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Abstract

Objectives—The Akaike Information Criterion (AIC) is a well-known tool for variable selection 

in multivariable modeling as well as a tool to help identify the optimal representation of 

explanatory variables. However, it has been discussed infrequently in the dental literature. The 

purpose of this paper is to demonstrate the use of AIC in determining the optimal representation of 

dietary variables in a longitudinal dental study.

Methods—The Iowa Fluoride Study enrolled children at birth and dental examinations were 

conducted at ages 5, 9, 13, and 17. Decayed or filled surfaces (DFS) trend clusters were created 

based on age 13 DFS counts and age 13–17 DFS increments. Dietary intake data (water, milk, 100 

percent-juice, and sugar sweetened beverages) were collected semiannually using a food frequency 

questionnaire. Multinomial logistic regression models were fit to predict DFS cluster membership 

(n= 344). Multiple approaches could be used to represent the dietary data including averaging 

across all collected surveys or over different shorter time periods to capture age-specific trends or 

using the individual time points of dietary data.

Results—AIC helped identify the optimal representation. Averaging data for all four dietary 

variables for the whole period from age 9.0 to 17.0 provided a better representation in the 

multivariable full model (AIC= 745.0) compared to other methods assessed in full models (AICs 

=750.6 for age 9 and 9–13 increment dietary measurements and AIC = 762.3 for age 9, 13, and 17 

individual measurements). The results illustrate that AIC can help researchers identify the optimal 

way to summarize information for inclusion in a statistical model.

Conclusions—The method presented here can be used by researchers performing statistical 

modeling in dental research. This method provides an alternative approach for assessing the 

propriety of variable representation to significance-based procedures, which could potentially lead 

to improved research in the dental community.
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Introduction

Model selection is a common challenge across research in all empirical scientific disciplines. 

Different fields have gravitated toward different standard model selection approaches. The 

fields of computer science and data science often use complex algorithms such as tree-based 

models including random forests and boosting, which improves predictive accuracy at the 

cost of interpretation (1). In genetics and genomics, regularization methods such as least 

angle regression and the LASSO (2) have become increasingly popular, since they allow 

investigators to identify a potentially small set of important traits among an initial collection 

that is often very large. Many other disciplines frequently utilize straightforward step-wise 

techniques, such as backward elimination, which are understandable and can be 

implemented using computationally efficient algorithms, yet can lead to potentially biased 

solutions (3,4). Recently, the American Statistical Association, the world’s largest 

community of statisticians, released an official report warning against the overuse of P-

values and P-value based methods (5,6). P-values are particularly problematic for variable 

selection, although they tend to be pervasively used for this purpose.

In most published applied work where model selection techniques are employed, the focus is 

primarily to identify the optimal subset of potential predictors to use in a final model. Even 

in the statistical literature, there have been relatively few articles discussing the optimal way 

to represent predictors in the model.

In standard regression modeling, variables can be represented in many ways: for example, 

quantitative and continuous, quantitative and discrete, qualitative with multiple levels, 

qualitative with two levels. Quantitative skewed explanatory variables may have a large 

influence on parameter estimates, while categorical explanatory variables with multiple 

levels (e.g., Likert scale) may produce many parameter estimates. A common approach to 

address such modeling issues is to categorize the variable values into two or three groups, 

although oftentimes there are many possibilities for categorization. These decisions 

frequently are based on convenience or discipline-governed logic rather than statistical 

reasoning. Similar dilemmas about the optimal representation of explanatory variables arise 

in longitudinal studies when such variables are collected over time. Researchers need to 

identify the optimal ways to represent these variables (e.g., through some form of averaging 

over the time points or the inclusion of measurements at separate time points). In this paper, 

we demonstrate the use of the Akaike information criterion (AIC) in determining the optimal 

representation of explanatory variables with data collected in the Iowa Fluoride Study. When 

modeling an outcome, enriching the characterization of the mean structure by incorporating 

a large collection of pertinent explanatory variables may reduce inferential bias yet will also 

increase variability. Conversely, simplifying the characterization by relying on a 

parsimonious collection of variables will decrease variability yet may inflate bias. AIC is a 

statistical method that helps determine the optimal variance-bias tradeoff.
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Methods

Iowa fluoride study background

The Iowa fluoride study (IFS) team has published numerous articles modeling dental caries 

prevalence and incidence during childhood and adolescence for participating Iowa children 

(7–13). Detailed descriptions of different parts of the study have been published previously, 

so only a brief description of the study is presented here. The IFS recruited a birth cohort at 

8 Iowa hospital post-partum wards during 1992–1995. Dental examinations for dental caries 

and fluorosis took place at about ages 5, 9, 13, and 17 by a team of trained and calibrated 

examiners. Questionnaires were sent every 6 months during adolescence to obtain dietary 

intakes and behavioral variable information and measurements. Additional details on the 

questionnaires are provided in the “candidate predictor variables” section below.

