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Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus
(SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN
consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external
environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in
extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt
brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical
studies that provide evidence both for and against a causal role for the SCN in mood disorders.

1. Introduction

Circadian rhythm disruptions are a major hallmark of mood
disorders. Dampened and phase-shifted temperature, activ-
ity, and hormonal rhythms are frequently reported in major
depressive disorder (MDD) and bipolar disorder (as
reviewed in [1–4]). Studies link both environmental and
genetic circadian rhythm disruptions with mood disorders.
Disrupting circadian rhythms by shift work or jet lag can
worsen or cause mood symptoms [5–7]. Furthermore, sea-
sonal changes in day length can affect mood [8]. In terms
of genetic disruptions, many circadian genes have been asso-
ciated with mood disorders [9–13]. Since treatments that
directly target the circadian system are used as therapies for
mood disorders (e.g., light and dark therapies, agomelatine,
social rhythm therapy, and sleep phase advance), correcting
circadian disruptions may stabilize a mood [14–17].

Thus, one theory to explain the presence of circadian
rhythm disruptions in mood disorders is that disrupted circa-
dian rhythms in the master pacemaker, or suprachiasmatic
nucleus (SCN), cause mood disturbances. Alternatively, some
studies suggest that light directly impacts other brain regions,
independent of the SCN, to control mood [18]. A third view-
point is that sleep and circadian rhythm changes are a

symptom of mood disorders and are not causal. Here, we
discuss preclinical and clinical work that provide insight into
whether there may be a role for the SCN in mood regulation.

2. Circadian Rhythms and the Central Clock

Circadian rhythms are endogenous processes with an
approximate 24 hr cycle. At the cellular level, circadian
rhythms are generated by a molecular clock that consists of
multiple transcriptional/translational negative feedback
loops (as reviewed in [19]). The positive arm of the core
molecular clock consists of the transcription factors CLOCK
and BMAL1, which heterodimerize and regulate the expres-
sion of many clock-controlled genes. Notably, CLOCK/
BMAL1 drives the expression of Period (Per1, Per2, and
Per3) and Cryptochrome (Cry1, Cry2), which make up the
negative arm of the core molecular clock. PER and CRY
heterodimerize and enter the nucleus, where they can inhibit
their own transcription. When PER and CRY levels become
low, CLOCK/BMAL1 then reinitiate transcription of Per
and Cry. The timing of this molecular clock is regulated by
numerous kinases (e.g., casein kinase 1, CK1, and glycogen
synthase kinase-3, GSK-3), phosphatases, and ubiquitin
ligases (e.g., FBXL3) that affect the heterodimerization and
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degradation of PER and CRY (as reviewed in [20]). In addi-
tion to this core transcriptional/translational feedback loop,
there is a secondary feedback loop involving the orphan
nuclear receptors, REV-ERBα and RORα [20]. CLOCK/
BMAL1 drives the expression of Rev-erbα and Rorα, which
in turn regulate the rhythmic expression of Bmal1.

Although nearly all tissues express circadian genes, the
SCN has several properties that make it capable of driving
and synchronizing rhythms. One property is that the SCN
consists of self-sustaining oscillators. When the SCN is iso-
lated, it exhibits persistent, robust electrical and molecular
rhythms (as reviewed in [21]). At the tissue level, SCN
firing frequency is high during the day and low at night
[21]. Thus, in diurnal animals, the peak in SCN activity
occurs when the animals are active, whereas in nocturnal
animals, the peak in SCN activity occurs when the animals
are inactive. Progress has been made in identifying many
of the ion channels underlying spontaneous SCN neural
activity (as reviewed in [22]).

Another important property of the SCN is that some
SCN neurons can directly respond to external cues, or zeitge-
bers. One powerful external cue is light. The SCN receives
light information from glutamatergic projections from
intrinsically photosensitive retinal ganglion cells (ipRGCs)
[23, 24]. When animals are free-running in constant dark-
ness, light has little phase-shifting effects during the middle
of the subjective day, when SCN activity is high [25]. How-
ever, exposure to light during the subjective night phase shifts
SCN neural activity and bodily rhythms (as reviewed in [26]).
Specifically, glutamate from ipRGCs acts on NMDA and
AMPA receptors on retinorecipient SCN neurons to increase
neural activity and activate cellular signaling. Early in the
subjective night, when PER levels are decreasing, ipRGC
signaling increases Per expression, inducing a phase delay.
Late in the subjective night, when Per expression is starting
to increase, ipRGC signaling induces an increase in Per
expression, promoting a phase advance. The SCN also
responds to nonphotic cues, such as behavioral arousal (as
reviewed in [27]).

A unique property of the SCN is the SCN network, which
allows for robust, synchronized SCN neuronal rhythms (as
reviewed in [28]). The SCN is a heterogenous tissue with a
complex network. The majority of SCN neurons are
GABAergic and secrete different peptide neurotransmitters.
The peptide neurotransmitters are expressed in distinct
regions of the SCN, indicating that they have different func-
tional roles. Many of these distinct SCN neurons exhibit
electrical and molecular rhythms when isolated, but the
rhythms are weaker and unstable [29–31]. Thus, the intrin-
sic SCN network appears to be important for generating
robust, synchronized SCN oscillations. Numerous mecha-
nisms have been implicated in the coupling of SCN neurons,
including specific neuropeptides, gap junctions, astrocytes,
and GABAergic signaling (as reviewed in [28, 32]). Vasoac-
tive intestinal peptide (VIP) and arginine vasopressin (AVP)
are two of the more well-studied neuropeptides involved
in regulating SCN rhythms. Studies indicate that VIP is
necessary to maintain and synchronize rhythms in the
SCN [33, 34], whereas AVP is involved in maintaining

high amplitude output from the SCN and in modulating
SCN re-entrainment [35–37].

The SCN network is also essential for integrating afferent
signals and generating synchronized bodily rhythms. Tract
tracing studies have identified many of the SCN inputs and
outputs (as reviewed in [38]). The main SCN inputs come
from ipRGCs, the median raphe, and intergeniculate leaflet,
which relay information about photic and nonphotic cues
(Figure 1(a)). Transplant studies have revealed that the
SCN sustains circadian rhythms by both synaptic connec-
tions and hormonal mechanisms [39, 40]. In terms of direct
outputs, the SCN mainly projects to other hypothalamic
regions, such as the dorsomedial nucleus (DMH), paraventri-
cular nucleus (PVN), and the medial preoptic area (MPOA)
(as reviewed in [38]). The SCN also projects to regions
outside of the hypothalamus, such as the paraventricular
zone of the thalamus (PVT) and septum (Figure 1(b)). Some
studies suggest that SCN directly projects to the lateral
habenula, but this is still debatable [41, 42]. Furthermore,
multisynaptic pathways from the SCN have been identified
[38, 43]. Specifically, the SCN indirectly projects to the locus
coeruleus, ventral tegmental area, and dorsal raphe, suggest-
ing mechanisms through which the SCN could regulate
arousal, reward, and mood.

3. Circadian Rhythm Disturbances in
Humans with Mood Disorders

3.1. Circadian Rhythm Disturbances in Depression. Decades
of research have pointed out associations between rhythm
disturbances and depression (Table 1). Sleep disruptions
are a commonly reported circadian-related disturbance in
depression (as reviewed in [1]). It should be noted that
although sleep timing is regulated by the circadian system,
sleep is a complex biological process that is also regulated
by homeostatic mechanisms. Currently, sleep-wake disrup-
tions are included in the diagnostic criteria forMDD. Individ-
uals with typical depression frequently report early morning
awakening and disrupted sleep (as reviewed in [1]). Con-
versely, in atypical depression, individuals often have later
sleep times and sleep longer, but experience daytime fatigue.
Moreover, hypersomnia and insomnia are associated with
greater suicidality, emphasizing the importance of treating
sleep disturbances in depression [44]. More specifically, stud-
ies indicate that reduced latency to REM sleep, increased
REM time, and decreased slow-wave sleep frequently occur
in depression [45–48].

In the 1980s, it was proposed that the phase of rhythms
tightly controlled by the central clock is disturbed in depres-
sion (as reviewed in [4]). Specifically, multiple studies
pointed to a phase advance in hormonal rhythms in depres-
sion [48–50]. However, more recent studies indicate that
rhythms are delayed in depression [51–55]. Supporting the
phase delay hypothesis, as discussed later, some SSRIs speed
up rhythms [56]. Moreover, early morning bright light
therapy, which induces phase advances, can be effective in
reducing symptoms of seasonal and nonseasonal depression
[57, 58]. Furthermore, delayed sleep phase syndrome and
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westward travel (induces phase delays) can increase vulnera-
bility to depression [5, 59, 60].

Studies also show that rhythm amplitude is dampened in
depression. Reduced body temperature amplitude and
increased nocturnal body temperature are frequently found
in depression [50, 61, 62]. Studies also reported dampened
activity, cortisol, thyroid-stimulating hormone, melatonin,

and heart rate rhythms in depression [50, 63–65]. Interest-
ingly, there are some reports of rhythm amplitude increasing
as patients recover, suggesting that enhancing rhythms may
be therapeutic [50, 66].

