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Machine learning meets complex networks via
coalescent embedding in the hyperbolic space
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Physicists recently observed that realistic complex networks emerge as discrete samples
from a continuous hyperbolic geometry enclosed in a circle: the radius represents the node
centrality and the angular displacement between two nodes resembles their topological
proximity. The hyperbolic circle aims to become a universal space of representation and
analysis of many real networks. Yet, inferring the angular coordinates to map a real network
back to its latent geometry remains a challenging inverse problem. Here, we show that
intelligent machines for unsupervised recognition and visualization of similarities in big data
can also infer the network angular coordinates of the hyperbolic model according to a geo-
metrical organization that we term "“angular coalescence.” Based on this phenomenon, we
propose a class of algorithms that offers fast and accurate “coalescent embedding” in the
hyperbolic circle even for large networks. This computational solution to an inverse problem
in physics of complex systems favors the application of network latent geometry techniques
in disciplines dealing with big network data analysis including biology, medicine, and social
science.
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ignificant progress has been achieved in the last 20 years in

unveiling the universal properties of complex networks.

Nevertheless, the characterization of the large variety of real
network structures, which are originating from the “Big Data
explosion,” remains an important challenge of network science.
Network geometry aims at making a paradigmatic shift in our
understanding of complex network structures by revealing their
hidden metric! 1. This field has a large number of applications
ranging from brain networks’ to routing packets in the Internet!®
12 In this context, there is increasing evidence that the hidden
metric of many complex networks is hyperbolic!>. Examples of
recent research topics are the development of tools to generate
hyperbolic networks!* 1°, the measurement of the hyperbolicity
of complex networks'® 17, the analysis of its impact on traffic
congestion'® 1° and on link prediction®’, the characterization of
network properties in terms of the parameters of hyperbolic
network models?!, and the study of time-varying control systems
with hyperbolic network structure??. However, the science that
studies and designs algorithms to reveal and to test the latent
geometry?? of real complex networks, is in its dawning.

The popularity-similarity-optimization (PSO) model suggests
that real networks have a congruous geometrical representation in
a hyperbolic space, where each network node is mapped
according to the angular and the radial coordinates of a polar
system!. On one hand, node similarities are related with the
angular distances in the hyperbolic space: the higher the similarity
between two nodes, the closer their angular coordinates. On the
other hand, the node degree is related with the intrinsic popu-
larity of the node: the higher the node degree, the higher its
popularity in the network and the lower its radial coordinate in
the hyperbolic space. Recently, further variants of the PSO model
have been proposed in order to produce hyperbolic synthetic
networks with soft communities?* or with a desired community
structure?”.

Manifold machine learning for unsupervised nonlinear
dimensionality reduction is an important subclass of topological
machine learning algorithms. They learn nonlinear similarities/
proximities (that can be also interpreted as dissimilarities/dis-
tances) between points (samples) distributed over a hidden
manifold in a multidimensional feature space, in order to pre-
serve, embed (map) and visualize them in a two-dimensional
reduced space®®. They are inspired by a three-step procedure.
First, they approximate the shape of the hidden manifold
reconstructing a nearest-neighborhood graph between the points
in the high-dimensional space. Second, they use the reconstructed
network to estimate pairwise topological similarities (or dis-
tances) between the points that lie on the manifold, and store
these nonlinear estimations in a kernel (or distance matrix). In a
third and last step, they apply a matrix decomposition to the
kernel to perform dimensionality reduction, usually in a space of
two dimensions. If the network is already given in the form of an
unweighted adjacency matrix, the same algorithm works
neglecting the first step and thus, in practice, performs a network
embedding that preserves the node similarities. These methods
are already used in network biology for instance to predict node
similarities in protein interaction networks® &, therefore it was
likely for us to envisage their usage for network embedding in the
hyperbolic space.