Outcome variable

Decayed and filled surface (DFS) counts were calculated for individuals for all dental exams 

using criteria that distinguished cavitated from non-cavitated lesions (9–11,13). For the 

present analyses, only cavitated and/or filled tooth surfaces were included in the DFS counts. 

Three DFS count cluster groups were created from 396 subjects using the age 13 dental 

exam DFS counts and the DFS increments between the age 13 dental exam and the age 17 

dental exam (Figure 1).

Clustering is a descriptive statistical technique used to combine individuals into similar 

groups based on prescribed variables of interest. In this study, age 13 DFS counts and age 

13–17 DFS increments served as the clustering variables. While the clustering methodology 

and results will be the focus of another paper, in brief, we used Ward’s (ward.D2) clustering 

(14) with the “stats” package in R (64–bit Version R–3.0.2) to create three clusters. Ward’s 

clustering creates groups that maximize the squared Euclidean distance between cluster 

centers, creating groups that are internally homogeneous and externally heterogeneous. It 

should be noted that the distribution of DFS counts and increments is highly discrete and 

right skewed, and cannot be viewed as approximately normal. Subjects with large counts and 

increments, which could be deemed as outliers, were not removed prior to clustering. The 

authors felt that such high-risk individuals should be captured in our analyses. Several 

different numbers of cluster groups were considered; however, cluster sizes greater than 

three produced small sample sizes for cluster membership. Thus, three clusters were used, as 

shown in Figure 1 below. In Figure 1, the error bars surrounding the means represent the 95 

percent confidence intervals for the mean. The age 9 values are included in the figure for 

reference, but they were not included in the clustering algorithm. The method discussed in 

this paper requires a complete set of data with no missingness. While there were 396 

participants who had caries outcomes and satisfied the aforementioned questionnaire 

criteria, only the 344 participants who had complete data were used in the modeling 

analyses. In order to best capture the observed trends, we formed our clusters based on the 

most complete set of information available. Therefore, we determined the representation 

method with the clusters created from the full population (n = 396).
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Candidate predictor variables

We were interested in predicting cluster membership using data collected with the 

semiannual questionnaires. It has been shown that childhood beverage intakes are associated 

with adolescent caries (12,15,16). In order to capture childhood and adolescent beverage 

intake amounts, information from questionnaires from ages 9.0 to 17.0 years was 

considered. With the abundance of dietary data collected over this time span, we needed to 

identify the optimal representation of these data when predicting cluster membership. The 

questionnaires assessed individuals’ beverage intakes, fluoride exposures, and brushing 

habits. For these analyses, we focused only on dietary variables (i.e., fluoride exposures and 

behavioral variables such as brushing frequency were not included) and estimated the total 

ounce intakes per day for water and other sugar-free beverages, milk, sugar-sweetened 

beverages (SSB), and 100 percent juice. Since the purpose of this model selection technique 

was to identify the best dietary beverage variable representation, other important variables 

(e.g., sociodemographic, oral hygiene variables) were not included in this study. In a related 

analysis to be published in a separate paper, such variables were incorporated into the final 

model selection once the optimal variable representation was determined. The term predict 

in this manuscript is used in the traditional sense where we predict cluster membership for a 

new individual based on a hypothetical set of covariates rather than forecasting future caries 

trajectories.

In order to initially be considered in the analysis, we required individuals to have returned at 

least one questionnaire during at least four of the following five periods:

• Period 1: 9, 9.5, and 10 years,

• Period 2: 10.5, 11, 11.5, and 12 years,

• Period 3: 12.5, 13, and 13.5 years,

• Period 4: 14, 14.5, 15, and 15.5 years, and

• Period 5: 16, 16.5, and 17 years.

