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Measuring quantitative effects of methylation on
transcription factor–DNA binding affinity
Zheng Zuo,*† Basab Roy,* Yiming Kenny Chang, David Granas, Gary D. Stormo†

Methylation of CpG (cytosine-phosphate-guanine) dinucleotides is a common epigenetic mark that influences gene
expression. The effects ofmethylation on transcription factor (TF) binding are unknown formost TFs and, evenwhen
known, such knowledge is often only qualitative. In reality, methylation sensitivity is a quantitative effect, just as
changes to the DNA sequence have quantitative effects on TF binding affinity. We describe Methyl-Spec-seq, an
easy-to-use method that measures the effects of CpGmethylation (mCPG) on binding affinity for hundreds to thou-
sands of variants in parallel, allowing one to quantitatively assess the effects at every position in a binding site. We
demonstrate its use on several important DNAbinding proteins.We calibrate the accuracy ofMethyl-Spec-seq using
a novel two-color competitive fluorescence anisotropy method that can accurately determine the relative affinities
of two sequences in solution.We also present software that extends standardmethods for representing, visualizing,
and searching formatches tobinding sitemotifs to include the effects ofmethylation. These tools facilitate the study
of the consequences for gene regulation of epigenetic marks on DNA.
INTRODUCTION
Methylation ofCpG (cytosine-phosphate-guanine) (hereinaftermCpG)
dinucleotides is a common epigeneticmark that can either positively or
negatively affect the binding of transcription factors (TFs) to specific
sites in genomic DNA and alter gene expression (1–7). The effect of
methylation on binding affinity for most TFs is unknown, but a recent
modification of the high-throughput systematic evolution of ligands by
exponential enrichment (HT-SELEX) approach—methyl-SELEX—
has greatly increased the number of TFs with measured sensitivities to
mCpG (8). Of the nearly one-half of human TFs assayed, about 40%
were insensitive tomethylation, about 25% showed decreased binding
to mCpG, and the remaining ~35% of assayed TFs showed increased
binding to mCpG, sometimes to alternative motifs (3, 8). The number
of TFs with increased affinity to mCpG-containing DNA is surprising
given that DNAmethylation is usually associated with transcriptional
repression.Many of the TFs with increased affinity are homeodomain
proteins involved in developmental processes. Thework byYin et al. (8)
provides a very valuable resource about the sensitivity of many TFs to
CpGmethylation. However, it still covers less than half of human TFs
andnone frommodel organisms, although specificities of closely related
TFs can sometimes be inferred based on protein similarity (9). Another
similar method, EpiSELEX-seq, has been applied to a smaller number
TFs with an emphasis on inferring quantitative models of the effects of
DNA methylation (10).

The specificities for the TFs in recent studies are represented by po-
sition weight matrices (PWMs) for each of the two states of DNA:
methylated and unmethylated (8, 10). The scores obtained from the
PWM for particular sequences are useful for predicting and ranking
potential binding sites in a genome and for predicting the direction of
change in binding affinity for variant binding sites, including changes
from CpG to mCpG. However, as the authors of methyl-SELEX point
out, their scores are “only rough estimates of affinity, and calibration of
the motifs using standards, and/or methods such as Spec-seq should be
used if precise relative affinity values are desired” (8). We describe
Methyl-Spec-seq, an augmented version of Spec-seq (11, 12) that pro-
vides high-resolution measurements of relative binding affinity for
hundreds to thousands of binding sites in parallel, including the effects
of DNAmethylation on binding affinity.Methyl-Spec-seq allows one to
determine the effects of introducing mCpG at every position within a
binding site by enzymatic methylation of DNA libraries, and by using
synthetically methylated DNAs, one can also determine the contribu-
tions of methyl groups from the two DNA strands independently. It is
easy to perform and requires only standard molecular biology tech-
niques and equipment. To assess the accuracy of the Methyl-Spec-seq
results, we introduce a method of two-color competitive fluorescence
anisotropy (2color-CFA). By measuring the anisotropy of two differ-
ent DNA sequences, each labeled with a different fluorophore in the
same binding reaction, the relative affinity of the two sequences in equi-
librium solution conditions can be directly determined. We also intro-
duce an enhanced software platform to deal with the new data. In
modeling the effects of methylation on DNA binding affinity, we con-
sidered DNA as being composed of a six-letter alphabet. As illustrated
in fig. S1, besides the normal A, C,G, andT, there ismethyl-C, denoted
by M, and a G that is opposite to a methyl-C on the complementary
strand, denoted by W (upside-down M). PWMs and sequence logos
only display the information from one strand of DNA, although the
specificity determining base interaction may occur with either strand.
Therefore, it is necessary to distinguish between two types of G bases—
those opposite to a C from those opposite to amethyl-C.We extend the
energy PWM (ePWM) model to include all six possible bases, and we
devise a new energy logo, Meth-eLogo, that includes the energetic con-
tributions of the methylated bases to binding energy. We also describe
software for searchingDNAsequences that can show the potential bind-
ing sites in genomic regions under the twodifferent states ofmethylated
and unmethylated DNA. In addition to quantitatively validating the
effect of mCpG on the binding specificity of the imprinting mainte-
nance zinc finger protein ZFP57, we demonstrate the use of Methyl-
Spec-seq and the associated methods on identifying the effect of
mCpG on the binding specificity of CCCTC-binding factor (CTCF),
B cell–activating transcription factor 1 (BATF1), glioma-associated
oncogene homolog 1 (GLI1), and homeobox B13 (HOXB13). Further-
more, we report previously undocumented binding motifs for BATF1
and GLI1 and exhibit how the software platform can be used to infer
opposing effects of mCpG on DNA binding of ZFP57 and GLI1 that
1 of 11