Here we show that, adopting topological-based machine
learning for nonlinear dimension reduction, the node angular
coordinates of the hyperbolic model can be directly approximated
in the two- or three-dimensional embedding space according to a
persistent node aggregation pattern, which we term “angular
coalescence.” Based on this phenomenon, we propose a class of
algorithms that offers fast (time complexity approximately O(N?),
with N indicating the network node size) and accurate “coalescent
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embedding” in the two- or three-dimensional hyperbolic space
even for large unweighted and weighted networks. This discovery
paves the way for the application of network latent geometry
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Fig. 1 Coalescent embedding. a We show the original synthetic network
generated by the PSO model in the hyperbolic space. b The Isomap
algorithm (ISO), which is the progenitor of manifold techniques, starting
from the unweighted adjacency matrix offers an embedding of the network
nodes that is organized according to a circular pattern that follows the
angular coordinates of the original PSO model. We made different trials
using other synthetic networks, and this circular pattern is mainly preserved
if the kernel is centered or if the kernel is not centered and the first
dimension is neglected (see “Methods” section for details). This makes
sense because the operation of kernel centering puts the origin of the
reduced space at the center of the points in a multidimensional space and
thus at the center of the manifold. Since the node points lie on the
hyperbolic disk, the embedding places the origin approximatively at the
center of the disk. d The nodes are projected over a circumference and
adjusted equidistantly according to the step 3.2 of the algorithm described
in “Methods” section. ¢ The radial coordinates are given according to Eq.
(4). e A different pattern is obtained for an algorithm named ncMCE. The
circular pattern is linearized and the nodes are ordered along the second
dimension of embedding according to their similarities (here the kernel is
noncentered and the first dimension of embedding should be neglected, see
“Methods"” section). f If we accommodate the node points on the
circumference following the same ordering as the second dimension of
embedding, we can again recover an unbroken circular pattern that
resembles the angular coordinates of the original PSO model
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Fig. 2 Flow chart of the coalescent embedding algorithm. The algorithmic steps (grayscale squares) and the intermediate input/output (rounded red
squares) of the coalescent embedding algorithm are illustrated. Each algorithmic step reports all the possible variants. The example network has been
generated by the PSO model with parameters N=50, m=2, T=0.1, y=2.5. We applied the RA; pre-weighting rule and the ISO dimension reduction
technique. The colors of the embedded nodes are assigned according to their angular coordinates in the original PSO network. Description of the variables
in the mathematical formulas: x; value of (i, j) link in adjacency matrix x; d; degree of node i; e; external degree of node i (links neither to CN;; nor to j); CN;

common neighbors of nodes i and j; V set of nodes; s,t any combination of network nodes in V; (s, t) number of shortest paths (s,t); a(s,t

;) number of

shortest paths (s, t) through link ;; N number of nodes; { = v/—K, we set { =1; K curvature of the hyperbolic space; = 7%1 popularity fading parameter; y
exponent of power-law degree distribution. Details on each step are provided in the respective “Methods"” sections

techniques in many disciplines dealing with big network data
analysis including biology, medicine, and social science.

Results

Coalescent embedding. In this study, we selected a representative
group of nonlinear topological-based unsupervised dimension-
ality reduction approaches among the ones with the highest
performance. Three manifold-based: Isomap (ISO)?’, non-
centered Isomap (ncISO)8, and Laplacian eigenmaps (LE)%8. Two
minimum-curvilinearity-based: minimum curvilinear embedding
(MCE)® 26 and noncentered minimum curvilinear embedding
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(ncMCE)®. An important note for practical applications is that
these approaches are unsupervised (node or edge labels are not
required) and parameter-free (external tuning setting of algo-
rithms’ parameters is not required).

In Fig. 1b-d, we show the embedding provided by the Isomap
algorithm (ISO), the progenitor of the manifold dimension
reduction techniques, starting from the unweighted adjacency
matrix of a PSO network. The nodes are organized according to a
circular pattern (Fig. 1b), which follows the angular coordinates
of the original PSO model. For an algorithm named noncentered
minimum curvilinear embedding (ncMCE)® (Fig. le, f), the
circular pattern is linearized (Fig. le) and the nodes are ordered
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along the second dimension of embedding according to their
similarities. If we accommodate the node points on the
circumference following the same ordering as the second
dimension of embedding (Fig. le), we can again recover an
unbroken circular pattern (Fig. 1f) that resembles the angular
coordinates of the original PSO model. The ability of ncMCE and
minimum-curvilinearity-based algorithms to learn, unfold, and
linearize along just one dimension an intrinsic nonlinear (circular)
pattern is discussed in details in the “Methods” section. However,
here we clarify that minimum-curvilinearity-based algorithms
compress the information in one unique dimension because they
learn nonlinear similarities by means of the minimum spanning
tree (MST), providing a hijerarchical-based mapping that is
fundamentally different from the manifold-based of ISO.