For the purpose of illustration, a sampled participant’s questionnaire data for the four dietary 

variables of interest is shown in Table 1. With the large amount of information available 

across the different ages, summarization of the data was needed. To help understand the 

research problem, we provide a simple example here. Assume the individual represented in 

Table 1 belonged to DFS Cluster 3 (high DFS cluster). When predicting this cluster 

membership, we might believe that incorporating the substantial increase in SSB intake from 

the age 11.5 questionnaire would be useful in the model. If we included the age 11.5 

questionnaire data as a predictor, a traditional complete-case analysis would remove all 

individuals who did not return this specific questionnaire. In order to accommodate potential 

missingness in questionnaires, we considered several forms of averaging (e.g., creating a 

new variable that averages questionnaires across ages 10.0, 10.5, 11.0, 11.5, providing for 

missing questionnaires). This allows for individuals to have missed questionnaires, but still 

have observed averages.

Several different averaging periods were considered for the questionnaire dietary data 

variables, but four different averaging periods are presented here for demonstration:
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• “9–17”: averaged questionnaire data collected at ages 9.0–17.0,

• “9”: averaged questionnaire data collected at ages 9.0, and 9.5,

• “13”: averaged questionnaire data collected at ages 12.5, 13.0, and 13.5, and

• “17”: averaged questionnaire data collected at ages 16.5 and 17.0, and 17.5.

The questionnaires starting at age 9.0 changed wording, so the questionnaire at 8.5 was not 

used in the “9” measurement. Using these different averages, three different questionnaire 

representation methods were considered in predicting DFS cluster group:

• Method 1: “9–17” capturing average dietary intakes,

• Method 2: “9” intake and the difference from “9” to “13” capturing changes in 

dietary intakes, and

• Method 3: “9”, “13”, and “17” as three separate periods capturing dietary intakes 

close to the dental examination ages.

Method one neglects all information pertaining to fluctuations across the 8-year time period 

and attempts to summarize the dietary intake variables for each individual through their own 

average measurements across the adolescent period. The second method uses dietary 

beverage intakes near the dental examination at age 9, along with the changes in dietary 

intakes between the average intake around age 9 and the average intake around age 13. 

Incorporation of either changes in dietary intakes or dietary intakes measured at multiple 

times allows for the model to capture behavioral changes in beverage intakes. Method three 

uses dietary beverage intake averages near all three targeted dental examinations. The 

dietary intake changes could be important predictors of DFS cluster; these changes would be 

lost if we averaged over the entire adolescent period (i.e., Method 1). For the sampled 

participant, the calculated variable values for the three methods are presented in Table 1.

In regression models, the degrees of freedom associated with the model fit can be interpreted 

as a measure of the information needed for the estimation of the model parameters (3). 

Every covariate parameter we estimate corresponds to one degree of freedom. The greater 

the model degrees of freedom, the less precise our parameter estimates and predicted 

outcomes; this concept is often referred to as the “estimation cost.” However, each additional 

covariate included in the model potentially reduces inferential bias (e.g., estimators of the 

mean response, predictors of new outcomes). Since increased model complexity inflates 

variability while potentially reducing bias, an optimal statistical model must provide an 

adequate balance between fidelity to the data (a requirement for low bias) and parsimony 

(needed to control variability). Such a model can be identified by using a penalized measure 

of model fit.

For this analysis, we need to determine if the extra information provided through explicit 

representation of the dietary variables at several different and separate ages is worth the 

additional parameter estimation cost. For this assessment, we will use the Akaike 

Information Criterion to help identify the optimal penalized model fit corresponding to 

different explanatory variable representations.
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Akaike information criterion

The AIC is a statistical technique introduced by Hirotugu Akaike (17), who reformulated the 

problem of selecting an optimal model among a candidate collection as a decision problem 

as opposed to a hypothesis testing problem. AIC and other non-significance-based model 

selection criteria have been gaining popularity in statistical modeling over hypothesis testing 

and traditional automated model selection techniques such as backward elimination (18). 

Extensive theoretical results about the derivation and performance of AIC have been 

published, so only a brief introduction is provided here (19–21).

AIC is a well-known tool for variable selection in multivariable modeling, yet it is also a 

useful tool to help identify the optimal representation of explanatory variables collected. 