SC I ENCE ADVANCES | R E S EARCH ART I C L E
can potentially modulate regulation of the PTCH1 gene. We also
show, with both ZFP57 andHOXB13, thatMethyl-Spec-seq can easily
determine the independent energetic contribution of the methyl
group on each strand, information not generally obtained with other
approaches.
RESULTS
Methylation sensitivity of ZFP57
ZFP57 was previously identified to be a critical TF for maintaining
genomic imprinting patterns among placental mammals (13, 14). Zinc
fingers 2 and 3 of mouse ZFP57 can preferentially bind to methylated
TGCCGC hexamer sites over unmethylated ones (15, 16), and muta-
tions disrupting its DNA binding domain cause transient neonatal
diabetes mellitus type 1 (17). Figure 1A describes the basic workflow
of Methyl-Spec-seq and its use in studying the DNA binding specificity
and methylation sensitivity of mouse ZFP57. Figure 1B lists the nine
randomized libraries used, each containing three randomized positions,
for a total complexity of 576 sequences. We include six positions 5′ of
the consensus motif to test whether zinc finger 1 contributes to specific-
ity. One library is entirely unmethylated (ZFP57-R2-unmethylated). In
some libraries, the C at position 4 and/or the C opposite the G at po-
sition 5 are methylated during synthesis of the DNA, whereas in the
randomized positions, methylation will occur at CpG dinucleotides
only if the DNA is treated with M.SssI methyltransferase (see Materials
and Methods). The four versions of the synthetic consensus hexamer
are unmethylated (TGCCGC), top-strand hemimethylated (TGCMGC),
bottom-strand hemimethylated (TGCCWC), and duplex methylated
(TGCMWC). Figure 1C shows the relative binding energy for the 64
variants of positions −2 to 0 from the five different R2 libraries: un-
methylated, enzymatically methylated, synthetically duplex methylated
(both top and bottom strands), and hemimethylated, on each of the top
and bottom strands. The overall range of binding affinities across the 64
variants is small, just more than 1 kT (k is Boltzmann’s constant and T
is the temperature used in experiments), indicating that those positions
do not contribute much to binding specificity. Positions −5 to −3 also
show very little variation in binding energy (Fig. 1D), allowing us to
conclude that zinc finger 1 does not contribute much to specificity.
However, there is a consistent decrease in binding energy (increase in
binding affinity) of about 1.8 kT for the fully methylated DNA com-
pared to the unmethylated DNA. The enzymatically methylated
DNA has a binding energy nearly identical to that of the synthetically
duplex methylated DNA, indicating that the enzymatic methylation
was very efficient.When only the top strand ismethylated, the decrease
in binding energy (increase in affinity) compared to unmethylated is
only about −0.3 kT, whereas the hemimethylated bottom strand shows
a change of about −1.5 kT in binding energy. This is consistent with
previous measurements that showed that almost the entire preference
for bindingmethylated DNA is due to themethyl group on the bottom
strand (16).

We extend the standard energymatrixmodel [ePWM, a version of
a PWMwhere the elements of thematrix are the energetic contributions
of each base at each position to the total binding energy (18, 19)] to
include the energetic contributions of methyl groups on C (other pos-
sible base modifications are easily added) (fig. S2). In the Meth-eLogo
(Fig. 1D), M indicates the contribution of the methyl group to C on the
“top strand” (the one shown in the Meth-eLogo), and W indicates the
energy contribution of themethylatedCon the other strand, opposite to
the G that is included in the eLogo. These energy contributions are the
Zuo et al., Sci. Adv. 2017;3 : eaao1799 17 November 2017
changes in binding energy, when theCs aremethylated compared to the
unmethylated Cs. Therefore, in the Meth-eLogo, ignoring M and W
provides the standard eLogo for unmethylated sequences, and C + M
and G + W are the energies associated with methylated sequences.
Methylation energies can be either positive (decreasing binding affinity)
or negative (increasing binding affinity) and are shown either below the
line or above the line, respectively.

2color-CFA: Validation of Methyl-Spec-seq
Fluorescence anisotropy is a method for measuring binding affinity in
solution (20, 21). CFA has been developed as a sensitive assay of the
relative affinity of two sequences, where one is fluorescently labeled
and the other is an unlabeled competitor (22). By labeling both DNAs
with distinct fluorophores [we use fluorescein (FAM) and carboxyte-
tramethylrhodamine (TAMRA)], one can simultaneously assess the
binding occupancy of each sequence under identical conditions and
therefore directly measure relative binding affinity (see Materials and
Methods). The principles of 2color-CFA are illustrated in Fig. 2A.
We chose the duplex methylated ATCTATTGCMWC as the reference
site with TAMRA labeled on the 5′ end (ME-TAMRA), and FAM was
used to label the competitor dsDNA probes with four different methyl-
ation states: unmethylated (UN-FAM), top-strand hemimethylated
(HM-top-FAM), bottom-strand hemimethylated (HM-bottom-
FAM), and duplex methylated (ME-FAM), as illustrated in Fig. 2B.
For the reactions with the same preferred sequence for both fluoro-
phores (ME-FAM and ME-TAMRA), the binding probability for the
two probes should always be the same; therefore, as we increased the
protein concentration from low to high, there should be a linear corre-
spondence between ME-FAM and ME-TAMRA anisotropy signals,
which matches our observation quite well (Fig. 2C, ME-FAM versus
ME-TAMRA). Furthermore, this establishes the relative amount of
change in the anisotropy values for the two fluorophores at equivalent
site occupancies. From the anisotropy data for competition between the
reference sequence, ME-TAMRA, and each of the four other sequences,
UN-FAM,HM-top-FAM,HM-bottom-FAM, andME-FAM,we cande-
termine relative affinities (Fig. 2C; see fig. S3 for complete data).