There is also evidence to support that molecular rhythms
are disrupted in depression. A postmortem study by Li and
colleagues used a time-of-death analysis to determine
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Figure 1: Inputs and outputs of the suprachiasmatic nucleus (SCN). (a) The main inputs to the SCN come from the intrinsically
photosensitive retinal ganglion cells (ipRGCs), median raphe (MnR), and intergeniculate leaflet (IGL) (as reviewed in [38]). The
retinohypothalamic tract (RHT) originates from ipRGCs and primarily terminates in the SCN. The RHT terminals release glutamate (Glu)
and pituitary adenylate cyclase-activating polypeptide, which entrain the SCN to the light-dark cycle [379, 380]. ipRGCs also project to
the IGL [381]. The pathway from the IGL to the SCN is called the geniculohypothalamic tract (GHT). GHT terminals release GABA and
neuropeptide Y onto the SCN (as reviewed in [382]). GHT relays photic and nonphotic information to the SCN. The SCN also receives
input from midbrain raphe nuclei, directly from the MnR and indirectly from the dorsal raphe (DR) through the IGL [383]. Serotonergic
(5HT) signaling in the SCN modulates the effects of photic cues and plays a major role in the effects of nonphotic cues [130, 131]. (b) The
SCN projects to other areas of the hypothalamus, including the paraventricular nucleus (PVN), dorsomedial nucleus (DMH), and the
medial preoptic area (MPOA) (as reviewed in [38]). The SCN also directly projects to areas outside of the hypothalamus, such as the
paraventricular nucleus of the thalamus (PVT), septum (Sptm), and lateral habenula (LHb). The SCN indirectly projects to the ventral
tegmental area (VTA), locus coeruleus (LC), and DR [38, 43].
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whether there were differences in gene expression rhythms
in six mood-related brain regions (anterior cingulate, dorso-
lateral prefrontal cortex, hippocampus, amygdala, nucleus
accumbens, and cerebellum) in subjects with depression
[67]. Out of 12,000 transcripts, hundreds of rhythmic genes
were identified in control subjects. The genes with the most
robust rhythms were clock genes. Remarkably, many circa-
dian genes were not rhythmic in depressed patients. Further-
more, by comparing gene expression between controls and
depressed patients that died at similar times, it was concluded
that gene expression rhythms were likely phase shifted and
desynchronized from external time in depression. Li and
colleagues also looked at genes thought to be in-phase and
out-of-phase in controls versus depressed subjects. Phase
relationships held up in controls, but were disrupted in
depressed subjects, indicating that gene expression rhythms
were desynchronized from one another in individual brain
region in depression.

It is possible that perturbations in circadian genes
underlie some of the circadian rhythm disturbances observed
in depression. Genetic studies have implicated many circa-
dian genes in MDD. These genes include CRY1, NPAS2,
NR1D1 (REV-ERBα), and others (as reviewed in [68, 69]).
However, many of the findings need to be replicated in larger
sample sizes.

3.2. Circadian Rhythm Disturbances in Bipolar Disorder.
Bipolar disorder is characterized by reoccurring episodes of
mania with or without episodes of depression. As with
MDD, sleep disturbances frequently occur in bipolar disor-
der and are part of the diagnostic criteria for bipolar disorder.
Specifically, there is typically reduced sleep during manic
episodes, and insomnia or hypersomnia during depressive
episodes (as reviewed in [70]). There have been mixed find-
ings on how sleep architecture is affected in bipolar disorder.
The most consistent finding is reduced REM latency and
increased REM density in mania, suggesting that there is
not a “decreased need for sleep” during mania as stated
in the DSM-5, but an inability to obtain sufficient sleep
[71–73]. Sleep disturbances are also prevalent during euthy-
mia, indicating that sleep is still affected after mood has stabi-
lized [74]. Although sleep disturbances are present in between
mood episodes, sleep disturbances worsen just before relapse

and more so during mood episodes, again highlighting the
need for treatments for sleep disturbances [75, 76].

Dampened and shifted circadian rhythms may explain
some of the sleep disturbances frequently found in and
reported by patients with bipolar disorder. Actigraphy
studies have revealed less rhythmic activity and dampened
activity amplitude in bipolar disorder [77–79]. Others have
reported dampened body temperature and hormonal
rhythms in bipolar disorder [80]. In addition, one of the most
commonly reported rhythm-related findings in bipolar dis-
order is an evening chronotype [81–83]. There have been
mixed findings on whether metabolite, sleep-wake, body
temperature, and hormone rhythms are delayed or advanced
in bipolar disorder [84–87]. One explanation is that the
phase changes in rhythms may be state dependent. Some
studies suggest that rhythms are advanced during mania,
delayed during depressive episodes, and more entrained
when patients reach a euthymic state [88–90]. Particularly
interesting is the study by Moon and colleagues showing that
clock gene expression rhythms from buccal cells and cortisol
rhythms from saliva were mostly advanced during manic
episodes and delayed during depressive episodes in hospital-
ized bipolar patients relative to controls [88]. Moon and
colleagues then showed that rhythms are delayed in the
previously manic patients and advanced in the previously
depressed patients during recovery, suggesting that buccal
cell clock gene and saliva cortisol rhythms could be used as
state markers. Conversely, hypersensitivity to light-induced
suppression of melatonin has been proposed to be a trait
marker for bipolar disorder [91, 92], but other studies have
found no difference in light-induced melatonin suppression
in patients with bipolar disorder [87, 93].

As with MDD, genetic studies have implicated clock
genes in bipolar disorder (see [94]). These genes include
CLOCK, BMAL1, PER3, NR1D1, and others. There is a high
interest in identifying genetic risk factors for bipolar disorder
since the heritability is estimated to be as high as 85% [95].
However, whether disruptions in these genes are risk factors
for bipolar disorder is still controversial, as many of these
findings have not been replicated.

For a comprehensive discussion of circadian rhythm dis-
ruptions in depression and bipolar disorder, see the following
reviews [1–4, 96, 97].

Table 1: Sleep and circadian disturbances in major depressive disorder and bipolar disorder.

Psychiatric disorder Sleep and circadian disturbances

Major depressive disorder

Reduced latency to REM, increased REM time, and decreased slow-wave sleep [45–48]
Advanced hormonal rhythms [48–50]

Delayed rhythms or an evening chronotype [51–55]
Reduced body temperature amplitude and increased body temperature at night [50, 61, 62]

Dampened activity, cortisol, thyroid-stimulating hormone, melatonin, and heart rate rhythms [50, 63–65]

Bipolar disorder

Reduced sleep during mania and hypersomnia or insomnia during depression (as reviewed in [70])
Reduced latency to REM and increased REM density during mania [71–73]

Evening chronotype [81–83]
Less rhythmic and dampened rhythms [77–80]

Phase delayed or phase-advanced sleep-wake, metabolite, hormone, or body temperature rhythms [84–87]
Advanced rhythms during mania and/or delayed rhythms during depression [88–90]

Increased sensitivity to light-induced melatonin suppression [91, 92]
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3.3. The Central Clock in Mood Disorders. A few studies
suggest that SCN function is perturbed in mood disorders.
Zhou and colleagues found increased AVP-immunoreactive
cells, but decreased AVP mRNA in the SCN of subjects with
depression or bipolar disorder relative to controls [98]. Zhou
and colleagues interpreted the results as suggesting that AVP
transport and release is decreased in the SCN of subjects with
mood disorders, which results in a buildup of AVP in SCN
neurons. These findings were corroborated by a later study
from the same laboratory. In this study, the number of cells
that was AVP and/or VIP-immunoreactive was increased in
the SCN of individuals with major depression or bipolar
disorder [99]. Interestingly, Wu and colleagues also found
that the number of AVP and/or VIP-immunoreactive cells
was positively correlated with disease duration and nega-
tively correlated with the age of onset. Thus, SCN AVP and
VIP signaling may be altered in mood disorders.

Nitric oxide signaling in the SCN may also be affected in
mood disorders. Nitric oxide synthase (NOS)-immunoreac-
tive neurons were found to be reduced in the SCN of patients
with depression or bipolar disorder relative to controls [100].
Nitric oxide signaling in the SCN conveys photic informa-
tion, and thus individuals with mood disorders may exhibit
disrupted nitric oxide signaling-dependent responses to
changes in the light-dark cycle [101]. Preclinical studies have
implicated nitric oxide signaling in mood regulation [102].
Thus, altered nitric oxide signaling may affect both mood
and circadian rhythms.

Disrupted melatonin feedback onto the SCN may also
occur in mood disorders. Wu and colleagues found increased
melatonin type 1 receptor (MT1)-immunoreactive cells in the
SCN of subjects with depression or bipolar disorder [99]. In
this same study, the number of SCN MT1-immunoreactive
cells was positively correlated with the duration of disease
and negatively correlated with the age of onset [99]. One
possible explanation, provided by the authors, was that the
increase in SCN MT1-immunoreactive cells was a compen-
satory response due to potentially low levels of melatonin
in the subjects with mood disorders. However, melatonin
levels were not measured in this study. Furthermore, low
melatonin levels have not been consistently reported in
mood disorders [103].