The rationale of our approach is all contained in these simple
insights. We embedded hyperbolic networks adopting different
combinations of network similarities and matrix decompositions
and we reached the same consistent finding: the arising in the
two-dimensional embedding space of a common node aggrega-
tion pattern, which we named “angular coalescence,” and that was
circularly or linearly ordered according to the angular coordinates
of the hyperbolic model. This represents the first important result
of our study. The term “angular coalescence” is proposed to
indicate that the individual nodes aggregate together (from the
Latin verb coalésco: to join, merge, amalgamate single elements
into a single mass or pattern) forming a pattern that is
progressively ordered along the angular dimension. Conse-
quently, we decided to coin the expression “coalescent embed-
ding” to indicate the class of algorithms that exhibit angular
coalescence in the two-dimensional network embedding. In our
case, we detected the angular coalescence phenomenon as
embedding result of topological-based machine learning for
nonlinear unsupervised dimension reduction. Indeed, the evi-
dence that even MCE and ncMCE, which are not manifold-based
but hierarchical-based, are able to exhibit coalescent embedding
may theoretically suggest that this is an “epiphenomenon” that in
general characterizes topological-based machine learning for
nonlinear dimension reduction when applied to this task.

Given the first results, we propose to adopt these machine
learning techniques to perform two-dimensional “structural
network imaging,” which could be figuratively envisaged as a
sort of in silico imaging technique (such as X-ray or MRI is for
condensed matter) for 2D reconstruction and visualization of the
hidden manifold shape from which the structural organization of
a complex network emerges.

In the “Methods” section, we propose a general algorithm—
based on the angular coalescence principle—for network embed-
ding in the hyperbolic space. In Fig. 2, a flow chart is reported,
where both the algorithmic steps and the intermediate input/
output are highlighted. In order to build a general algorithm, we
started by noticing that the problem to compute the embedding
on an unweighted adjacency matrix would be simplified by
having a “good guess” of the edge weights that suggest the
connectivity geometry. Thus, there was a clear margin to improve
the coalescent embedding performance by pre-weighting the
network links using a convenient strategy to approximate
distances between the connected nodes. We devised two different
pre-weighting strategies. The first approach—which we called the
repulsion-attraction rule (RA)—assigns an edge weight adopting
only the local information related to its adjacent nodes
(neighborhood topological information). The idea is that adjacent
nodes with a high external degree (where the external degree is
computed considering the number of neighbors not in common)
should be geometrically far because they represent hubs without
neighbors in common, which—according to the theory of
navigability of complex networks presented by Boguna et al.>—
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tend to dominate geometrically distant regions: this is the
repulsive part of the rule. On the contrary, adjacent nodes that
share a high number of common neighbors should be
geometrically close because most likely they share many
similarities: this is the attractive part of the rule. Thus, the RA
(see Egs. (1) and (2) for two alternative mathematical formula-
tions) is a simple and efficient approach that quantifies the trade-
off between hub repulsion and common neighbors-based
attraction. Supplementary Fig. 1 gives a visual example about
how the RA pre-weighting rule is improving the angular
coalescence effect with respect to Fig. 1, where the same methods
are adopted without pre-weighting. Since it might be argued that
the repulsion between high external degree nodes implied by the
RA rule is in contrast with the existence of rich clubs, in
Supplementary Discussion we comment the rich clubness of the
PSO networks (Supplementary Fig. 25), and why this does not
affect the RA pre-weighting efficiency. Although inspired by the
same rationale, the second strategy makes, instead, a global-
information-based pre-weighting of the links, using the edge
betweenness centrality (EBC) to approximate distances between
nodes and regions of the network. EBC is indeed a global
topological network measure, which expresses for each edge of
the network a level of centrality, and the assumption is that
central edges are bridges that tend to connect geometrically
distant regions of the network, while peripheral edges tend to
connect nodes in the same neighborhood. We let notice that if a
weighted network is given, where the weights suggest distances
between connected nodes, these can be directly adopted rather
than approximated by the pre-weighting techniques.