AIC provides a measure of penalized fit, incorporating both the empirical likelihood and the 

number of parameters in the model. The empirical likelihood (L) is a measure that reflects 

how effectively the model predicts the data used in its own construction. In other words, the 

better the fit, the larger the likelihood. The formula for the calculation of AIC is

where L is the empirical likelihood, loge is the natural log function, and p is the number of 

parameters in the model. In the formula, larger likelihoods (better fit) produce larger values 

of loge (L) resulting in smaller values of −2loge (L). More parameters (larger p) in the model 

produce a larger penalty. The first term, the goodness-of-fit term, will decrease in 

accordance with improvements in model fit, while the second term, the penalty term, will 

increase with additional model complexity. Lower AIC values are preferable; such models 

ideally provide an optimal compromise between adherence to the data and simplicity. AIC, 

therefore, helps determine which variables are necessary for prediction without overfitting 

the model. AIC may be perceived as a measure that gauges the separation between the fitted 

candidate model and the model that presumably generated the data; thus, models 

corresponding to lower values of AIC are perceived as being closer to the “truth” (21).

It is generally recommended that a decrease of 2 or more AIC units between two competing 

models indicates a meaningfully improved penalized fit (19). Models within 2 AIC units of 

each other are deemed to have similar penalized fit, with one model no worse than the 

others. Adapted from Burnham and Anderson (19), the AIC difference between model i and 

the lowest observed AIC model can be interpreted as follows:

• ΔAIC between 0 and 2: Essentially no advantage of lowest AIC model compared 

to model i

• ΔDAIC between 4 and 7: Advantage of lowest AIC model compared to model i

• ΔDAIC between >10: Substantial advantage of lowest AIC model compared to 

model i

To maintain comparable AIC values, the likelihood should be calculated from identical 

datasets for the different models. In other words, the user must have a complete dataset for 

every representation considered before performing analyses. Prior to modeling, we created a 
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subset of the original data keeping only participants who had averaging of dietary variable 

measurements for the three time points, for the increment from 9 to 13, and for the averaging 

over questionnaires from ages 9 to 17.

Modeling

We fit a full multinomial logistic regression model with a generalized logit link predicting 

caries cluster group with the four dietary variables (water and other sugar-free beverages, 

milk, SSB, and 100 percent juice), constrained to the same representation format, using 

PROC LOGISTIC in SAS Version 9.4. Multinomial models using a generalized logit require 

(k–1) equations, where k is the number of outcome levels. One group is used as reference 

and each outcome comparison to the reference will have its own equation and set of 

parameters. For this example, DFS Cluster 1 is the reference group, while DFS Cluster 2 and 

DFS Cluster 3 will have their own equations and parameter estimates comparing these two 

groups to DFS Cluster 1 (see Appendix). We will use AIC to identify which method best 

predicts cluster membership, by appropriately balancing goodness-of-fit and parsimony. 

Method 1 provides a proxy for the cumulative intake over the adolescent period by averaging 

the questionnaires. Method 2 incorporates each dietary variable by capturing dietary intake 

at the age 9 dental examination, as well as the change in dietary intake from ages 9 to 13, 

through two separate measurements. This doubles the number of dietary parameters we are 

estimating compared to Method 1. In Method 3, we incorporate the dietary intake during 

three separate time periods to capture the different fluctuations over the adolescent years. 

This method has triple the number of estimated dietary parameters compared to Method 1.

Results

Participant demographic and cluster dietary summary statistics

Demographic information for these 344 participants is presented in Table 2. Demographic 

variables are allowed to be missing, since only dietary variables are assessed in the current 

analysis. Summary statistics of the four dietary variable intakes for the three clusters are 

shown separately for the three representation methods in Table 3. Considering the 100 

percent juice variable, for Method 1, we observed a decrease in average total ounces per day 

of juice intake from the low DFS cluster (Cluster 1, average intake: 2.72 oz) to the medium 

DFS cluster (Cluster 2, average intake: 2.17 oz) and the high DFS cluster (Cluster 3, average 

intake: 1.72 oz). With Method 2, we observed a similar decrease in average total ounces per 

day of juice intake around the age 9 dental examinations. The medium DFS cluster (Cluster 

2) had a larger negative net increment in average juice intake from ages 9 to 13 compared to 

the low DFS cluster (Cluster 1) (average decrease for Cluster 1: −0.13 oz; average decrease 

for Cluster 2: −0.36 oz). In the high DFS cluster (Cluster 3), we note an increased average 

juice intake from ages 9 to 13 (average increase Cluster 3: 0.18 oz). When modeling cluster 

membership, this decrease in juice intake could be an important factor in separating 

individuals from the low DFS cluster (Cluster 1) and the medium DFS cluster (Cluster 2). 