Although there are no reports of SCN structural abnor-
malities in mood disorders, there is evidence of reduced
hypothalamic volume and dilation of the third ventricle in
mood disorders [104, 105]. Furthermore, some neuroana-
tomical differences have been found in direct targets of the
SCN. Several studies showed alterations in the size and func-
tion of the PVN in subjects with mood disorders [106–110].
Functionally, the SCN to PVN circuit is important for the
control of pituitary hormones and melatonin secretion from
the pineal gland (as reviewed in [111]). If the SCN to PVN
circuit is disrupted in mood disorders, this may explain alter-
ations in hormone rhythms. The habenula, another possible
direct output of the SCN, has been implicated in mood and
circadian regulation. Some studies show reduced habenula
volume, but other studies have found opposite or no differ-
ence in habenula volume in subjects with mood disorders
[112–115]. Notably, deep brain stimulation (DBS) of the

main lateral habenula afferent reduced depressive symptoms
in several patients [116, 117]. Based on animal studies, it is
hypothesized that DBS of the main lateral habenula afferent
reduced depressive symptoms in these small studies by
suppressing lateral habenula activity. Several animal models
exhibiting depression-like behavior show increased habenula
metabolism [118, 119]. Moreover, the antidepressant, fluox-
etine, reduced lateral habenula metabolism in rats [120].
Preclinical studies also show that lesioning the lateral
habenula can reduce depression-like behaviors [121, 122].
The lateral habenula is an intriguing putative target of the
SCN since it exhibits intrinsic neuronal and molecular oscil-
lations [123, 124]. Moreover, some lateral habenula neurons
respond to retinal illumination [123], presumably through
indirect neuronal connections, such as through the SCN,
since ipRGCs preferentially project to the parahabenula
[125]. The lateral habenula is known to modulate monoam-
inergic nuclei activity, thus the lateral habenula could act as
a relay between the SCN and brain regions more closely
involved in mood regulation (as reviewed in [126]).

4. Effects of Pharmacotherapies on the SCN

4.1. SSRIs. Serotonin reuptake inhibitors (SSRIs) have
remained a first-line treatment for MDD, but as revealed by
the Sequenced Treatment Alternatives to Relieve Depression
(STAR∗D) trial, the majority of patients do not achieve
remission after treatment with an SSRI [127]. Thus, there
is a need to better understand the mechanisms underlying
SSRI efficacy. There are numerous interactions between the
circadian and serotonergic systems, suggesting that the
effects of SSRIs on circadian rhythms could influence efficacy
(as reviewed in [128]). The SCN receives serotonergic projec-
tions from the median raphe nucleus, and in turn, the SCN
indirectly projects to midbrain raphe nuclei [43, 129].
Serotonin levels peak in the SCN during the active phase of
mammals [130, 131]. In the SCN, serotonin plays a key role
in the phase-shifting effects of nonphotic cues (e.g., behav-
ioral arousal). Specifically, serotonin receptor antagonists
reduced the phase-advancing effects of behavioral arousal
during the inactive phase of nocturnal animals, indicating
that serotonin signaling in the SCN is involved in the
phase-advancing effects of nonphotic cues [132]. Further-
more, serotonin or serotonin receptor agonists induced
phase advances in SCN neural activity in vitro and in
behavioral activity rhythms when administered in the SCN
[133–136]. Not surprisingly, SSRIs have similar effects on
circadian rhythms (Table 2). The SSRI, fluoxetine, phase
advanced SCN neural activity rhythms [56, 137]. Fluoxetine
also phase advanced locomotor activity rhythms in both
nocturnal and diurnal animals [130, 131]. Overall, these
studies suggest that SSRIs could treat a delayed component
of circadian rhythms in depression.

Few studies have examined the effects of chronic SSRI
treatment on circadian rhythms in rodents. Some studies
show no effects of chronic SSRI treatment on the phase of
entrained rhythms or the period of free-running rhythms
[138–140]. Conversely, it has been reported that chronic
fluoxetine treatment shortens the period of locomotor
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activity rhythms in mice [141, 142], which is supported by
the finding that the SSRI sertraline shortened the period of
PER1::LUCIFERASE (PER1::LUC) bioluminescent rhythms
in the mouse SCN [143]. In future studies, it will be impor-
tant to confirm whether chronic SSRI treatment affects
circadian period and other circadian measures in various
animal models.

The slow-acting effects of antidepressants on mood may
be related to a gradual restoration of circadian rhythms by
chronic antidepressant treatment. Since chronic SSRI treat-
ment decreases and desensitizes serotonin receptors, it may
affect SCN synaptic plasticity (as reviewed in [144]). Several
serotonin receptor subtypes expressed in the SCN are known
to have circadian-related effects (as reviewed in [131]). Thus,
chronic use of SSRIs may modulate circadian rhythms
through affecting the expression or availability of specific
subtypes of serotonin receptors in the SCN. Supporting this
theory, fluoxetine reduced the expression of 5HT1B receptors
in the SCN of aged Syrian hamsters [140]. Another intriguing
hypothesis is that chronic SSRI use may affect circadian
rhythms and mood through brain-derived neurotrophic
factor (BDNF)-tropomyosin-related receptor kinase (TrkB)
signaling in the SCN. There is evidence to support that
SSRI-mediated restoration of BDNF-TrkB signaling in the
brain partially underlies the antidepressant-like effects of
SSRIs in animal models of depression (as reviewed in
[145, 146]). Interestingly, TrkB receptors in the SCN are
known to regulate photic phase shifts [147–149]. Thus, it is
possible that chronic SSRI treatment facilitates the resyn-
chronization of misaligned rhythms in individuals with
depression through BDNF-TrkB signaling in the SCN.

4.2. Lithium. Lithium, a commonly prescribed mood stabi-
lizer, is known to affect multiple aspects of circadian rhythms.
One well-established effect of lithium is lengthening circadian
period. Lithium lengthens the period of rhythms in a wide
range of species, including insects, nocturnal animals, diurnal
animals, humans, and plants [150–157]. In animals, lithium
likely increases the period of behavioral and physiological
rhythms through its actions in the SCN. Lithium lengthens
the period of SCN neural activity and SCN PER2::LUC

bioluminescent rhythms [153, 156, 158–160]. Lithium also
increases the amplitude of PER2::LUC rhythms in the SCN,
suggesting that lithium enhances the amplitude of physiolog-
ical and behavioral rhythms as well [153, 156]. Thus, lithium
may correct phase-advanced and dampened rhythms in
patients with mood disorders, which could contribute to the
mood-stabilizing effects of lithium. Indeed, there is some
evidence to support this since a study by Kripke and
colleagues showed that individuals with bipolar disorder that
responded to lithium had faster rhythms than nonresponders
before treatment [157].

One well-studied target of lithium that may explain some
of its circadian-related effects is GSK-3. GSK-3 is a serine/
threonine kinase consisting of two paralogs, GSK-3α and
GSK-3β. GSK-3 is different from typical kinases in that it is
usually active and regulated by phosphorylation of inhibitory
serine residues [161]. Lithium directly and indirectly inhibits
GSK-3 (as reviewed in [162]). Pharmacological and genetic
studies in animal models indicate that the effects of lithium
on amplitude may be explained by inhibition of GSK-3,
but GSK-3 does not appear to be involved in the effects
of lithium on rhythm period. Specifically, GSK-3 inhibitors
increase the amplitude of circadian rhythms like lithium,
but shorten circadian period, unlike lithium [153, 163].
Mice that express GSK-3α and GSK-3β with serine residues
that have been mutated to block GSK-3 inhibition (GSK-3
knockin, GSK-3 KI mice) have decreased wheel-running
rhythm amplitude and, on a mixed background, have a lon-
ger free-running activity period [164]. These effects seem to
be mediated by GSK-3 in the SCN. Inhibition of GSK-3 was
shown to reduce the period and increase the amplitude of
PER2::LUC rhythms in SCN explants [165]. Moreover,
GSK-3 KI mice exhibited increased SCN firing frequency
during the night, indicating that chronically increased
GSK-3 activity reduces the day/night difference in SCN
neural activity [164].

Preclinical studies indicate that GSK-3 also regulates
mood-like behaviors. The most consistent finding is that
GSK-3 regulates mania-like hyperactivity. Amphetamine
administration, at doses that induce hyperactivity, decrease
the inhibitory serine phosphorylation on GSK-3 [166, 167].

Table 2: Effects of pharmacotherapies for mood disorders on locomotor and SCN rhythms.

Drug Effects on locomotor activity in rodents Effects on the SCN in rodents

SSRIs
Phase-advanced locomotor activity [130, 131]
Shortened locomotor activity period [141, 142]

Phase-advanced neural activity when applied with
L-tryptophan in rats [56]

Phase-advanced neural activity [137]
Shortened PER1::LUC period [143]

Lithium Lengthened locomotor activity period [153–155]
Lengthened neural activity period [158]

Lengthened PER2::LUC period [153, 156, 159, 160]
Increased amplitude of PER2::LUC rhythms [153, 156]

Valproic acid Shortened locomotor activity period [183]
Phase-shifted PER2::LUC rhythms [160]

Increased amplitude of PER2::LUC rhythms [160]
Shortened PER2::LUC period [183]

Agomelatine
Phase-advanced rhythms [227]
Accelerated re-entrainment [232]

Entrained locomotor activity rhythms [228, 233]
Decreased firing rate [230, 231]
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Inhibiting GSK-3 suppresses the effects of psychostimulants,
while increasing GSK-3 activity enhances the effects of psy-
chostimulants [168, 169]. Moreover, GSK-3 KI and GSK-3β
overexpressing mice are hyperactive [169, 170]. Conversely,
GSK-3α KOmice are hypoactive [171]. Genetic and pharma-
cological studies also suggest that GSK-3 regulates depression
and anxiety-like behaviors. GSK-3α KOmice and GSK-3β+/−

mice show reduced depression-like behavior [171, 172].
Conversely, GSK-3 KI mice exhibit increased anxiety- and
depression-like behaviors [169]. However, these results con-
flict with the conclusion that increased GSK-3 activity results
in mania-like hyperactivity. One interpretation by Polter and
colleagues is that elevated GSK-3 activity increases sensitivity
to stress and may therefore induce depression or mania-like
behavior, depending on the environment [169].