Furthermore, we were not convinced that preserving the
angular distances between nodes adjacent in the angular
coordinates was the best strategy. Most likely their reciprocal
angular distances were affected by short-range angular noise.
Thus, we devised a strategy to reorganize the nodes on the
circumference that we called equidistant adjustment (EA): the
nodes are equidistantly reorganized along the angular coordinates
of the circumference according to their original order learned by
the coalescent embedding. Figure 2 displays a didactic example of
the difference between the circular and equidistant adjustment.

The several variants of coalescent embedding algorithms,
characterized by the different pre-weightings and angular
adjustments, have been tested in various evaluation frameworks
using both synthetic and real networks, and their performance
has been compared to state-of-the-art methods for hyperbolic
embedding. The next sections will report the results obtained
together with a discussion of the main achievements.

Evaluations of mapping accuracy in popularity-similarity-
optimization synthetic networks. In order to test the perfor-
mance of the hyperbolic embedding methods, synthetic networks
have been generated with the PSO model, ranging over several
combinations of the parameters. Figure 3 reports the results of the
best dimension reduction methods for the first evaluation fra-
mework. Here the performance was evaluated as Pearson corre-
lation between all the pairwise hyperbolic distances of the
network nodes (we called such correlation: HD-correlation) in
the original PSO model and in the reconstructed hyperbolic
space. The plots report the average correlation over the 100 syn-
thetic networks that have been generated for each different PSO
model parameter combination. It is evident that the coalescent
embedding techniques pre-weighted with RA and adjusted
according to EA are outperforming HyperMap?®, HyperMap-
CN30, and LPCS®! that are the state-of-the-art, and this is the
second key discovery of our study. RA performed similarly to
EBC, and in general both the pre-weighting strategies are effective
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Fig. 3 HD-correlation on popularity-similarity-optimization synthetic networks. a-i To validate the above-mentioned techniques, we generated 100

different synthetic networks for each combination of tuneable parameters of the PSO model (temperature T, size N, half of average degree m, power-law
degree distribution exponent y). Supplementary Fig. 24 offers an idea of the topological diversity of the synthetic networks generated fixing y=2.5 and
tuning the other parameters, Supplementary Fig. 25 reports an analysis of the rich clubness of the networks, commented in Supplementary Discussion. In
the results presented in the figures of this article, we used y = 2.5, but we also ran the simulations for y =2.25 and 2.75, and the differences were negligible
(results not shown). Here, the performance was evaluated as Pearson correlation between all the pairwise hyperbolic distances of the network nodes in the
original PSO model and in the reconstructed hyperbolic space (HD-correlation). The plots report the average correlation and the standard error over the
100 synthetic networks that have been generated for each different parameter combination. The value one indicates a perfect correlation between the
nodes’ hyperbolic distances in the original and reconstructed hyperbolic space. The plots show the results of different methods when both RA and EA are
applied. The methods without EA are plotted in Supplementary Fig. 7. For each subplot, the value of HyperMap-CN for T= 0 is missing because the original

code assumes T>0

(Supplementary Figs. 2-6). However, RA is computationally more
efficient because it is a local approach (see “Methods” section for
details about the complexity). Obviously, all the methods reduce
their performance for increasing temperature (reduced cluster-
ing), because the networks assume a more “random” structure.
Another alluring result, pointing out a very subtle problem, is
that without EA all the techniques significantly reduce the
performance, as it is shown in Supplementary Fig. 7. Looking at
Fig. 3 and the Supplementary Figs. 2-6, EA makes a difference
especially for low temperatures (high clustering), while for high
temperatures its improvement is vanishing. This is particularly
evident for LE that in Supplementary Fig. 7 (where EA is not
applied) at low temperatures has a significantly worse perfor-
mance compared to Fig. 3, where EA is applied. Imposing an
equidistant adjustment might be counterintuitive, but our
simulations suggest that this sub-optimal strategy is better than
passively undergo the short-range angular embedding uncer-
tainty. On the other hand, once the temperature is increased, the
overall angular embedding uncertainty also increases and the
techniques are less efficient to recover the node order. In practice,
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for high temperatures, the overall noise overcomes the short-
range noise and the EA reduces its effectiveness.