Averaging over the age 9–17 period would not capture these deviations in intake. In Method 

3, we see the similar decreases in intake across the clusters over the three different age 

ranges.
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Modeling results

Summary statistics about the model fit for the three different models are reported in Table 4. 

We notice the fit to the data improved (−2loge (L). decreased) with the additional parameters 

in the more explicit representation methods. This was expected because the additional 

information allowed for more precise estimates of cluster membership for the sample at 

hand. In terms of AIC, this better fit was not worth the estimation cost of the additional 

parameters. Averaging dietary questionnaire data over the entire adolescent period from ages 

9 to 17 provided a better penalized fit in describing DFS cluster membership compared to 

the use of multiple, separate dietary intake variables at the different ages. Both modeling 

approaches with more period-specific variables yielded AIC values at least 2 units higher 

than Method 1 (~ 6 units higher for Method 2 and ~ 17 units higher for Method 3).

The parameter estimates, confidence intervals, and P-values for the model containing the 

four beverage variables using the chosen representation method are presented in Table 5. An 

increase in 100 percent juice, water and other sugar-free beverages, and milk intake was 

associated with higher odds of being in the low DFS cluster (Cluster 1) compared to the 

other two clusters; while a decrease in sugar-sweetened beverages was associated with 

higher odds of being in the low DFS cluster (Cluster 1). Only the 100 percent juice intake 

association was statistically significant at the 0.05 level (P < 0.004); the association for 

water and other sugar-free beverages was nearly significant (P = 0.067). It is known that 

other factors besides beverage intake (e.g., brushing frequency, gender) are confounders of 

caries trajectories, so these results should not be taken as definitive conclusions. Using the 

established representation method, we can incorporate the confounders in an appropriate 

statistical model to identify overall factors associated with caries trajectories.

Discussion

Statistics methods for modeling are evolving; P-values in modeling applications are 

commonly misused and misinterpreted, as noted by the recent report of the American 

Statistical Association (5). With this in mind, alternative approaches for model formulation 

and selection need to be considered and discussed in all fields, including dental research. 

One of these alternative, underutilized methods is AIC. The proper incorporation of tools 

such as AIC in the modeling of observational data could improve adherence to the STROBE 

guidelines, and render inferential conclusions that are more defensible and reproducible.

Even though we demonstrated variable representation through longitudinal data, AIC can be 

used with any type of data to help identify the optimal representation (e.g., determining 

whether we should leave age as continuous or categorize it in a cross-sectional study). In 

addition, hypothesis-testing based comparisons usually require nested models; AIC can be 

used to compare non-nested models (19). Finally, AIC can be employed to consider models 

based on all possible subsets of explanatory variables, unlike certain other model selection 

techniques that only consider a few potential models among the entire candidate collection 

(e.g., backward elimination, forward selection).

For this analysis, questionnaire data were self-reported, which can result in potential recall 

bias. In addition, only full models containing all four dietary variable types were compared 
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among the three methods instead of allowing a subset of variables in each model. In 

modeling, we required all four dietary variable types to have the same representation within 

a model (e.g., water could not be averaged over questionnaire years 9.0–17.0, while milk 

used all three time points). In dental longitudinal studies, analyses of other datasets without 

relative stability of dietary intake patterns could produce different results.

In this paper, AIC was used to identify whether averaging the dietary questionnaires over 

ages 9–17 provided the optimal representation for penalized fit compared to the two other 

methods considered. This technique helped provide statistical justification for variable 

representation. AIC could subsequently be used to help identify a subset of the predictors for 

the final model from a full set of potential variables using this chosen representation method 

for the dietary variables.

AIC is only one of many criteria that can be used for the selection of a model or for the 

determination of variable representations. There are several other measures that work well in 

various situations, including variants of AIC based on different complexity penalizations. 

Hurvich and Tsai (22) refined AIC by developing a “corrected” AIC, AICc, which improves 

the performance of the criterion in applications involving small sample sizes. AICc revises 

the penalty of AIC by incorporating a factor based on the relationship between the sample 

size and the number of parameters. When the number of parameters is large in comparison 

to the sample size, the revised penalty term is larger. It should be noted that AICc has only 

been justified for certain modeling frameworks, and that the refined penalty term is only 

exact in the setting of Gaussian linear models.