GSK-3 phosphorylates several key components of the
molecular clock (e.g., PER2, CRY1, CLOCK, BMAL1, and
REV-ERBα), which points to mechanisms by which lithium
may regulate the timing of the SCN and molecular rhythms
in mood-related brain regions [173–177]. GSK-3 phosphor-
ylates PER2, promoting its nuclear translocation and degra-
dation [174]. Thus, lithium could increase the amplitude of
PER2 rhythms through inhibition of GSK-3. It is controver-
sial whether GSK-3 is involved in the period lengthening
effects of lithium, as previously discussed. Genetic variants
in other genes (i.e., CACNA1C, RORA, and PER3) have
been implicated in the effects of lithium on rhythm ampli-
tude or period, indicating that lithium may affect circadian
rhythms through direct or indirect actions on other clock
genes [178, 179].

4.3. Valproic Acid. Valproic acid, an anticonvulsant used
as a treatment for mania, also affects the central clock.
Valproic acid increased the amplitude of PER2::LUC
rhythms in the mouse SCN [160]. Valproic acid induced
phase advances or delays in PER2::LUC rhythms in the
mouse SCN depending on the timing of drug application
[160]. Past studies reported inconsistent effects of valproic
acid on circadian period [160, 180–182]. A recent study by
Landgraf and colleagues presented convincing evidence
that valproic acid has opposing effects on circadian period
compared to lithium [183]. Valproic acid shortened the
period of mouse wheel-running activity, PER2::LUC
rhythms in mouse SCN explants, PER2::LUC rhythms in
mouse hippocampal cell culture, and PER2::LUC rhythms
of cultured human fibroblasts from patients with bipolar
disorder [183].

The ability of valproic acid to inhibit GSK-3, or inhibit
class I HDACs (which bind to CLOCK and BMAL1), could
potentially explain both the mood-stabilizing and circadian
effects of valproic acid (as reviewed in [184, 185]). Preclinical
studies support that GSK-3 inhibitors and possibly HDAC
inhibitors have mood-stabilizing effects [166, 186]. In terms
of circadian rhythms, it was shown that the HDAC inhibitor
trichostatin A induced phase shifts and an enhancement of
SCN PER2::LUC rhythms similar to valproic acid [160]. It
is known that there are rhythms in the acetylation of clock
proteins and in histone acetylation at clock gene promoters
[187, 188]. Thus, HDAC inhibition by valproic acid could

affect circadian rhythms by increasing the acetylation of the
molecular clock. On the other hand, GSK-3 inhibitors
shorten circadian period, which could also explain the
period-shortening effects of valproic acid [153, 163, 183].
Future studies aimed at uncovering the molecular mecha-
nisms of the effects of valproic acid have potential to lead to
new therapeutics for mood disorders and increase our under-
standing of the biology of circadian regulation.

4.4. Melatonin. The SCN regulates melatonin secretion from
the pineal gland through a multisynaptic pathway involving
the PVN (as reviewed in [111]). The SCN inhibits melatonin
synthesis during the day and stimulates melatonin produc-
tion at night [189]. Thus, melatonin levels are the highest at
night in both nocturnal and diurnal animals. Melatonin
exerts most of its effects via the MT1 and MT2 G protein-
coupled melatonin receptors, which are widely expressed
in the brain (including the SCN) and peripheral tissues
[190–192]. Several studies suggest that the nightly release
of melatonin is involved in regulating rhythms in other
bodily tissues [193–195].

Melatonin also feeds back onto the SCN, which is
thought to underlie the circadian-related effects of melato-
nin. In rodents and humans, melatonin induces phase
advances when given at the light-to-dark transition and, to
a lesser extent, phase delays when administered at the dark-
to-light transition [196–198]. Melatonin also phase shifts
SCN neural activity rhythms at dusk and dawn [199–201].
Moreover, melatonin suppresses SCN neural activity and
increases the amplitude of physiological rhythms, indicating
that melatonin can enhance rhythms through its actions in
the SCN [202–205]. Melatonin also entrains circadian
rhythms; an action that is also dependent upon the SCN.
Specifically, daily administration of melatonin at the light-
to-dark transition entrained free-running rhythms in rodents
[206]. Melatonin did not entrain the free-running rhythms of
SCN-lesioned rodents, indicating that the SCN is necessary
for the entraining effects of melatonin [206]. Together, these
studies suggest that melatonin may be a useful adjunct
therapy for treating circadian disruptions in mood disorders.

Dampened or phase-shifted melatonin rhythms have
been reported in mood disorders, especially depression
[207–212]. Preclinical studies indicate that melatonin has
antidepressant-like effects [213–217]. However, in humans,
there is no evidence to support that melatonin is an effective
treatment for depression [218].

Agomelatine, a synthetic melatonin analog, also produces
antidepressant-like effects in preclinical studies [219, 220].
Studies suggest that the synergistic actions of agomelatine
at both MT1/MT2 and 5HT2C receptors underlie the
antidepressant-like effects of agomelatine in animal models
(as reviewed in [221, 222]). Agomelatine was approved in
2009 as a treatment for MDD in the European Union, but
it is controversial whether agomelatine is more efficacious
than other antidepressants [223]. Several studies showed that
agomelatine improved sleep in individuals with depression,
suggesting that agomelatine may be particularly useful for
sleep disturbances in depression [224–226]. However, it is
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unclear whether the sleep/circadian effects of agomelatine
contribute to its efficacy as an antidepressant.

Since agomelatine is a MT1/MT2 receptor agonist, it is
not surprising that agomelatine similarly affects circadian
rhythms. Agomelatine also induces phase shifts, decreases
SCN neural firing, entrains rhythms, and accelerates re-
entrainment [204, 227–233]. Similarly, the SCN is thought
to be the site of action for the circadian-related effects of
agomelatine [234]. Although differing from melatonin,
agomelatine acts as a 5HT2C receptor antagonist. 5HT2C
receptors are expressed in the SCN, and studies indicate
that 5HT2C receptors play a role in some of the circadian-
related effects of agomelatine [235]. Specifically, the
5HT2C receptor agonist, Ro60-0175, was shown to reduce
the ability of agomelatine to suppress SCN neural firing,
indicating that inhibition of 5HT2C receptors by agomela-
tine contributes to its effects on dampening SCN neural
activity [231].

5. Effects of SCN Manipulations on Mood-Like
Behaviors in Rodents

Early studies investigated whether the SCN regulates mood
by assessing mood-like behaviors in SCN-lesioned rats.
Two groups found that lesioning the SCN resulted in less
immobility in the forced swim test [236, 237]. One inter-
pretation is that disrupting SCN function has antidepres-
sant effects. However, since the behavioral tests in these
studies were likely carried out during the light phase, when
immobility time in the forced swim test may be higher,
lesioning the SCN could have ameliorated the circadian
variation in mood-like behaviors [238]. A third study inves-
tigated whether lesioning the SCN affected anxiety-like
behaviors of rats that had or had not experienced social
defeat [239]. Tuma and colleagues found that lesioning the
SCN had no effect on anxiety-like behaviors of defeated or
nondefeated controls when in the presence of an enclosed
aggressive rat, suggesting that the SCN does not regulate
anxiety-like behavior [239]. Overall, it is difficult to draw
conclusions about the role of the SCN in mood regulation
from these studies since they lack information about the
behavior of the animals across the day and since pathways
traversing the SCN were destroyed.

To determine the role of the SCN in mood regulation
in a neuroanatomically intact system, Landgraf and col-
leagues disrupted the SCN molecular clock by virally
knocking down Bmal1 expression in the SCN [240]. They
achieved a 60% knockdown of SCN BMAL1, which
resulted in a dampening and lengthening of SCN PER2::LUC
rhythms. SCN BMAL1 knockdown also lengthened wheel-
running rhythms. Most notably, disruption of SCN molec-
ular rhythms increased depression-like behavior in the
learned helplessness and tail suspension tests. Addi-
tionally, SCN BMAL1 knockdown increased anxiety-like
behavior in the light/dark box. Together, these findings
suggest that reduced amplitude and increased period of
SCN molecular rhythms can cause increased depression
and anxiety-like behavior.

6. Light Cycle Manipulations and the SCN

6.1. Seasonal Affective Disorder (SAD). Seasonal changes in
day length (photoperiod) affect mood. SAD is commonly
characterized as reoccurring fall/winter depression with
spontaneous remissions occurring in the spring/summer
[8]. It has been proposed that winter depression in SAD is
caused by an expansion and/or delay in the offset of melato-
nin secretion, driven by photoperiodic changes in SCN
activity (as reviewed in [241, 242]). From rodent work, it is
known that during short winter-like days the peak of SCN
neuronal activity is compressed, whereas during long
summer-like days the peak of SCN neuronal activity is
expanded [243]. Since the SCN inhibits melatonin synthesis
during the day and promotes melatonin synthesis at night,
compressed SCN activity during the winter results in a
lengthening of melatonin release (as reviewed in [189]).
Alternatively, due to a later dawn in the winter, melatonin
and other rhythms that are tightly controlled by the SCN
may be delayed in SAD [244]. In humans, there have been
some reports of delayed melatonin offset or increased sea-
sonal changes in melatonin in individuals with SAD, but
these changes in melatonin are not consistently observed
(as reviewed in [245, 246]).