In Fig. 4j-r, we repeated the same evaluation of Fig. 3, but we
adopted a different measure called Concordance score (C-score).
The C-score can be interpreted as the proportion of node pairs
for which the angular relationship in the inferred network
corresponds to the angular relationship in the original network
(see “Methods” section). Basically, this score provides a
quantitative evaluation of the scatter plots in Fig. 4a-i, where
the alignment between inferred and original angular coordinates
is visually compared. A C-score of 0 indicates total misalignment,
while 1 indicates perfect alignment. The results in Fig. 4 confirm
that our methods outperform, especially for low temperatures, the
state-of-the-art techniques also in recovering a good angular
alignment of the nodes. Supplementary Figs. 8-17 show the
scatter plots for all the other methods and temperatures. The
scatter plots visually highlight that the correlation between real
and inferred angular coordinates decreases for increasing
temperatures. However, it is evident that the proposed techniques
are able to provide quite accurate alignments even for middle
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temperatures. Noticeably, the coalescent embedding-based algo-  Supplementary Fig. 18). They can even embed large networks of
rithms combine important performance improvement with a 10,000 nodes in less than 1 min and 30,000 nodes in few minutes
spectacular speed up in respect to HyperMap (Fig. 5 and (Fig. 5), whereas HyperMap requires more than 3 h for small
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Fig. 4 Angular coordinates comparison and C-score on popularity-similarity-optimization synthetic networks. a-i For all the combinations of the PSO
parameters N (size) and m (half of average degree), we chose among the synthetic networks embedded with RA-MCE-EA the ones with the best C-score,
which had always temperature T= 0. For these networks, we plotted the aligned inferred angular coordinates against the original angular coordinates ().
The alignment was done in the following manner: we applied 360 rotations of one degree both to the inferred coordinates as they are and to the inferred
coordinates obtained arranging the nodes in the opposite clock direction. Then from these resulting 720 alternatives of the inferred angular coordinates, we
chose the one that maximizes the correlation with the original angular coordinates, in order to guarantee the best alignment. The alignment does not
change the C-score, which represents the percentage of node pairs in the same circular order in the original and inferred networks (see “Methods” section
for details). Similar plots for the other coalescent embedding methods and temperature values can be found in Supplementary Figs. 8-17. j-r The plots
report the average C-score and the standard error over the 100 synthetic networks that have been generated for each different parameter combination.
There are no separate plots for the methods with and without EA since this adjustment affects the distances but not the circular ordering, therefore it does
not change the C-score. For each subplot, the value of HyperMap-CN for T= 0 is missing because the original code assumes T> 0
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10,000, and N =30,000, respectively. Again, averages are taken over the parameters m (half of the mean node degree) and temperature T. Considering

the average performance in all the simulations on 71000 nodes networks a,

coalescent embedding approaches achieved a performance improvement of

more than 30% in comparison to HyperMap, requiring only around one second versus more than three hours of computation time. Similar performance
results are confirmed for the networks of sizes N=10,000 and N =30,000 with an execution time still in the order of minutes for the biggest networks.
The comparison to HyperMap was not possible due to its long running time. The dashed gray bins represent the HD-correlation of the respective non-EA
variants, suggesting that their performance tends to the EA variants for larger PSO networks

networks of just 1000 nodes. It is important to underline that, in
addition to the remarkable scaling of the computational time (see
“Methods” section for details about the complexity), the high-
correlation values are also preserved for larger networks.

Greedy routing performance in synthetic and real networks.
Another important characteristic that can be studied in a network
embedded in a geometrical space is its navigability. The network
is considered navigable if the greedy routing (GR) performed
using the node coordinates in the geometrical space is efficient?.