The anisotropy for DNA sequence Si, labeled with fluorophore
X, depends on the probability (or fraction) of the sequence that is
bound, P(B|Si)

AX;i ¼ aX;iPðBjSiÞ þ bX;i ð1Þ

where bX,i is the background anisotropy for that sequence and
fluorophore, which is the anisotropy in the absence of protein.
ax,i is the rate of change of the anisotropy with changes in the
binding probability of the sequence, which depends on the protein
concentration

PðBjSiÞ ¼ Ki½TF�
Ki½TF� þ 1

ð2Þ

where [TF] is the concentration of the free protein (TF) and Ki is the
association constant of the TF for sequence Si. If the reaction is at low
protein concentration, such that Ki[TF]≪ 1, then P(B| Si) ≈ Ki[TF].
Combining these equations for experiments performed at low
protein concentration, we can determine the relative affinities of
two sequences, Si and Sj, from the measured anisotropy of two
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Fig. 1. Overview of Methyl-Spec-seq. (A) Schematic representation of the general workflow of Methyl-Spec-seq (see Materials and Methods). Briefly, differentially bar-
coded DNA libraries with variable regions are mixed and used in protein-DNA binding reactions. The DNA libraries are either treated with M.SssI methyltransferase enzyme to
incorporate methyl-CpGs or left untreated and can also have synthetic 5′-methyl cytidine (mC). The letters “M” and “W” in red represent mC and mC on the complementary
strand opposing a G, respectively. The protein-DNA complex is separated from the unbound DNA, following the binding reaction, in 9% polyacrylamide gel. The bound and un-
bound fractions are then polymerase chain reaction (PCR)–amplified (eight cycles) using Illumina-specific primers (text S1), and the resulting indexed samples are sequenced to
generate energy logos for thebinding sites. (B) Randomizeddouble-strandedDNA (dsDNA) library used tomeasure thebinding specificity of ZFP57and the effect ofmethylationon
binding. The full-length DNA libraries are shown in text S1. The regions highlighted in blue are the unique barcodes to distinguish the libraries during sequencing, whereas “N” in
bold represent variable regions within the libraries. (C) Relative binding energy for all 64 variants in R2 libraries with different types ofmethylation, ranked from low to high binding
energies of the unmethylated DNA. The relative binding energies are represented in units of kT, where k is the Boltzmann constant and T is the temperature used in the binding
experiments. The 64 sequences of R2 libraries are listed vertically, and the relative binding energies depending on themethylation status are plotted. (D) Meth-eLogo based on the
regression of the ZFP57 reference site and all its single variants. The significant effect ofmethylation at positions 4 and 5, which is the binding site for finger 3 (F3), is also shown. The
effect of CpG methylation (mCPG) on binding specificity was calculated from the ePWM listed in fig. S2.
Zuo et al., Sci. Adv. 2017;3 : eaao1799 17 November 2017 3 of 11
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different fluorophores; we use FAM(F) and TAMRA(T) (see Materials
and Methods)

Ki

Kj
¼ aF;j

aT;i
f

AT;i

AF;j

� �
ð3Þ
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where f(⋅) refers to the slope of the ratios of the two anisotropy mea-
surements obtained over several protein concentrations. Figure 2C
shows the entire set of data points, from four independent
experiments, for many different protein concentrations for the four
different methylation states of the DNA, all using the ME-TAMRA
as the reference sequence (fig. S3). The slopes are obtained using only
those points for which the TAMRA anisotropy is less than 150, where
the points are all approximately linear; the R2 for the slopes ranges
from 0.86 (for UN-FAM) to 0.97 (MET-FAM), indicating the highly
reproducible measurements. The ratio aF;j

aT;i
¼ 1:1 is obtained from

the experiment, where the reference sequence is labeled with both
fluorophores (ME-TAMRA and ME-FAM). For the other sequences,
the relative binding energies are 1.5, 1.1, and 0.3 kT for unmethylated,
top-methylated, and bottom-methylated, respectively. Those values
are consistent with the ones obtained fromMethyl-Spec-seq although
slightly smaller inmagnitude. They are also somewhat smaller numbers
than those reportedpreviously, but all of the results consistently show that
the strong preference formethylatedDNAover unmethylatedDNA is
due almost entirely to the methyl group on the bottom strand (16).

CTCF binding affinity drops with CpG-methylation (mCPG)
at some positions
After we validated the resolution and throughput of Methyl-Spec-seq
by using ZFP57 and demonstrating that the specificity information
obtained from the use of enzymaticallymethylatedDNA is comparable
to that of synthetically methylated DNA, we extended this method to
studying another ZFP—CTCF. We demonstrate that it is feasible to
systematically scan the whole binding site and test the mCPG at every
position within the binding site by enzymaticmethylation. Our library
design and Methyl-Spec-seq results for the mouse CTCF insulator
protein are shown in Fig. 3. CTCF is a critical component for establish-
ing the three-dimensional genomic architecture and known to be sub-
ject tomCpGmodulation (23, 24). However, a recent study shows that
most genomic sites for CTCFhave the same occupancywhether or not
they aremethylated (25). In our randomized libraries design, including
both unmethylated and enzymaticallymethylatedDNA, we deliberate-
ly picked a non-CpG–containing site, CCACTAGGGGGCACTA, as
the reference site instead of the canonical CCACTAGGGGGCGCTA
(the difference in sequence is underlined; Fig. 3A). The libraries R1 toR5
were designed to overlap by 1 base pair (bp) so that CpG dinucleotides
in every possible position will be included at least once. Each library has
four randomized positions; thus, there are more than 1200 different
sequences in each of the methylated and unmethylated libraries. Some
previous work suggested the existence of an “upstream motif” at var-
iable distance to the canonical core motif (26), but in this work, we
focused only on characterizing the commonly found core motif using
the partially truncated mouse CTCF carrying only zinc fingers 1 to 9
for the protein-DNA binding assay.

One advantage ofworkingwith enzymaticallymethylatedDNA is that
M.SssI canonlymethylate theCpGdinucleotide but hasnoeffect onother
dinucleotide sequences. Therefore, all non-CpG–containing sites shared
betweenunmethylated andM.SssI-treatedDNA libraries serve as controls
to gauge the intrinsic reproducibility in our experiment. As shown in Fig.
3B, for almost all high-affinity (low-energy) sites, the energy deviation
between unmethylated and M.SssI-treated non-CpG–containing sites
falls within 0.25 kT deviation bounds, which is consistent with the
measurement resolution of our other Spec-seq experiments (12, 27–30).