A study in rats has suggested that photoperiodic-induced
neurotransmitter switching may explain the effects of photo-
period onmood-like behaviors [247]. Exposing nocturnal rats
to a short photoperiod reduced anxiety- and depression-like
behaviors and produced a switch from somatostatin to dopa-
minergic neurons in hypothalamic brain regions that receive
input from the SCN. A long photoperiod had the opposite
effect, increasing anxiety- and depression-like behaviors and
producing a switch from dopaminergic to somatostatin
neurons in the hypothalamus. Dulcis and colleagues then
examined the effects of ablating dopaminergic neurons in
these hypothalamic regions in combination with housing
the rats in different photoperiods. Ablating hypothalamic
dopaminergic neurons increased depression- and anxiety-
like behaviors, resembling the effects of a long photoperiod.
The mood-related effects of ablating the hypothalamic dopa-
minergic neurons were reduced by exposing the rats to a short
photoperiod and enhanced by exposing the rats to a long
photoperiod, indicating that hypothalamic neurotransmitter
switching may underlie the effects of photoperiod on mood.
Photoperiod-induced neurotransmitter switching may also
occur in humans. A postmortem study of brains obtained
from individuals from a high altitude (Scotland) showed that
there was an increased number of dopaminergic neurons in
the midbrain during long photoperiod months [248].
Although different brain regions, this was opposite to what
was observed in rats. The opposing effects are likely due to
differences in the circadian system between nocturnal and
diurnal species.

Since there are fundamental differences in the circadian
system of nocturnal versus diurnal animals, researchers have
been moving towards using diurnal rodents for studying
SAD (as reviewed in [249]). For example, melatonin has
opposite effects on body temperature [250, 251] and sleep
[251, 252] in nocturnal versus diurnal animals. Thus, it is
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not too surprising that in nocturnal rodents melatonin
reduces [213, 214, 253], but in diurnal rodents melatonin
increases or has no effect on anxiety- and depression-like
behaviors [253, 254]. Moreover, if melatonin plays a role in
the mood-related effects of photoperiods, many nocturnal
mouse species would not be ideal model organisms since
most strains have lost the ability to synthesize melatonin
due to acquired mutations in enzymes involved in melatonin
synthesis [255, 256]. It is also known that photoperiod can
have opposite effects in diurnal versus nocturnal rodents.
Short photoperiods compress the length of the active phase
in diurnal animals, but expand the length of the active phase
in nocturnal animals [257]. Regarding the effects of photope-
riod on mood-like behaviors, long and short photoperiods
appear to have inconsistent effects in nocturnal animals
[247, 258, 259]. Conversely, increasing studies show that
short photoperiods, or winter-like light schedules, increase
anxiety- and depression-like behaviors in diurnal rodents
(as reviewed in [260, 261]). A study by Leach and colleagues
suggests that diurnal animals are more vulnerable to the
mood-like effects of short photoperiods since diurnal animals
are less able to adapt SCN clock gene expression and locomo-
tor rhythms to short photoperiods relative to long photope-
riods [262]. Finally, diurnal rodent models of SAD appear
to respond to current treatments for depression [263, 264].
Thus, studies argue that diurnal SAD rodent models have
construct, face, and predictive validities.

6.2. Constant Light and Constant Dark. Constant lighting
conditions affect mood-like behaviors in rodents, but the role
of the SCN in the effects of constant lighting on mood is
unclear. Constant light and especially dim light at night
models are translationally relevant to understand how expo-
sure to artificial light at night may impact human mental
health. Constant light and dim light at night increase
depression-like behavior and have mixed effects on anxiety-
like behavior in rodents [265, 266]. Constant bright light
has greater disruptive effects on circadian rhythms relative
to dim light at light. Constant light desynchronizes the
molecular rhythms of neurons in the SCN [267]. As a result,
constant light flattens hormonal and body temperature
rhythms (as reviewed in [268]). Moreover, constant light per-
turbs locomotor rhythms, typically increasing period length,
inducing rhythm splitting, and arrhythmia. Some studies
show that dim light at night has subtle effects on homecage
circadian activity rhythms and dampens SCN molecular
rhythms [268, 269]. Like constant light and dim light at
night, constant dark also increases depression-like behavior
[270–272]. Under constant darkness, rodents still exhibit
robust circadian rhythms, but do appear to show a decreased
amplitude of sleep-wake rhythms [273]. The common link
between these studies is that they implicate SCN amplitude
in mood regulation. There is also evidence to support that
constant lighting may disrupt mood by inducing monoamin-
ergic neuron apoptosis, but it is unclear if these effects are
related to SCN amplitude [271, 274].

6.3. Jet Lag. Jet lag can provoke or exacerbate mood distur-
bances in humans [5]. Shifting the light-dark cycle in rodents

also affects mood-like behaviors. Five weeks of repeated
phase advances, or advances and delays, increased anxiety-
like behavior in mice [275]. In another study, five weeks of
repeated delays reduced anxiety-like behavior in rats,
suggesting that delays and advances have opposing effects
on mood-like behaviors [276]. Interestingly, human studies
do indicate that eastward jet lag and westward jet lag have
opposing effects on mood. In individuals with mood disor-
ders, eastward jet lag is more likely to precipitate manic
episodes, whereas westward jet lag is more likely to induce
depressive episodes [5, 277]. The detrimental effects of
repeated phase shifts may be due to a chronic internal desyn-
chronization of circadian rhythms. Studies indicate that the
resynchronization of extra-SCN oscillators takes longer than
the SCN [278, 279]. Thus, experiencing frequent changes in
the light-dark schedule may not allow extra-SCN regions to
catch up.

Siberian hamsters are used as a unique model for study-
ing the effects of persistent desynchronization after a phase
shift. Siberian hamsters are unique in that they do not readily
entrain to a 5 h phase delay. When Siberian hamsters are
exposed to a phase-advancing light pulse followed by a phase
delay in the photocycle on the subsequent day, they become
arrhythmic [280]. Arrhythmic, socially isolated, aged ham-
sters had increased depression-like behavior, but decreased
anxiety-like behavior [281]. In another study, arrhythmic
Siberian hamsters showed impaired novel object recognition
and spatial memory [282]. Circadian gene expression
rhythms were arrhythmic in the SCN of behaviorally
arrhythmic hamsters, and lesioning the SCN rescued the
spatial and recognition memory of the hamsters, suggesting
that a dysfunctional SCN caused the cognitive and behavioral
disturbances in the arrhythmic hamsters [282, 283]. How-
ever, it is unknown whether lesioning the SCN normalizes
their depression- and anxiety-like behaviors, which would
indicate that an arrhythmic, intact SCN causes mood-like
disturbances. Since mood-like behaviors of young hamsters
were not affected and circadian rhythms become less robust
with age, this suggests that circadian disturbances have
greater effects on mood in older individuals or vulnerable
populations [281, 284].

6.4. T Cycles (Non-24 h Cycles). T cycle studies have yielded
mixed conclusions on whether circadian rhythm disruptions
may explain the effects of light on mood. In a study by
Karatsoreos and colleagues, mice exposed to a T20 schedule
(LD 10 : 10) had reduced anxiety-like behavior, cognitive
flexibility, and dendritic complexity in the medial prefrontal
cortex [285]. The T20 schedule did not affect overall sleep,
but activity rhythms and sleep timing, thus showing an asso-
ciation between circadian rhythm disruptions and disturbed
anxiety and cognitive-related behaviors [286]. In a study
by LeGates and colleagues, exposure to a T7 schedule
(LD 3.5 : 3.5) slightly increased the period of body tempera-
ture and activity rhythms of mice [18]. Exposure to the T7
cycle also increased depression-like behavior, but had no
effect on anxiety-like behavior. Since no difference was found
in SCN Per2 expression rhythms, and the mice maintained
rhythmic locomotor activity, it was concluded that T7
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cycle-induced mood-like disruption was likely due to an
SCN-independent mechanism. A third study by Ben-Hamo
and colleagues showed that rats exhibit increased immobility
in the forced swim test and decreased sexual behavior after
exposure to a T22 cycle (LD 11 : 11) [238]. Previously, it
was shown that rats under a T22 cycle displayed two different
locomotor activity rhythms with two different periods [287].
This was attributed to a desynchronization of SCNmolecular
rhythms, since the ventral and dorsal SCN of T22-exposed
rats had a desynchronized expression of circadian genes
[287]. Thus, together, these T cycle studies emphasize that
light may affect mood through multiple mechanisms [266].

7. The SCN in AnimalModels ofMoodDisorders

7.1. Stress-Related Models. Evidence supports that stress is a
risk factor for depression [288, 289]. In rodents, chronic
stress can produce behaviors resembling depression in
humans, and these depression-like behaviors are responsive
to antidepressant treatment [290]. In rodents, chronic stress
disrupts body temperature, activity, and hormone rhythms
[291–294]. Thus, there is interest in determining whether
chronic stress disrupts SCN function, which may explain
some of the effects of chronic stress. Some studies show that
chronic stress paradigms dampen PER1, PER2, CLOCK, or
BMAL1 expression rhythms in the SCN [292, 295–297].
Specifically, in a study from our lab, unpredictable chronic
mild stress (UCMS) desynchronized the phase of clock gene
expression rhythms in the SCN of mice [292]. Furthermore,
SCN PER2::LUC amplitude was greatly reduced following
UCMS. Most notably, SCN PER2::LUC amplitude was
positively correlated with swim time in the forced swim test
and open arm time in the elevated plus maze, indicating that
UCMS-mediated disruption of the molecular clock in the
SCN was directly associated with the severity of depression-
and anxiety-like behaviors of the mice.