NATURE COMMUNICATIONS | 8:1615

In the GR, for each pair of nodes, a packet is sent from the source
to the destination and each node knows only the address (coor-
dinates) of its neighbors and the address of the destination, which
is written in the packet. In the GR procedure adopted?’, at each
hop the packet is forwarded from the current node to its neighbor
at the lowest hyperbolic distance from the destination and it is
dropped when a loop is detected. The efficiency is evaluated
according to the GR-score (see “Methods” section for details),
which assumes values between 0, when all the routings are
unsuccessful, and 1, when all the packets reach the destination
through the shortest path. Supplementary Fig. 19 compares the
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Fig. 6 Greedy routing (GR) on real networks. The eight real networks whose statistics are reported in Table 1 have been mapped using the hyperbolic
embedding techniques and the greedy routing in the geometrical space has been evaluated. The barplot report for each method the mean GR-score and
standard error over the networks. The GR-score is a metric to evaluate the efficiency of the greedy routing, which assumes values between O, when all the
routings are unsuccessful, and 1, when all the packets reach the destination through the shortest path (see “Methods"” section for details). Both the EA (a)
and non-EA (b) variants are reported, in order to check whether the equidistant adjustment might affect the navigability. A black arrow points the
coalescent embedding algorithm RA-ncMCE that offers the best performance regardless the use of node angular adjustment. The mean GR-score of RA-
ncMCE is not statistically different from the one of the HyperMap-based algorithms (permutation test p value >0.2 in all the pairwise comparisons)

performance of the hyperbolic embedding methods as mean GR-
score over all the PSO networks of Fig. 3. While mean GR-score
on eight real networks (whose statistics are reported in Table 1)
are shown in Fig. 6. The first fact to notice is that the PSO
network as synthesized with its original coordinates is the most
navigable network. Second, HyperMap-based algorithms
obtained the highest GR-score among the hyperbolic embedding
algorithms, followed by the coalescent embedding technique RA-
ncMCE, which turns out to be the best both considering EA and
non-EA versions. However, the mean GR-score of RA-ncMCE in
Fig. 6 is not statistically different from the one of the HyperMap-
based algorithms (permutation test p value >0.2 in all the pair-
wise comparisons), therefore their performance is comparable on
real networks of Fig. 6. This is an impressive result and we will
now explain the reason. The success of the GR is very sensitive to
the fact that connected nodes are mapped close in the geometrical
space and disconnected nodes far apart. In fact, mapping dis-
connected nodes close in the geometrical space is likely to cause
the routing of packets into wrong paths. In the original PSO
network, nodes are connected with probability inversely pro-
portional to their hyperbolic distance!, therefore connected nodes
tend to be close and disconnected nodes faraway by construction,

8 NATURE COMMUNICATIONS | 8:1615

which explains the high navigability of the networks generated
with the PSO model. The reason why HyperMap methods offer
the best GR performance is that—during maximum likelihood
estimation procedure—they iteratively adjust both the angular
and radial coordinates of the nodes using an objective function
that is maximized if connected nodes are at low hyperbolic dis-
tance and disconnected nodes are at high hyperbolic distance?’.
The reason why coalescent embedding techniques offer a GR
performance that is inferior to HyperMap methods is that they
put connected nodes close and disconnected far only in the
angular coordinates and not directly in the hyperbolic space,
where instead the GR navigation occurs. In brief, coalescent
embedding optimizes angular distances in order to put connected
points close and disconnected far, while HyperMap optimizes the
hyperbolic distances. Therefore, the results obtained by RA-
ncMCE in GR are impressive considering that for this method
only angular coordinates contribute to the organization of the
points in the hyperbolic space, and that despite this significant
limitation RA-ncMCE performances on real networks are com-
parable to the ones of HyperMap methods. This finding is pro-
mising since further algorithms might also be designed to embed
directly in the hyperbolic space instead of inferring exclusively
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Table 1 Community detection on real networks with Louvain algorithm
Method Karate Opsahl 8 Opsahl 9 Opsahl 10 Opsahl 11 Polbooks Football Polblogs Mean % Impr.