Among the CpG-containing sites, methylation of CCGGTAGGG-
GGCACTAhas a higher binding energy of 1 kT than the unmethylated
Fig. 2. Overview of 2color-CFA. (A) General workflow of 2color-CFA (see Materials
andMethods). Briefly, DNAswith either presence or absence ofmC are labeledwith two
different fluorophores, FAM and TAMRA, and mixed together. This mixture of DNAs is
titrated with increasing protein concentration, and the fluorescence anisotropy of both
fluorophores ismeasured andplotted. (B) Competitor oligoswithdifferentmethylation
states are labeled with FAM. The reference probe is duplex methylated and labeled
with TAMRA. (C) FAM versus TAMRA anisotropy correspondence curves for different
competitors and the reference sequence. Thehorizontal axis represents FAManisotropy
involving the protein-competitor complex, whereas the vertical axis represents TAMRA
signal for the protein-reference complex. The inset shows the binding energy differ-
ences between the competitor sequences and the reference. Energy differences are
computed from the natural log of the ratio in Eq. 3, obtained from the best linear fit
to the data using only points with TAMRA anisotropy values <150.
4 of 11
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one, indicating that mCpG in positions 2 and 3 can inhibit DNA
binding by decreasing the affinity up to threefold, which is consistent
with a prior report showing that positions 2 and 3 aremost sensitive to
DNAmethylation (31). Although there are some divergences for low-
affinity (high-energy) binding sites, we did not find any strongly
methylation-sensitive locus besides positions 2 and 3. The CTCF
Meth-eLogo (Fig. 3C) is based on the energy values of reference site
and all its single variants, including the methylation effect (fig. S2).

Methyl-Spec-seq reveals new binding preference for BATF1
BATF is an activating protein 1 (AP1) family member composed of a
heterodimer of JunB and BATF1 (Fig. 4A) (32, 33). In determining its
Zuo et al., Sci. Adv. 2017;3 : eaao1799 17 November 2017
specificity for binding sites, we discovered that it binds with nearly
equal affinity to both 7-bp- and 8-bp-long sites containing the AP1
consensus sequences TGA(C/G)TCA and TGACGTCA, respectively
(Fig. 4, C andD), which has not been reported previously. Because the
8-bp-long binding site contains a CG in the center, we tested its meth-
ylation sensitivity. Figure 4B shows the libraries used forMethyl-Spec-
seq and the effect of methylation on binding energy (fig. S4). For the
8-bp site, we observe an increase in binding energy of nearly 0.6 kT
with the presence of mCpG on either strand and about 1.2 kT for fully
methylated DNA (Fig. 4E and fig. S2). This is nearly identical to the
reduction in binding affinity reported for the related TF activating
transcription factor 4 when methylated at the central CpG (10).

Effect of mCpG on GLI1 binding affinity and regulation
of PTCH1
GLI1 is a ZFP involved in the hedgehog signaling pathway (34) with a
known consensus site of GACCACCCA (35, 36) that interacts with
zinc fingers 4 and 5 via an unusual arrangement of amino acid–
DNA contacts (37). One gene regulated by GLI1 is PTCH1, the
upstream signaling regulator of Sonic hedgehog pathway (38). This
essentially forms an autoregulatory feedback to modulate the protein
homeostasis of GLI1 inside the nucleus. Although the GLI1 consensus
site contains no CpGs, expression of PTCH1 and binding by GLI1
have been shown to be sensitive tomethylation of the promoter region
in certain cancers (38–40). Using Spec-seq and libraries with a 7-bp-
long region 3′ of the known consensus, we find an extended consensus
sequence of CGTCGCA that may interact with zinc fingers 2 and 3
(Fig. 5A). This extended consensus sequence, which contains two
CpGs, is present in thePTCH1 promoter region of placentalmammals
(Fig. 5B). We tested whether methylation of those CpGs affected
binding using Methyl-Spec-seq with the libraries shown in Fig. 5C.
Methylation of both of the preferred CpGs has a large increase in
binding energy (Fig. 5, A and C, and fig. S2). There is a ZFP57 binding
sequence (Fig. 1D) adjacent to the GLI1 binding site that is conserved
in the placentalmammals, all of which contain the ZFP57 gene (Fig. 5B).
Although, to our knowledge, there is no evidence for ZFP57 binding to
this site, it is interesting to speculate that ZFP57 andGLI1 alternatively
bind to this region depending on its methylation status. The predicted
binding energy for this region, on the basis of the ePWMs that include
themethylation energies (fig. S2), is shown inFig. 5D. In theunmethylated
state, GLI1 is predicted to bind with high affinity and ZFP57with very
low affinity, whereas if the DNA is methylated, the predicted binding
affinities are reversed. By using ePWMs that contain information
about the effects of methylation on binding energy, one can readily
obtain predictions about differences in binding site occupancy under
alternative states of DNA methylation.

mCpG contributions to alternative motifs for HOXB13
HOXB13 is a homeodomain TF that is required for normal prostate
development (41, 42), and mutations of the gene are associated with
prostate and other cancers (43, 44). UsingHT-SELEX, Jolma et al. iden-
tified a primary motif with a preferred sequence of CCAATAAAA
and a secondary motif of CTCGTAAAA, with differences between
them in three consecutive positions (underlined) (9, 45). Fromprotein
bindingmicroarray data, amotif that is a combination of the those two
motifs [C(C/T)(C/A)(A/G)TAAAA]was found (9). Usingmethyl-SELEX,
Yin et al. (8) found the CAA version of the motif enriched only in
unmethylated DNA, whereas the TCG motif was preferred in both
methylated and unmethylated DNA. They also found evidence for
Fig. 3. Methyl-Spec-seq analysis of CTCF. (A) Randomized dsDNA libraries for
CTCF. The full-length libraries with the 5′ and 3′ flanking sites are shown in fig. S4.
The 3′ internal barcodes are highlighted in blue. These DNAs were either methylated
using CpG methyl transferase (M.SssI) or left untreated (Un) before mixing and used
for binding assay (see Materials and Methods). (B) Comparison of binding energies
between unmethylated (horizontal axis) and methylated (vertical axis) sites. The red
circles denote CpG-containing sites in the libraries, whereas the blue circles represent
sites that do not contain any CpG. The 0.25 kT energy deviation bounds are also
shown in dashed lines. (C) Energy logo based on the CTCF reference site and all of
its single nucleotide variants. The substantial effect of methylation at positions 2 and
3 is highlighted.
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bothmotifs in ChIP-seq (chromatin immunoprecipitation sequencing)
data. The fact that the two preferred binding sites differ at each of three
consecutive positions implies nonadditivity in the binding interaction.
Toquantify the contributionsof different sequences at thosepositions and
tomeasure the effects of methylation on the two strands independently,
we designed libraries inwhich all possible sequences occur at those three
positions in four possible states: unmethylated, duplex methylated, and
hemimethylated, on each strand separately (Fig. 6A). Replicate ex-
periments show highly reproducible results across the entire range of
binding affinities (fig. S5).