On the other hand, there are studies showing no effect or
opposite effects of stress paradigms on PER expression
rhythms in the SCN of rodents [298–300]. These conflicting
results may be related to the type of stressor (e.g., social
defeat stress, learned helplessness), different paradigm dura-
tions, and the timing of the stressors. Furthermore, since pre-
vious studies have focused on determining the effects of stress
on the core molecular clock in the SCN, these studies may
have missed stress effects on SCN neural activity. Just because
stress has no effect on the molecular clock in the SCN does
not necessarily mean that stress has no effect on SCN output.
However, another interpretation is that the SCN is more
resilient to the effects of stress. Thus, more work is needed
to determine if SCN neuronal rhythms are disrupted in
chronically stressed mice, and if the SCN plays a role in the
mood-like phenotype of chronically stressed rodents.

7.2. Sleep Deprivation Models. Since a few studies report that
sleep deprivation can trigger hypomania or mania in bipolar
disorder, researchers have used sleep deprivation paradigms
to model mania-like behaviors in rodents [301, 302]. Typi-
cally, sleep deprivation is induced using the platform model,
where rodents are placed on a small platform surrounded by

water [303]. If the animal falls asleep, it will fall in the water.
Thus, rodents will stay awake. Investigators typically sleep
deprive rodents for 72hrs. After the sleep deprivation period,
the animals show mania-like behaviors such as insomnia,
hyperactivity, aggression, stereotypy, and hypersexuality
(as reviewed in [304]). Lithium and antipsychotics prevent
some of the effects of sleep deprivation, indicating that the
model has predictive validity [303, 305].

Sleep deprivation is known to affect circadian gene
expression. Sleep deprivation increases Per1–3 expression
[306–308]. More recently, Curie and colleagues showed that
sleep deprivation increased PER2 protein levels in the brain,
liver, and kidney [309]. Notably, the SCN was resilient to the
effects of sleep deprivation on PER2 levels [309]. Since
perturbing circadian genes affects sleep homeostasis, it is
thought that sleep deprivation-induced changes in circadian
gene expression are involved in identifying sleep need
(as reviewed in [310]). It is important to note that these
studies looked at the effects of shorter periods of sleep depri-
vation than is typically used to induce mania-like behaviors,
thus longer sleep deprivation periods may have greater effects
on circadian gene expression. Sleep deprivation-induced
changes in circadian gene expression in mood-related brain
regions may underlie the effects of sleep deprivation on affect.
Although the SCNmay be resilient to the effects of sleep dep-
rivation on molecular rhythms, studies do indicate that sleep
deprivation affects SCN neural activity. Sleep deprivation
dampens SCN neural activity and attenuates light-induced
increases in SCN neural activity [311, 312]. Moreover, sleep
deprivation attenuates the photic phase-shifting of locomo-
tor activity [312, 313]. Furthermore, as previously discussed,
behavioral arousal during the rest period increases serotonin
in the SCN and induces large phase advances during the day
in nocturnal animals [132, 314].

Shorter periods of sleep deprivation are antidepres-
sant (as reviewed in [315]). Sleep deprivation also pro-
duces antidepressant-like effects in some animal models
[316, 317]. Unfortunately, the effects of sleep deprivation are
short lived in humans. Although, there is evidence to support
that combining sleep deprivation therapy with bright light
therapy, sleep phase advance, and medication produces
long-lasting antidepressant effects in some individuals [318].
Since these treatments can all affect circadian rhythms, it is
possible that combining the treatments increases the likeli-
hood of realigning circadian rhythms in depressed patients.

7.3. DAT-KDMice.Aprominent theory is thatmanic episodes
in bipolar disorder are associated with a hyperdopaminergic
state. Support for this theory was originally based on studies
showing that psychostimulants produce some mania-like
symptoms, whereas antidopaminergic drugs reduce manic
symptoms (as reviewed in [319]). More recently, neuroimag-
ing studies support that in hypomania there is increased acti-
vation of brain regions that are targets of reward-related
dopamine projections [319, 320]. A study by Anand and
colleagues suggested that reduced dopamine transporter
(DAT) availability could explain the increase in reward-
related circuitry in hypomania, but this has not been
replicated by other studies [321].
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To determine the behavioral and neurobiological conse-
quences of reduced DAT availability, researchers developed
DAT knockdown (DAT-KD) mice, with ~90% knockdown
of DAT. DAT-KD mice exhibit hyperactivity, stereotypy,
reduced spatial d (more linear movements), increased
risk-taking, and increased motivation for reward, but no
sensorimotor deficits in prepulse inhibition tests, indicat-
ing that DAT-KD mice display many mania-like behaviors
[322–326]. Moreover, valproic acid reduced hyperactivity
in DAT-KD mice, suggesting that some of the behaviors
of DAT-KD mice are responsive to mood stabilizers
[327]. Although these mice have been primarily consid-
ered a useful model of mania-like behaviors, elevated
dopamine signaling and many of the behaviors of DAT-
KD mice are relevant for studying other psychiatric disor-
ders such as attention-deficit/hyperactivity disorder and
schizophrenia [326].

Circadian rhythms are also disrupted in DAT-KD mice.
DAT-KD mice have a longer activity period and increased
sensitivity to photic phase delays [183]. Surprisingly, SCN
PER2::LUC rhythms from wildtype and DAT-KD mice were
indistinguishable. Landgraf and colleagues did observe
lengthening of SCN PER2::LUC rhythms after application
of a D1R agonist. Thus, they concluded that the SCN
explants had lost afferent dopaminergic projections, which
may explain why PER2::LUC rhythms were not affected in
DAT-KD mice. Chronic valproic acid treatment, using the
same administration paradigm found to reduce hyperactivity
in these mice, shortened the wheel-running period of the
DAT-KD mice [183, 327]. Wheel-running rhythms then
lengthened upon removal of valproic acid. When applied to
SCN slices, valproic acid shortened PER2::LUC period, but
at a higher concentration than needed to affect wheel-
running rhythms. Interestingly, valproic acid shortened
PER2::LUC rhythms in a mouse hippocampal cell line at
lower concentrations, suggesting that extra-SCN regions are
more sensitive to the period shortening effects of valproic
acid and mediate the effects of valproic acid on wheel-
running rhythms. Thus, if SCN rhythms are disrupted in
DAT-KD mice, it may not greatly contribute to the
mania-like phenotype of DAT-KD mice since valproic acid
affected hyperactivity and wheel-running rhythms at doses
that did not alter PER2::LUC rhythms in the SCN. How-
ever, it is possible that at lower doses, valproic acid
affected SCN neural activity rhythms or other molecular
targets in the SCN. Thus, it would be interesting to look
in more detail at the effects of DAT-KD and valproic acid
on SCN rhythms.

7.4.MyshkinMice.Myshkinmicewere selected in an epilepsy-
like phenotype-driven N-ethyl-N-nitrosourea (ENU) muta-
genesis screen [328]. When backcrossed for 20 generations
onto a C57BL/6NCr strain, these mice no longer exhibited
stress-induced seizures, but showed mania-like behaviors
[329]. HeterozygousMyshkinmice (Myk/+) show hyperactiv-
ity in the open field, increased object exploration, increased
risk-taking behavior in the elevated plus maze and light/dark
box, and increased reward seeking [329]. Moreover, lithium
and valproic acid produce therapeutic-like effects in Myk/+

mice, reducing hyperactivity and risk-taking behavior [329].
Myk/+ mice carry a missense mutation in the Atp1a3 gene,
encoding the neuron-specific α3 subunit of Na+/K+-ATPase
[328]. The mutation reduces Na+/K+-ATPase activity and
increases glutamate-evoked Ca2+ signaling in cortical neu-
rons, suggesting that the mutation increases neuronal excit-
ability [328]. Studies have implicated ATP1A3 in bipolar
disorder, further supporting the translational utility of these
mice [330, 331].

Since Atp1a3 is expressed in the SCN and circadian
rhythm disturbances frequently occur in mania, Timothy
and colleagues looked at the wheel-running rhythms of
Myk/+ mice [332]. Myk/+ mice had longer wheel-running
periods and active phases. Myk/+ mice also had dampened
wheel-running rhythms, with some Myk/+ becoming
arrhythmic in constant conditions. To determine if pertur-
bations in the SCN could explain the circadian phenotype
of Myk/+ mice, Timothy and colleagues looked at SCN
PER2::LUC rhythms and neural activity. While there was
no difference in SCN PER2::LUC rhythms, whole-cell
current-clamp recordings revealed that the Myk mutation
resulted in a loss in the day/night change in SCN spontane-
ous firing frequency. Thus, indicating the Myk mutation
dampens SCN neural activity rhythms. Myk/+ mice were
also more sensitive to photic phase delays and did not show
a typical phase advance in response to light pulses late in the
active phase, suggesting that the SCN of Myk/+ mice may
respond differently to ipRGC input [332]. Indeed, the SCN
of Myk/+ mice showed greater AMPA-evoked increases in
intracellular Ca2+, supporting that the SCN of Myk/+ mice
is more sensitive to glutamate from ipRGCs during the early
subjective night.

