in perception are predictive of 

individual differences in the ability to perform structured action sequences. Such 

representations are necessary both for coordinating one’s own solitary behavior, and for 

coordinating behavior with others. The ability to infer goals and mental states and the 

ability to predict likely actions of others facilitates social coordination. By proactively 

inferring others’ actions on an ongoing basis, the brain places one in a position to act or 

react appropriately at any moment given the opportunity. In one’s own day-to-day life, 

such representations facilitate the ability to track and plan and carry out complex, goal-

directed activities while remaining flexible enough to respond to, and accommodate, 

changes in the environment that necessitate modification of the action plan.
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Trends

Advanced neuroimaging methods and naturalistic stimuli are being used to characterize 

event representations in extended activities.

Behavioral studies are beginning to characterize event segmentation in interactive, first-

person experiences.

Behavioral and neuroimaging studies are characterizing the role of event model updating 

in working memory access.

Studies of special populations and individual differences are characterizing how event 

models develop over the lifespan, vary across individuals, and are impaired by disease 

and injury.

Neuroimaging studies are beginning to characterize interactions between the 

hippocampus, subcortical structures, and the cortex in binding features into events.
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Outstanding Questions

What computational features trigger the updating of working event models, and how is 

the updating implemented computationally?

Which aspects of event representations are shared across perception and action control, 

and which are unique to each domain?

How do event models from real life differ from event models from mediated life, 

especially movies?

How does retrieval from episodic memory and semantic knowledge affect the 

construction of working event models?

How are different event strands represented in the mind and brain?

How can event cognition be improved with training or cognitive aids?
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Figure 1. 
a) Rebecca (R) is in the middle of passing milk to Zach (Z). b) Z has accepted milk. c) Z is 

pouring milk. d) Conceptual description of changes in low-level features. Examples include 

a few different reference frames—body part velocities, joint angles, muscle torques, contact 

relations—to illustrate that the point is general. e) Conceptual depiction of changes in 

features of the situation, as might be represented in event models; again, a few representative 

examples are given. When cast in terms of event model variables, change is smoother and 

thus more learnable. For example, the sequence “get milk, then pour milk” is easy for many 

systems to learn, whereas the sequence of velocities or joint angles would be highly 

challenging.
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Figure 2. 
Two roles for the hippocampus in working models. 1) The HPC binds active cortical 

representations together. Binding may be ongoing (red), but the information available to be 

bound disproportionally represents the beginnings of the events due to gating (pink). 2) The 

“sharpening/now print” function (green) is hypothesized to be selective to the end of the 

event.
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