Consistent with the finding on unmethylated DNA by Jolma et al.
(45), if we used the ePWMderived fromTCGand all its single variants
to predict the binding energy of every sequence, we found that the
measured values formany variants are significantly below the predicted
energies (higher affinity than predicted by the ePWM, Fig. 6B). CAA is
the most significant outlier, but several other sequences with multiple
changes from the TCG reference also show much higher affinity than
predicted, indicating a large degree on nonindependence between
positions in the binding site interaction.

When considering the effects of methylation, there are several
surprising results not observed in the previous report (8). These are par-
tially represented by the Meth-eLogos that have been generated sepa-
rately for the reference sequence TCG and all single base variants,
including methylation state (Fig. 6C), and for the alternative reference
C(A/C)A and its single base variants, including methylation state
(Fig. 6D; ePWMs are shown in fig. S2). The first surprise is that only
the methyl group on the middle position contributes to increased
binding affinity; the bottom-hemimethylation at the third position
has essentially no contribution [the average is about 0.1 kT increase in
binding energy for the TCGmotif and −0.1 kT for the C(A/C)Amotif,
within themeasurement uncertainty range and too small to be included
in the ePWMs]. This is inconsistentwith the structuralmodel presented
by Yin et al. (8) that suggested that the methyl groups on both strands
would contribute to increased binding affinity of methylated DNA, and
althoughmethylation of the C at position 2 increases binding affinity for
both motifs, the quantitative effects are much different. For the TCG
motif, the average contributionof top-hemimethylation is−0.8kT, whereas
for the C(A/C)A motif, the average contribution is −1.5 kT (fig. S2).

The independent effects of methylation on the two strands and the
large degree of context dependence are illustrated in Fig. 6E. The
Zuo et al., Sci. Adv. 2017;3 : eaao1799 17 November 2017
reference sequence is unmethylated TCG with a defined energy of 0.
For each of the four possible methylation states, all sequences within a
range of 1.6 kT (either positive or negative) are shown. In unmethylated
DNA, there are five sequences with binding energies between 1.1 and 1.6
kT: TCA,TAT,CAA,CTA, andCCA.Only the reference sequenceTCG
can bemethylated opposite theG at position 3 (bottom-hemimethylated
DNA), which increases the binding energy (~0.1 kT). When the C at
position 2 is methylated (top-hemimethylated DNA), CMA is the
highest-affinity sequence in the entire collection, decreasing the bind-
ing energy by−3.1 kT overCCA. TMGdecreases the energy to−0.8 kT
but is no better thanTMA,which decreases the energy by about−2 kT.
ACA and CCG are not within the range plotted for unmethylated
DNA, but methylation of their Cs in position 2 decreases the binding
energy sufficiently to bring them into the plot. AMAdecreases the bind-
ing energy to about 0 (the same as the unmethylated reference), and
CMG decreases to about 1.4 kT, within the range of several of the top
unmethylated sequences. Among all of those sequences, only TCG and
CCG can be duplex methylated, and in both cases, there is a very small
decrease in binding energy compared to the top-hemimethylatedDNA.