Thus, Na+/K+-ATPase can regulate both mania-like
behaviors and circadian rhythms. The findings by Timothy
and colleagues indicate that the circadian phenotype of
Myk/+ mice is likely mediated by a loss of Na+/K+-ATPase
in the SCN, but the brain regions underlying the mood-
related effects of the Myk mutation are unclear [332]. Thus,
brain region-specific manipulations of the Na+/K+-ATPase
α3 subunit may be worthwhile to determine whether the
circadian and mania-like phenotypes of Myk/+ mice are
due to pleiotropic effects of the Atp1a3 gene.

7.5. Circadian Gene Models

7.5.1. ClockΔ19 Mice. ClockΔ19 mice were selected in a circa-
dian phenotype-driven ENU mutagenesis screen [333].
ClockΔ19 mice carry a point mutation that results in the
removal of exon 19 during gene splicing, which leads to a
dominant-negative CLOCK protein [334]. Heterozygous
ClockΔ19 mice exhibit greater photic phase delays and
advances relative to wildtype mice [335]. In constant dark-
ness, homozygous ClockΔ19 mice have a longer activity
period and eventually become arrhythmic [333]. In the
SCN, the Clock mutation lengthens the neuronal firing
period and dampens Per expression [335, 336]. Similarly,
overexpressing ClockΔ19 in neuromedin S-positive cells,
where neuromedin S is a peptide that is highly expressed in
the SCN, lengthened running wheel and SCN PER2::LUC
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rhythms [337]. Thus, the circadian phenotype of ClockΔ19
mice is likely due to disrupted Clock function in the SCN.

It is well established that ClockΔ19 mice display many
mania-like behaviors, including hyperactivity in the open
field, increased risk-taking in the elevated plus maze and
light/dark box, reduced immobility in the forced swim test,
and increased reward seeking [338–340]. ClockΔ19 mice also
display mood-like cycling with increased mania-like behav-
iors during the day and returning to a euthymic-like state
during the night [340].

Work from our lab suggests that CLOCK in the VTA
plays a primary role in mood regulation. Knocking down
CLOCK in the VTA is sufficient to produce mania-like
hyperactivity and increased risk-taking behavior, whereas
expressing functional CLOCK in the VTA of ClockΔ19 mice
normalizes the locomotor and risk-taking behavior to wild-
type levels [339, 341]. During the day, when ClockΔ19 mice
display mania-like behaviors, tyrosine hydroxylase expres-
sion was elevated, as well as the firing rate of VTA dopami-
nergic neurons [340, 342]. Inhibiting tyrosine hydroxylase
activity during the day reversed the mania-like behaviors of
ClockΔ19 mice [340]. Moreover, optogenetic stimulation of
VTA dopaminergic neurons during the day induced hyper-
activity and more risk-taking behavior [340]. Together, this
work indicates that elevated VTA dopaminergic neuron sig-
naling underlies the hyperactivity and risk-taking behavior
in ClockΔ19 mice.

Overall, pharmacological and brain-region specific
studies in the lab indicate that the effects of the ClockΔ19
mutation on circadian rhythms and mood are likely pleio-
tropic effects. In a study by Arey and colleagues, a casein
kinase 1 inhibitor, which is known to increase circadian
period, reduced the risk-taking behaviors of ClockΔ19 in
the elevated plus maze and light/dark box [343]. Thus, the
casein kinase 1 inhibitor likely exacerbated the longer period
of ClockΔ19, but still reduced their risk-taking behaviors.
Furthermore, knocking down CLOCK in the VTA increased
locomotor activity and produced risk-taking behavior, but
decreased circadian period, opposite of ClockΔ19 mice
[341]. Together, these studies indicate that the increased
risk-taking behaviors induced by impaired CLOCK function
are not dependent upon having a long circadian period.

7.5.2. Rev-erbα KO Mice. Preclinical studies have shown that
REV-ERBα regulates a multitude of mood-related behav-
iors. Rev-erbα KO mice show reduced immobility in the
forced swim and tail suspension tests, increased risk-
taking behavior in the elevated plus maze, hyperactivity,
elevated aggression, and increased motivated behaviors
[344, 345]. REV-ERBα is not necessary to maintain circa-
dian rhythms, as REV-ERBβ appears to have some overlap-
ping functions [346]. However, Rev-erbα KO mice do have a
shorter circadian period, increased sensitivity to photic
phase advances, and a reduced amplitude of Bmal1 expres-
sion in the SCN [347].

Although loss of REV-ERBα affects SCN molecular
rhythms, the aberrant mood-like behaviors in Rev-erbα KO
mice appear to be due to the actions of REV-ERBα outside
of the SCN. Specifically, Rev-erbα KO mice have elevated

tyrosine hydroxylase levels in the substantia nigra and VTA
as the result of loss of direct repression of tyrosine hydroxy-
lase transcription by REV-ERBα [345]. Pharmacological
inhibition of tyrosine hydroxylase reduced the locomotor
activity of the Rev-erbα KO mice to wildtype levels [345].
Moreover, pharmacological inhibition of REV-ERBα in the
ventral midbrain recapitulated the mania-like behaviors of
Rev-erbα KO mice [345]. Together, these experiments
suggest that loss of REV-ERBα in the ventral midbrain
largely explains the mania-like behavior of Rev-erbα KO
mice. Interestingly, as a nuclear receptor, REV-ERBα is a
druggable circadian molecular target. Thus, REV-ERB ago-
nists may be useful for treating mood disorders, if their side
effects can be overcome.

7.5.3. FBXL3 and CRY. FBXL3 is a member of the F-box and
Leu-rich repeat family of E3 ubiquitin ligases. A mutation in
Fbxl3 (After hours, Afh) was discovered by an ENUmutagen-
esis screen to result in a long circadian activity period [348].
SCN PER2::LUC rhythms are also delayed and dampened in
Afh mice [348]. Moreover, Afh mice are more sensitive to
photic delays and advances [349]. In terms of mood-related
behaviors, Afhmice display reduced depression-like behavior
and increased risk-taking, similar to ClockΔ19 mice [350].
FBXL3 promotes the ubiquitination and proteasomal degra-
dation of CRY [351]. Thus, the Afh or Fbxl3mutation results
in an upregulation and stabilization of CRY, which underlies
the period lengthening effects of Afh [321, 352]. Further sup-
porting that FBXL3 regulates circadian period through CRY,
a mutation in Cry2 that enhances FBXL3 binding to CRY2
resulted in a shortened activity period in mice [353].

Cry knock-out mice studies support that Cry modu-
lates mood-related behaviors. Specifically, Cry1−/− mice
have increased depression-like behavior, Cry2−/− mice have
reduced sucrose preference, and Cry1−/−;Cry2−/− double
knock-out mice have increased anxiety-like behavior
[354–356]. Together, these studies suggest that abnormally
reduced FBXL3-mediated destabilization of CRY may
result in a longer period and mania-like behavior. Con-
versely, increased FBXL3-mediated destabilization of CRY
may result in a shorter period and depression-like behavior.
However, not all studies support this model. For example,
Cry2−/− mice have a lengthened period, suggesting that the
effects of these genes on the central clock are dissociable from
the effects on mood-like behaviors [321].

7.5.4. Per Mice. Mice expressing mutant Per2 (Per2Brdm1−/−

mice), which have a deletion incorporating the PAS domain
that is important for protein/protein interactions, display
some mania-like behaviors [357]. Per2Brdm1−/− mice show
reduced immobility in the forced swim test, increased
sensitivity to cocaine, and elevated alcohol consumption
[358–360]. However, loss of functional Per2 does not result
in consistent effects on anxiety-like behavior [361]. A differ-
ent Per2 mutant mouse (Per2ldc), which also has a deletion
that incorporates the PAS domain, was found to have incon-
sistent anxiety-like behaviors across measures in the elevated
plus maze and light/dark box [361]. Although when crossed
with mice that lack functional Per1, the double mutant mice
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showed increased anxiety-like behavior, indicating that dis-
rupting both genes is necessary to perturb anxiety-like
behavior [361]. Together, this work suggests that the posi-
tive and negative arms of the molecular clock have opposite
roles in the regulation of anxiety-like behavior. ClockΔ19
mice show decreased anxiety-like behavior, whereas loss
of functional PER1 and PER2 has the opposite effect
[339]. Thus, it would be interesting to examine other
mood-like behaviors of Per1ldc/Per2ldc double mutant mice
to determine if the opposing roles of CLOCK and PER only
apply to anxiety-like behaviors.

More recently, Per3 was shown to regulate mood-like
behavior in rodents. Zhang and colleagues assessed the
depression-like behaviors of Per3 knockout mice (Per3−/−)
and hPER3-P415A/H417R transgenic mice [362]. hPER3-
P415A/H417R was generated to express human PER3 with
two missense variants that had been identified to cause famil-
ial advance sleep phase that is associated with increased
depression and seasonality symptoms. Interestingly, both
Per3−/− and hPER3-P415A/H417R showed increased immo-
bility in the tail suspension tests. The missense mutations
decreased PER3 protein levels and PER3 repressor activity,
indicating that loss of functional PER3 increases the risk
for depression.