The Bayesian Information Criterion (BIC) (also called the Schwarz Bayesian Criterion) was 

introduced by Schwarz (23) in 1978. In large-sample settings, BIC is designed to select the 

model with the highest Bayesian posterior probability. This criterion is similar to AIC except 

it incorporates the sample size into the penalty term (AIC penalty term is p * 2 BIC penalty 

term is p * loge (n)). With the larger penalty term compared to AIC, BIC is traditionally 

stricter when incorporating variables into a “favored” model. In large-sample settings, AIC 

is often advocated for predictive modeling whereas BIC is more appropriate for descriptive 

modeling. AIC may be more defensible for traditional frequentist analyses since its 

development is closely tied to likelihood-based inferential modeling techniques. In our 

particular application, we have considered both AIC and BIC and they have produced the 

same results, in terms of favoring Method 1 over Method 2, and Method 2 over Method 3. 

This should not be surprising, since BIC emphasizes parsimony to a greater degree than 

AIC. Further descriptions of AIC, BIC, and AIC variants, as well as other model selection 

criteria, can be found in model selection papers and textbooks (18).

The use of model selection criteria avoids the potential problems of hypothesis testing and 

the reliance on P-values for the determination of variable inclusion and variable 

representation. In hypothesis testing, we consider nested models, and assume that the larger 

model is the “true” model. We then test whether a variable or collection of variables may be 

omitted. In practice, the “true” model is never known; thus hypothesis testing is not usually 

appropriate in modeling applications. While hypothesis testing as well as automated 

techniques can provide a flawed yet tractable method for variable selection (24,25), these 
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techniques are not designed to address the problem of variable representation. This problem 

is ideally tailored to the use of model selection criteria, since it intrinsically involves an 

evaluation of the competing objectives of goodness-of-fit and parsimony.

As discussed in this paper, utilizing model selection methods such as AIC that do not 

prioritize significance levels, will be important to incorporate into the evolving dental 

research field. Ultimately, the variable representation problem can be viewed as a special 

case of the more pervasive bias-variability tradeoff problem, which is endemic to statistical 

modeling. AIC and related criterion-based selection methods are better designed to address 

this problem than P-values and traditional tests of significance.
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Appendix: Equations of three considered models

Equations:

Method 1: averaged all the questionnaire data from 9 to 17 representing it as one 

predictor for each dietary variable:

Method 2: used age ~9 dietary intake measurement and age 9–13 dietary intake 

increment as two separate predictors for each dietary variable:
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Method 3: used age ~9 dietary intake measurement, age ~13 dietary intake 

measurement, and age ~17 dietary intake measurement as three separate predictors 

for each dietary variable:

Table A1

STROBE Statement – Checklist of Items that Should Be Included in Reports of 

Observational Studies

Item No Recommendation

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or the 
abstract
The data used for the demonstration of the methodology is from a cohort 
study. The Iowa Fluoride Study (IFS) recruited a birth cohort at eight Iowa 
hospitals. The IFS followed this cohort, collecting regular dietary and 
beverage intakes as well as completing dental examinations at about ages 5, 9, 
13, and 17
(b) Provide in the abstract an informative and balanced summary of what was 
done and what was found
This has been completed.

Introduction

Background/rationale 2 Explain the scientific background and rationale for the investigation being 
reported
We explain that statistical modeling is evolving and that modeling approaches 
beyond P-values need to be understood and adopted (pages 4–5).

Objectives 3 State specific objectives, including any prespecified hypotheses
The objective is to demonstrate the use of a statistical method in the context 
of a dental study. There are no prespecified hypotheses.

Methods

Study design 4 Present key elements of study design early in the paper
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Item No Recommendation

NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study.

Setting 5 Describe the setting, locations, and relevant dates, including periods of 
recruitment, exposure, follow-up, and data collection
NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study.

Participants 6 (a) Cohort study – Give the eligibility criteria, and the sources and methods of 
selection of participants.
Describe methods of follow-up
Case-control study – Give the eligibility criteria, and the sources and methods 
of case ascertainment and control selection. Give the rationale for the choice 
of cases and controls
Cross-sectional study – Give the eligibility criteria, and the sources and 
methods of selection of participants
NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study.
(b) Cohort study – For matched studies, give matching criteria and number of 
exposed and unexposed
Case-control study – For matched studies, give matching criteria and the 
number of controls per case
NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study.