Although the results with hemimethylated DNA are probably not
relevant to in vivo binding, they are informative about the mechanism
of interaction. Clearly, only one of the twomethyl additions contributes
significantly to increased binding affinity, and themagnitude of that in-
crease is highly context-dependent. These results indicate that the inter-
action of HOXB13 with DNA and the effects on the interaction from
adding a methyl group at one specific position are highly complex and
nonindependent and probably involve alternative modes of binding
to the DNA.
DISCUSSION
Methyl-Spec-seq provides quantitative measurements of the effect of
mCpG on the specificity of DNA binding proteins. The affinity of
individual proteins may be either increased or decreased upon meth-
ylation, and the effects may vary at different positions within the
binding site. By simultaneously assessing the relative affinities of
hundreds to thousands of binding sites, including the effects of
methylation, it facilitates the quantitative modeling of mCpG effects
on gene regulation. It is easy to independently assay the effects of
methylation on each strand, which may lead to insights into the
Fig. 4. Methyl-Spec-seq analysis of BATF1. (A) Cartoon of JunB and BATF1 protein binding dsDNA. (B) DNA libraries with 3-bp randomized regions for AP1. See text
S1 for the full-length DNAs with flanking sites. (C) Binding energy logos for AP1 binding to 7-bp sites. (D) Binding energy logos for AP1 binding to unmethylated 8-bp
sites. (E) Binding energy logo for 8-bp sites includes effects of methylation. All logos are based on consensus sites for the 7- and 8-bp sequences and their respective
single-nucleotide variants. Only half-sites are shown with the assumption of symmetric binding sites.
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Fig. 5. Methyl-Spec-seq analysis of GLI1. (A) Energy logobased on the regression of GLI1 binding sites. Themethylation effect at positions 10 to 14 (binding site for fingers
2 and 3) is included. See text S1 for a list of libraries, with differential methylation profiles, used for binding studies. (B) Comparative genomics for protein patched homolog
1 (PTCH1) regulatory element bound byGLI1 and the adjacent bases that include a ZFP57 consensus sequence in the placentalmammals. (C) The effect ofmethylation on two
CpG loci inside the PTCH1 element. (D) Alignment scoring involving the PTCH1 adjacent regulatory element (B) and 50-bp flanking sites (human genome) against ZFP57 and
GLI1 ePWMs, including the effect of methylation. See fig. S2 for the ePWMs. “-MW” refers to predictions on mCpG-containing DNA.
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mechanistic details of the interaction. It requires only standard mo-
lecular biology equipment and availability of synthetic DNA and
DNA sequencing facilities. A 2color-CFA method that can accurately
measure relative binding affinities between two sequences under equi-
librium solution conditions shows that Methyl-Spec-seq results are
quantitatively quite accurate. We also introduce augmented software
that allows one to include the contributions of methylation of C resi-
dues to standard ePWMs and to provide a convenient method of vi-
sually displaying that information with Meth-eLogos. We also describe
the use of the extended ePWMs in searching genomes, where one can
predict the probability of binding to specific sites in either methyl-
ated or unmethylated states. The recent report of methylation sensi-
tivity for a large fraction of human TFs provides a valuable resource
(8), but in cases where the TF of interest is not included in that col-
Zuo et al., Sci. Adv. 2017;3 : eaao1799 17 November 2017
lection or more precise energy parameters are desired, Methyl-Spec-
seq provides a very tractable approach to obtain the needed
information.
MATERIALS AND METHODS
Methyl-Spec-seq libraries design
As opposed to conventional Spec-seq workflow, in Methyl-Spec-seq,
each DNA sequence can exist in multiple methylation states:
unmethylated, hemimethylated, and duplex methylated (Fig. 1A
and fig. S1) (11, 12). Moreover, each methylated CpG site could
be made either by direct chemical synthesis (either hemimethylated
or duplex) at designated positions or by M.SssI enzymatic treatment
for every CpG dinucleotide inside the template. Text S1 includes
detailed lists of all the used randomized DNA template sequences
and corresponding primers in aligned format. Each methylation state
of DNA sequence is uniquely distinguished by a barcode in the
flanking region of randomized binding sites. For mouse ZFP57 spe-
cifically, we designed five 3-nucleotide–long barcodes in designated
positions (−8 to −6) to represent unmethylated, top hemimethylated,
bottom hemimethylated, chemically duplex methylated, and M.SssI-
methylated DNA, respectively. Duplex DNA libraries for ZFP57,
excluding R1–duplex methylated, R2-top hemimethylated, R2-bottom
hemimethylated, and R2-duplex methylated, were made by incubating
templates and 5′-FAM labeled primer, Physics-FAM, or Physics-
GMG-FAM (text S1) in a single round of Taq-polymerase [New England
Biolabs (NEB)] extension (95°C for 15 s and 52°C for 12 min, cooled
to room temperature). All randomized libraries, except for GLI1-
Rand6–duplex methylated, were annealed and extended in a forward-
template/reverse-primer fashion.

Enzymatic methylation of CpGs by M.SssI
Up to 2mg of fully extended dsDNA librarieswas incubatedwith 20Uof
M.SssI enzyme (NEB) at 37°C for 1 hour. Given previous report of
M.SssI’s potential topoisomerase activity (46) in the presence of Mg2+,
we used a buffer containing 50 mMNaCl, 10 mM tris-HCl (pH 7.9),
10 mM EDTA, and 320 mM S-Adenosylmethionine (SAM) at 25°C for
optimal activity. AfterM.SssImethylation, purified dsDNA libraries were
further digested by a cocktail of methyl-CpG–sensitive restriction en-
zymes, including Hpa II (CCGG), Hha I (GCGC), Aci I (CCGC), Hpy
CH4IV(ACGT), andBstUI (CGCG), so that all those remainingunmethy-
lated sites matching any of the above cutting sites should be digested. The
digestion reaction was run in 1×NEB CutSmart buffer at 37°C for 30min.

Pooling of dsDNA libraries with different methylation states
The dsDNA libraries with different methylation states were mixed
together according to their internal sequence diversity, so that, on
average, each sequence variant would have a similar percentage in
the final sequencing pool.

Cloning, expression, and purification of
recombinant proteins
The coding sequences of ZFP57 (77 to 198; UniProt Q8C6P8-1),
CTCF (241 to 523; UniProt Q61164-1), and HOXB13 (202 to 286;
UniProt P70321) were PCR-amplified from cDNA libraries of mouse
embryonic stemcells ormouse genomicDNA.GLI1 (226 to 398;UniProt
P47806-1), BATF (full; UniProt O35284), and JunB (146 to 344; UniProt
P09450-1) were separately synthesized by gBlocks [Integrated DNA
Technologies (IDT)] service. All linear dsDNA fragments except JunB
Fig. 6. HOXB13-binding specificity and methylation sensitivity. (A) The ran-
domized library design for mouse HOXB13, with a total diversity of 100. Two-base
barcodes were used to differentiate each methylation state. (B) For unmethylated
DNA, an ePWM was generated from the binding energies of TCG and all single-
base variants. From that ePWM, the binding energy is predicted for all unmethylated
sequences. The predicted and measured energies are plotted. (C) Energy logo based
on the regression of primary motif site TCG and all its single variants, with different
methylation states included. (D) Energy logo based on the regression of secondary
motif site CCA/CAA and all single variants, including methylation states. (E) All
sequences, for each possible methylation state, within a range of 1.6 kT (either pos-
itive or negative) of the reference unmethylated TCG.
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were cloned into NEB dihydrofolate reductase control vector (as in
fig. S8) by In-Fusion homology recombination for Escherichia coli–
based protein expression under T7 promoter (BL21) cells, whereas
JunBwas separately cloned into pBR322-based vector for coexpression
with BATF gene. All clones were verified by Sanger sequencing.