The stability and localization of Period genes in the SCN
sets the oscillating speed of circadian rhythms. Loss of either
Per1 or Per2 leads to period shortening and subsequently
arrhythmia in constant conditions [357, 363]. Per3 is thought
to play a lesser role in regulating the central pacemaker, as
Per3−/− mice exhibit only a slightly shorter free-running
period and slightly shorter period of PER2::LUC rhythms in
the SCN [364, 365]. Interestingly, a recent study by Shi and
colleagues identified another missense mutation in hPER3
(hPER3-P856A) that is associated with MDD, but slightly
lengthens circadian period [366]. Thus, increased or
decreased PER3 transcriptional activity may increase risk
for MDD. Since the effect on circadian period was small,
Shi and colleagues concluded that any mood-related effects
of hPER3 variants were likely due to changes in clock-
controlled genes as opposed to SCN timing [366]. Further
supporting a role for Per genes outside of the SCN in the
modulation of mood and anxiety-like behaviors, Spencer
and colleagues showed that knocking down both Per1 and
Per2 in the nucleus accumbens was sufficient to increase
anxiety-like behavior in mice [361]. Thus, although Per genes
regulate both the central clock and mood-related behaviors,
these can be independent effects.

8. Conclusions and Future Directions

8.1. Circadian Rhythm Disturbances in Humans with Mood
Disorders. Many studies point to disrupted circadian
rhythms in MDD and bipolar disorder. Some of the most
consistent findings are an evening chronotype in mood dis-
orders, dampened body temperature rhythms in depression,
and delayed rhythms in depression [50, 53, 55, 81]. Notably,
there is even postmortem evidence that molecular rhythms
are disrupted in mood-related brain regions in mood disor-
ders [67]. Perturbations in circadian gene expression may

underlie rhythmic disturbances in some individuals. Numer-
ous studies have implicated circadian genes in mood disor-
ders, but many of the genetic findings have not been
replicated [68, 69]. It is possible that targeted studies looking
at genetic associations with depression or bipolar disorder in
patients with similar circadian disruptions will move the field
forward. Several recent large GWAS studies have identified
associations between genetic loci near circadian genes with
chronotype [367–369]. In addition, mutations in PER2 have
been linked with advanced sleep phase syndrome [370],
while mutations in CSNK1D and CRY1 have been linked to
delayed sleep phase syndrome [371, 372]. Thus, together,
these studies indicate that links can be identified between
chronotypes and circadian gene perturbations. Since it can
be challenging to objectively determine chronotype in sub-
jects with mood disorders, researchers are also studying
rhythm disturbances by looking at molecular rhythms in
patient-derived fibroblasts [178, 179].

While there is convincing evidence that molecular
rhythms are disrupted, it is less clear if the SCN is affected
in mood disorders. Studies have implicated AVP, nitric
oxide, and melatonin signaling in the SCN in mood disor-
ders, but it is unknown whether SCN neural activity is altered
in MDD or bipolar disorder [98–100]. This is a challenging
question to address given that the SCN is small and lies deep
within the brain. Some studies have imaged the SCN in
humans, indicating that it may be possible to identify differ-
ences in SCN responsiveness to circadian challenges in
subjects with mood disorders [373, 374].

8.2. Effects of Pharmacotherapies on the SCN. It is well
established that SSRIs, lithium, and agomelatine influence
circadian rhythms, suggesting that these drugs could correct
rhythm disturbances in individuals with mood disorders.
The most robust findings being that lithium lengthens circa-
dian period, SSRIs induce phase advances, and activation of
melatonin receptors induce phase shifts at dawn and dusk
[131, 137, 153, 197, 198]. Studies suggest that the circadian-
related effects of SSRIs, lithium, and agomelatine are due to
their actions in the SCN [137, 153, 199]. Landgraf and col-
leagues recently showed that valproic acid shortens circadian
rhythms [183]. In future studies, it will be important to rep-
licate Landgraf and colleagues’ finding and uncover the
mechanisms underlying the circadian- and mood-related
effects of valproic acid.

From our understanding, there is little known about the
effects of other classes of drugs on SCN rhythms. Haloperidol
was shown to increase Per1 expression in the SCN, suggest-
ing that antipsychotics affect SCN molecular rhythms [375].
However, if antipsychotics influence the central clock, it is
likely through indirect mechanisms, since D1R seems to
mediate the effects of dopamine in the SCN [183, 376].
Low-dose ketamine, a promising rapid-acting antidepressant
treatment strategy, may also affect the SCN since gluta-
matergic signaling in the SCN is crucial for photic entrain-
ment. Ketamine was found to dampen circadian gene
expression amplitude in mouse embryonic fibroblasts
[377]. Thus, studies looking at the effects of other classes of
drugs on SCN rhythms may help elucidate the mechanisms

13Neural Plasticity



underlying the associations of circadian disruptions with
mood disorders.

8.3. Insights from Studies in Animal Models. Preclinical stud-
ies looking at the effects of circadian gene disruption and
environmental disturbances support a complex relationship
between circadian rhythms and mood (Figure 2). There is
evidence to support that disrupting SCN function can causes
mood-like disturbances, light can disrupt mood independent
of the SCN, and that circadian rhythm disruptions are a
noncausal symptom.

The most compelling evidence that the SCN regulates
mood comes from the study by Landgraf and colleagues
showing that disrupting molecular rhythms in the SCN
causes depression- and anxiety-like behaviors in mice [240].
Lesion studies also suggest that a disrupted intact SCN rather
than loss of the SCN can lead to aberrant behaviors [239,
282]. If the SCN plays a key role in mood regulation, this
leads to many further questions. Do certain types of SCN
disruptions cause mood changes? As discussed, genetic per-
turbations in mice can produce period changes, amplitude
reductions, increased sensitivity to photic phase shifts, and
mood-like disturbances [183, 327, 329, 332, 333, 335, 339].
Importantly, shifted rhythms, dampened rhythms, and
light hypersensitivity have been found in some individuals
with mood disorders [50, 88, 91]. In future work, it will also
be important to determine which SCN circuits and cell
types affect mood. With optogenetic and cell type-specific
genetic tools, these more specific questions about the role
of the SCN in mood regulation will likely be answered
in the coming years.

Light cycle manipulation studies suggest that light regu-
lates mood through multiple mechanisms, both dependent
and independent of the SCN. Long and short photoperiods,
constant light conditions, shifting light-dark schedules, and
various T cycles can all affect mood-like behaviors in animal
models. Notably, some of these light schedules, like T7 cycles,
do not greatly disturb behavioral circadian rhythms or
circadian gene expression, indicating that disrupting SCN
function is not necessary for light to affect mood [18].
Moreover, it is known that ipRGCs can directly project to
mood-related brain regions, indicating that there are circuits
through which light could affect mood independent of the
SCN (as reviewed in [378]).

Lastly, animal model studies argue that circadian rhythm
disruptions can be an independent symptom of mood
disorders. Studies disrupting the expression or function of
circadian genes show that circadian genes can regulate circa-
dian rhythms and mood-like behaviors independently. For
example, knocking down Clock expression in the VTA repli-
cated many of the mania-like behaviors of ClockΔ19 mice,
but shortened the circadian period, opposite to what is
observed in ClockΔ19 mice [341]. Thus, the effects of Clock
on mood-like behavior is dissociable from the effects of Clock
on the period length of circadian rhythms. Moreover, genetic
animal model studies suggest that there are not directional
associations between the speed of circadian rhythms and
mood-like behaviors. For example, Rev-erbα KO mice and
ClockΔ19 both exhibit mania-like behaviors, but display
opposite changes in period length [333, 339, 345, 347]. Fur-
thermore, since both SSRIs (antidepressant) and valproic acid
(antimanic) shorten rhythms, the effects of pharmacological

Mood

Mood-related
brain regions

SCN

ipRGCs

Light Stress

Figure 2: Potential mechanisms underlying the associations between circadian rhythm disruptions and mood disorders. Seasonal changes, jet
lag, and shift work may disturb mood in vulnerable individuals through projections from intrinsically photosensitive retinal ganglion cells
(ipRGCs) directly to mood-related brain regions, or to the suprachiasmatic nucleus (SCN). Alternatively, other environmental insults
(e.g., stress) and genetic disturbances (e.g., circadian gene mutations) can affect mood-related brain regions and SCN function. The SCN
may disturb mood by directly or indirectly affecting the function of brain regions more closely tied to mood regulation, explaining
how circadian rhythm disturbances could affect mood. Conversely, environmental and genetic factors may influence the SCN and
mood-related brain regions independently, explaining how circadian rhythm disturbances could be a noncausal symptom of mood disorders.
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treatments on circadian period may not be correlated with
their primary effects on mood [56, 183].

8.4. Summary. The literature highlights that there are multi-
ple mechanisms that may explain the associations between
rhythm disruptions and mood disturbances, one of those
mechanisms being disrupted SCN function (Figure 2). We
theorize that a disrupted SCN could affect mood by causing
internal desynchronization across mood-related brain
regions. However, we acknowledge that light could affect
mood independent of the SCN through ipRGCs projecting
directly or indirectly to mood-related brain regions. Thus,
light, other environmental factors, or genetic perturbations
may influence mood independent of the central clock.

Overall, these studies suggest that circadian-based ther-
apeutics could treat specific populations of patients with
circadian and mood disturbances. With the ability to mea-
sure patients’ molecular and behavioral rhythms, in addi-
tion to detection of genetic polymorphisms, the field is
on the cusp of identifying biomarkers for specific subpop-
ulations with circadian and mood disturbances. Animal
studies will continue to be important for elucidating the
mechanisms underlying the mood and circadian-related
effects of therapeutics, gene disruptions, and environ-
mental disturbances, which may lead to novel treatment
strategies for mood disorders.
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