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and 
effect modifiers. Give diagnostic criteria, if applicable
The outcome is described in the “Outcome Variable” section under 
“Methods.” The candidate predictors are described in the “Candidate 
Predictor Variables” section under “Methods.”

Data sources/measurement 8* For each variable of interest, give sources of data and details of methods of 
assessment (measurement).
Describe comparability of assessment methods if there is more than one group
The source and details of methods assessment for the outcome data (dental 
examinations) are described in the “Outcome Variable” section under 
“Methods.” The source and details of methods assessment for the predictor 
variables are described in the “Candidate Predictor Variables” section under 
“Methods.”

Bias 9 Describe any efforts to address potential sources of bias
NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study

Study size 10 Explain how the study size was arrived at
NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study.

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, 
describe which groupings were chosen and why
Three different representation methods are considered for the longitudinal 
dietary variables of interest. Since this paper serves as a demonstration of a 
methodology, we felt three representation methods were sufficient for 
illustrative purposes.

Statistical methods 12 (a) Describe all statistical methods, including those used to control for 
confounding
We did not control for confounding in this analysis. The purpose was to 
introduce a methodological approach.
The statistical method is described in the “Akaike Information Criterion 
(AIC)” section under “Methods.”
(b) Describe any methods used to examine subgroups and interactions
Subgroups and interactions are not considered.
(c) Explain how missing data were addressed
We averaged over time points which will allow for missing observations. This 
is described in the “Candidate Predictor Variables” section under Methods. 
Missing averages were removed prior to the analyses in order to use the 
presented methodology.
(d) Cohort study – If applicable, explain how loss to follow-up was addressed
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Item No Recommendation

Case-control study – If applicable, explain how matching of cases and 
controls was addressed
Cross-sectional study – If applicable, describe analytical methods taking 
account of sampling strategy
NA
(e) Describe any sensitivity analyses
NA – In a different manuscript where we use this methodology, such an 
analysis is presented.

Results

Participants 13* (a) Report numbers of individuals at each stage of study – for example, 
numbers potentially eligible, examined for eligibility, confirmed eligible, 
included in the study, completing follow-up, and analyzed
This is described in the “Iowa Fluoride Study Background” section under 
“Methods.” There were 396 participants with data, but only 344 participants 
were used in the final analysis due to missingness.
(b) Give reasons for nonparticipation at each stage
NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study.
(c) Consider use of a flow diagram
NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study.

Descriptive data 14* (a) Give characteristics of study participants (e.g., demographic, clinical, 
social) and information on exposures and potential confounders
NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study.
(b) Indicate number of participants with missing data for each variable of 
interest
This is described in the “Iowa Fluoride Study Background” section under 
“Methods.”
(c) Cohort study – Summarise follow-up time (e.g., average and total amount)
NA – This project does not focus on the Iowa Flouride Study, but rather it 
describes a methodology that can be used in the modeling of the data from the 
study.

Outcome data 15* Cohort study – Report numbers of outcome events or summary measures over 
time
This is described in the “Outcome Variable” section under “Methods.” There 
were 344 participants who were categorized into three different caries 
trajectories groups.
Case-control study – Report numbers in each exposure category, or summary 
measures of exposure
Cross-sectional study – Report numbers of outcome events or summary 
measures

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted 
estimates and their precision (e.g., 95% confidence interval). Make clear 
which confounders were adjusted for and why they were included
NA – The presented methodology does not focus on the unadjusted estimates, 
but rather focuses on variable selection through penalized fit.
(b) Report category boundaries when continuous variables were categorized
NA – Continuous predictor variables were not categorized.
(c) If relevant, consider translating estimates of relative risk into absolute risk 
for a meaningful time period
NA

Other analyses 17 Report other analyses done – for example, analyses of subgroups and 
interactions, and sensitivity analyses
The modeling methodology is employed in another manuscript that focuses 
on analyses, results, and conclusions as opposed to the presentation of a 
methodological approach. Sensitivity and other analyses are not applicable 
here.

Discussion

Key results 18 Summarise key results with reference to study objectives
This is described in the “Discussion” section.