After extensive trial-and-error efforts to express ZFPs in E. coli,
we found that hisSUMO tag conferred ideal protein solubility and
stability for downstream work. At least 15 residue linkers were put
between the SUMO (small ubiquitin-like modifier) tag and the gene
of interest (ZFP57, CTCF, Gli1, and HOXB13). The protein expres-
sion and nickel column–based purification protocols were essentially
the same as our previously published work except that 100 mM ZnCl2
was added into LB culture medium, cell suspension buffer, and pro-
tein binding and elution buffer for proper folding of ZFPs. Purified
protein stocks were stored in 25% glycerol, 10 mM tris-HCl (pH
7.5 at 25°C), 100 mM NaCl, 100 mM ZnCl2, and 1 mM tris(2-carbox-
yethyl)phosphine (TCEP) at −20°C condition for long-term use.

The AP1 family TFs JunB and BATF1 function as heterodimers
(Fig. 4B) (33); thus, we designed two separate constructs, JunB-
6×His (low copy, kanamycin-resistant) and mCherry-BATF1 (high
copy, ampicillin-resistant), and cotransformed them into E. coli BL-21
(DE3) cells under the co-selection of kanamycin and ampicillin. After
overnight isopropyl-b-D-thiogalactopyranoside (IPTG) induction of
100 ml of liquid culture at 30°C, cell pellets were harvested, sonicated,
and spun down. The supernatant was used for Sepharose (GEHealth-
care) ion-exchange chromatography andnickel columnpurification se-
quentially. During the whole process, mCherry was used as indicator
for the presence of heterodimer TFs. The final product was analyzed
on SDS–polyacrylamide gel electrophoresis gel to confirm the purity
and 1:1 molar ratio between JunB and BATF1.

The purified protein stocks were stored in 10mM tris-HCl (pH 7.5)
containing 25% glycerol, 100 mM NaCl, 100 mM ZnCl2, and 1 mM
TCEPat−20°C. Protein concentrationwasmeasured by using the equa-
tion C = (1.55 × A280) − (0.76 × A260), where C is the concentration of
the protein inmilligrams permilliliter,A280 is the absorbance of protein
samples at 280 nm, and A260 is the absorbance at 260 nm.

Besides E. coli (BL21)–based protein expression, we succeeded in
using the PURExpress system (NEB) for cell-free expression of
hisSUMO-HOXB13 protein. Briefly, up to 200 ng of linear PCR frag-
ment of hisSUMO-HOXB13 construct-carrying T7 promoter and ter-
minator was coincubated with the 25-ml PURExpress reactions with
murine RNase inhibitor inside for 2 hours at 37°C. The expressed
product could be directly used for electrophoretic mobility shift assay
(EMSA) work and was confirmed by Spec-seq result later. Without
SUMO tag on the N terminus, we could not detect a shifted band
for the in vitro expressed HOXB13 protein alone; thus, this SUMO-
based expression strategy may serve as a good starting point for other
Spec-seq assays.

DNA separation by EMSA, extraction, amplification,
and sequencing
All protein-DNA binding reactions were run in 1× NEB CutSmart
buffer [50 mM potassium acetate, 20 mM tris-acetate, 10 mM Mg
acetate, and bovine serum albumin (100 mg/ml) (pH 7.9)] in 20 ml vol-
ume. Usually, 200 ng of premixed dsDNA libraries was used in each
reaction. The DNA was titrated with protein, from low to high con-
centration, into a series of samples and incubated at room tempera-
ture for at least 30 min. EMSAs were run in 9% tris-glycine gel at 200 V
for 30 min in a cold room (~4°C) by default. The Supplementary Ma-
Zuo et al., Sci. Adv. 2017;3 : eaao1799 17 November 2017
terials figs. S6 and S7 include EMSA sample gel pictures for all the
proteins. The DNA extraction, amplification, and sequencing
protocols are the same with normal Spec-seq (28). Briefly, the
FAM-labeled DNA fragments in the bound and unbound fractions
were visualized by a Bio-Rad imager with a 520-nM band-pass filter.
The visible bands were excised from the gels, and DNAs were
extracted and purified using acrylamide extraction buffer (100 mM
NH4OAc, 10 mM Mg acetate, and 0.1% SDS) and Qiagen gel purifi-
cation columns, as previously described. TheDNAswere amplified for
10 cycles and barcoded simultaneously by indexed Illumina primers
(see text S1).

Methyl-Spec-seq data analysis and energy logo visualization
In a protein-DNA binding reaction, the dissociation constant, KD,
is defined as the ratio of the equilibrium concentrations of reactants
and the DNA-protein complex

KDðSiÞ ¼ 1
KAðSiÞ ¼

½P� ½Si�
½P⋅Si� ð4Þ

Therefore, in a binding reaction involving a TF and a library of
DNAs, the ratio of the concentrations of the bound and unbound
species, directly proportional to the number of individual DNA
molecules in those fractions, determines the relative specificity of
the competing DNA binding sites (11, 12)

KDðS1Þ :KDðS2Þ :… : KDðSnÞ ¼ ½S1�
½P⋅S1� :

½S2�
½P⋅S2� :… :

½Sn�
½P⋅Sn� ð5Þ

KDðSiÞ
KDðSjÞ ¼ ½Si�½P⋅Sj�

½P⋅Sj�½Si� ≈
NUðSiÞ=NUðSjÞ
NBðSiÞ=NBðSjÞ ð6Þ

Note that NB and NU are the numbers of reads of a species (S) in
bound or unbound fractions, respectively.

InMethyl-Spec-seq, depending on the library design, each sequenc-
ing read carries two pieces of information—the DNA methylation
status and the binding site sequence. The sequencing results from
Illumina 1X75MiSeq runs were filtered and sorted based on conserved
regions andmethylation-specific barcodes and then counted for binding-
site energy analysis. As with conventional Spec-seq (11, 12), for any spe-
cific binding site, the relative affinity should be directly proportional to
the ratio of bound to unbound reads (Eq. 6), and the relative binding
energy can be derived from the natural logarithm of that and repre-
sented in kT units.

For all TFs, ePWMs and eLogos (18, 19) were based on the data
regression of the TF’s binding energy to its reference sequence and
sequences with single-nucleotide mismatches, where methylated
“M” or “W” represents the additional energy contribution between
methylated and unmethylated cytosine, either in the top or bottom
strand. The Meth-ePWMs for each protein in this study are provided
in fig. S2. Software for the regression, eLogo production, and sequence
searches are described in text S2.