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias 
or imprecision. Discuss both direction and magnitude of any potential bias
Limitations are discussed in a paragraph in the “Discussion” section.
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Item No Recommendation

Interpretation 20 Give a cautious overall interpretation of results considering objectives, 
limitations, multiplicity of analyses, results from similar studies, and other 
relevant evidence
This is described in the “Discussion” section.

Generalisability 21 Discuss the generalizability (external validity) of the study results
This is covered in the both the “Introduction” and “Discussion” sections. The 
methodology presented here can be applied to many statistical modeling 
frameworks.

Other information

Funding 22 Give the source of funding and the role of the funders for the present study 
and, if applicable, for the original study on which the present article is based
This information is included in a “Funding” passage at the end of the 
manuscript.

*
Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed 

groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and 
published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely 
available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://
www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at 
www.strobe-statement.org.
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Figure 1. 
DFS clusters created from age 13 DFS count and 13–17 DFS incidence of the Iowa Fluoride 

Study cohort. The age 9 DFS counts were not used in the creation of the clusters (n = 396).

VanBuren et al. Page 16

J Public Health Dent. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

VanBuren et al. Page 17

Table 1

Example of One Iowa Fluoride Study Subject’s (ID 36) Dietary Responses from Ages 9.0 to 17.0 for the Four 

Dietary Categories–Ounces per Day

Questionnaire at child’s age Water and other sugar-free beverages Milk Sugar-sweetened beverages 100% juice

9.0 5.1 6.9 11.1 0.0

9.5 6.0 6.9 17.1 0.0

10.0 5.0 12.0 14.3 7.1

10.5 8.0 9.1 12.0 0.0

11.0 40.0 16.0 15.4 0.0

11.5 10.0 12.0 26.1 0.0

12.0 20.0 18.3 9.7 0.0

12.5 12.0 16.0 15.7 0.0

13.0 71.4 24.0 26.7 0.0

13.5 10.0 20.6 10.3 0.0

14.0 30.0 24.0 29.7 0.0

14.5 11.1 24.0 15.1 0.0

15.0 45.7 24.0 3.4 0.0

15.5* – – – –

16.0 16.0 22.9 3.4 0.0

16.5* – – – –

17.0 32.0 32.0 0.0 0.0

Calculated values

Method 1

“9–17”† 21.5 17.9 14.0 0.5

Method 2

“9”‡ 5.6 6.9 14.1 0.0

“9”‡ to “13”¶ 25.6 13.3 3.5 0.0

Method 3

“9”‡ 5.6 6.9 14.1 0.0

“13”¶ 31.1 20.2 17.6 0.0

“17”§ 32.0 32.0 0.0 0.0

*
The questionnaires were not returned at ages 15.5 and 16.5.

†
The questionnaires were averaged between ages 9.0 and 17.0, inclusive.

‡
The questionnaires were averaged at ages 9.0 and 9.5.

¶
The questionnaires were averaged at ages 12.5, 13.0, and 13.5.

§
The questionnaires were averaged at ages 16.5, 17.0, and 17.5.
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Table 2

Demographic Information from 344 Participants of the Iowa Fluoride Study with Complete Outcome and 

Dietary Data

Variable Category N (%)

Sex Females 178 (51.7)

Males 166 (48.3)

Race Caucasian 331 (96.2)

Other 13 (3.8)

Mother’s education <4-Year Degree 171 (50.6)

4-Year Degree or More 165 (48.8)

No Female Head of Household 2 (0.6)

Family income <$60,000 105 (30.5)

$60,000 or More 225 (65.4)

Refused to Answer 14 (4.1)
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Table 5

Parameter Estimates from Chosen Representation Method in Iowa Fluoride Study Predicting Caries Clusters 

(n = 344)

Variable* Cluster Odds ratio 95% CI P-value

100x% juice 1 1.00 – 0.004

2 0.90 0.80, 1.01

3 0.78 0.68, 0.91

Milk 1 1.00 – 0.267

2 0.97 0.94, 1.01

3 0.98 0.95, 1.02

Sugar-sweetened beverages 1 1.00 – 0.355

2 1.02 0.98, 1.06

3 1.03 0.99, 1.07

Water and other sugar-free beverages 1 1.00 – 0.067

2 0.98 0.95, 1.01

3 0.97 0.94, 1.00

*
Beverage intake variables (total oz/day) were averaged from questionnaires between 9.0 and 17.0 years of age.
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