Two-color competitive fluorescence anisotropy
Fluorescence anisotropy is a powerful solution-based technique to char-
acterize protein-ligand interactions (20, 21, 47). For protein-DNA
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interaction studies, one usually titrates the protein of interest from low
to high concentration while keeping the fluorescently labeled DNA
probe at the same concentration for the binding reactions and then
records the anisotropy signal change to estimate binding affinity be-
tween protein and its target sequence. There are three related issues.
First, the fluorescence anisotropy signal is known to be highly sensitive
to buffer conditions, that is, pH, temperature, presence of glycerol, and
ionic strength, all of which change the rotational speed of fluorophores,
thus very often repeating an experiment could produce variable results
by up to 50% affinity difference or 0.5 kT energy deviation. To charac-
terize the potentially subtle effect of mCpG on protein-DNA interac-
tions, this data variation is far from ideal. Second, to determine the
absolute binding affinity between any protein and its ligand, one must
have accurate knowledge of functional protein concentration titrated
into each sample instead of total protein concentration. For some “hard-
to-fold” proteins like zinc finger domains, it is entirely possible that only
a small fraction of recombinant proteins produced are properly folded
and functional; therefore, the determined binding affinity for each
sequence could be underestimated. Third, choosing a suitable site for
fluorescent labeling becomes more challenging because of the protein-
fluorophore interactions in high protein concentration range, and it is
indicated by altered total fluorescence emission intensity. Under these
conditions, the true saturation range for a protein-DNA interaction is
confounded and compromises data accuracy. For most applications,
only the relative affinities to different DNA sequences or, equivalently,
the differences in binding free energy are needed, not absolute KD

values. Relative binding affinities can be measured using CFA, where
the binding to the labeled DNA is in competition with an unlabeled
DNA with a different sequence (22). That approach relieves some of
the complications of standard fluorescence anisotropy experiments,
but there remain issues about knowing the absolute differences in
concentration of the twoDNAs and variations in conditions between
different reactions.

To address the above problems and validate our Methyl-Spec-seq
results, we developed a modified version of the competitive fluores-
cence anisotropymethod, 2color-CFA, to study TF-DNA interaction
specificity and methylation sensitivity (Fig. 2A). By measuring the
anisotropy to both fluorescently labeled DNA sequences competing
for the same pool of protein in exactly the same reaction, we can ob-
tain relative affinities directly from the changes in anisotropy of the
two fluorophores. We label the two DNA probes with TAMRA and
FAM separately, using TAMRA for the reference site (methylated) and
FAM for the competitor site. In a control experiment, the reference
sequence is labeled with both TAMRA and FAM to determine the
relative change in anisotropy for the two fluorescent dyes under iden-
tical occupancies of the binding sites. This difference is taken into
account when determining the relative occupancy of two different
binding sites, from which relative binding affinities are obtained
(Eqs. 1 to 3).

Preparation of reference and competitor probes
High-performance liquid chromatography–purified FAM- andTAMRA-
labeled DNA oligos were purchased from IDT. Under 2× NEB buffer
4 conditions, 30 ml of 100 nM forward strand oligo and 20 ml of 100 nM
FAM- or TAMRA-labeled reversed strand oligo were mixed together,
denatured at 95°C, and then annealed by gradient temperature de-
crease to room temperature at an average speed of 1°C/5 s. The final
dsDNA oligo probes were calibrated at a concentration of 40 pM/ml.
Figure 2B shows a full list of oligo sequences used in 2color-CFA.
Zuo et al., Sci. Adv. 2017;3 : eaao1799 17 November 2017
Protein-DNA binding reaction
All protein-DNA binding reactions were run in 1× NEB CutSmart
buffer in 96-well plate format (Corning, Nonbinding Surface) at room
temperature (25°C). In each100-ml reaction, 30nMFAM-andTAMRA-
labeled dsDNA were used as a starting point for anisotropy mea-
surement. Protein solutions were titrated into each sample from 0 to
100% relative concentrations using a preprogrammed Eppendorf
epMotion 5075 liquid handler. Because it is known that fluorescence
anisotropy experiment is sensitive to the buffer salt condition, usually
nomore than 5% v/v protein solution was titrated into each sample. In
addition, protein blank buffer with the same composition as the pro-
tein stock was used to counterbalance the effect of increasing volume
of protein solution in each subsequent set.

Fluorescence anisotropy measurement
After incubating the binding reactions for at least 30 min to reach
equilibrium, the sample plate was loaded onto a Tecan Safire 2 plate
reader for anisotropy measurement. The G factor was set to be 1.0 by
default and can be further calibrated to match the instrument condi-
tion. For FAM, excitation and emission wavelengths were set at 470
and 520nM, respectively, at a bandwidth of 20 nM,whereas for TAMRA,
they were set at 530 and 580 nM, respectively, at the same bandwidth.
Each sample was measured 15 times at room temperature (25°C),
and the mean anisotropy was calculated. Anisotropy measurement
data from four independent experiments are shown in fig. S3.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/11/eaao1799/DC1
fig. S1. General illustration of the use of M and W nomenclature to represent methylated bases
in a DNA sequence.
fig. S2. Methyl-Spec-seq ePWMs.
fig. S3. Replicates of FAM and TAMRA anisotropy signals that were used to calculate the effect
of mC on the relative binding specificity of ZFP57.
fig. S4. The relative binding energies of all 64 variants (AP1 libraries) with different methylation
profiles, ranked from the strongest (lowest energy) to the weakest binder of the unmethylated
library.
fig. S5. Replicate experiments with HOXB13.
fig. S6. EMSA sample images for mouse ZFP57 (F1 to F3) and CTCF (F1 to F9).
fig. S7. EMSA sample images for Gli1, JunB/BATF, and HOXB13.
fig. S8. Schematic maps of plasmids used for cloning and expression of proteins.
text S1. DNA oligo sequences for primers and libraries.
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