N=34 N=43 N=44  N=77 N=77 N=105 N=115  N=1222

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16,714

m=229 m=449 m=791 m=6.73 m=14.13 m=4.20 m=>5.33 m=13.68

T=043 T=043 T=032 T=035 T=028 T=0.51 T=060 T=0.68

y=212 y=8.20 y=5.92 y=5.06 y=4.87 y=2.62 ¥y =9.09 y=2.38

N. =2 N. =7 N.=7 N.=4 N.=4 N.=3 N.=12 N. =2
EBC-ncISO-EA 1.00 0.57 0.47 1.00 0.93 0.59 0.90 0.68 0.77 +13.2
RA-MCE-EA 0.83 0.51 0.47 1.00 0.96 0.57 0.82 0.67 0.73 +7.4
RA-ncMCE-EA  0.73 0.55 0.47 1.00 1.00 0.57 0.83 0.67 0.73 +7.4
EBC-MCE-EA 0.83 0.47 0.41 1.00 0.96 0.57 0.90 0.62 0.72 +5.9
EBC-ncMCE-EA  0.88 0.46 0.41 1.00 0.96 0.57 0.85 0.62 0.72 +5.9
EBC-ISO-EA 0.83 0.42 0.47 1.00 0.89 0.59 0.88 0.66 0.72 +5.9
LPCS 0.83 0.49 0.41 1.00 0.96 0.55 0.87 0.67 0.72 +5.9
ncMCE-EA 0.73 0.47 0.47 1.00 0.96 0.57 0.89 0.62 0.7 +4.4
RA-LE-EA 0.67 0.48 0.53 1.00 0.92 0.56 0.82 0.70 0.7 +4.4
RA-ncISO-EA 0.67 0.54 0.42 1.00 0.92 0.56 0.86 0.67 0.70 +29
nclSO-EA 0.73 0.50 0.41 1.00 0.88 0.54 0.87 0.66 0.70 +2.9
EBC-LE-EA 0.85 0.42 0.41 0.96 0.92 0.56 0.85 0.62 0.70 +29
MCE-EA 0.64 0.47 0.47 0.96 0.92 0.55 0.86 0.62 0.69 +1.5
unweighted 0.46 0.55 0.41 1.00 0.96 0.50 0.93 0.64 0.68 0.0
LE-EA 0.63 0.55 0.41 1.00 0.78 0.55 0.82 0.67 0.68 0.0
RA-ISO-EA 0.57 0.43 0.44 1.00 0.88 0.54 0.86 0.67 0.67 -15
ISO-EA 0.34 0.50 0.41 0.96 0.93 0.56 0.82 0.67 0.65 -4.4
HyperMap 0.56 0.60 0.28 0.92 0.85 0.50 0.83 0.69 0.65 -4.4
HyperMap-CN 0.55 0.47 0.41 0.93 0.79 0.54 0.79 0.70 0.65 -4.4
Normalized mutual information (NMI) computed between the ground truth communities and the ones detected by the Louvain algorithm for eight real networks. NMI =1 indicates a perfect match
between the two partitions of the nodes. For each method, the network has been embedded in the hyperbolic space and the embedding coordinates are used to weight the input matrix for the Louvain
algorithm: observed links are weighted using the hyperbolic distances between the nodes and non-observed links using the hyperbolic shortest paths (see “Methods” section for details). As a reference,
the Louvain algorithm has been run giving in input also the unweighted adjacency matrix, the related row is highlighted in italic. The table contains also some statistics for each network: number of nodes
N, number of edges E, temperature T (inversely related to the clustering coefficient), power-law degree distribution exponent y, half of average degree m, and number of ground truth communities N..
Due to the higher performance, only the EA methods are here reported, whereas the complete table is shown as Supplementary Table 1. The NMI values highlighted in bold for the Karate and Opsahl_11
networks are the ones whose embedding is shown in Fig. 7. The rightmost column reports the percentage of improvement with respect to the unweighted variant, the best result is highlighted in bold.
The results obtained only weighting the observed links are shown in Supplementary Table 5

angular coordinates, as for the moment coalescent embedding is
able to do. A digression on the reason why RA-ncMCE is the best
performing among the coalescent embedding methods is pro-
vided in Supplementary Discussion, together with an analysis on
the impact of the equidistant adjustment for GR, reported in
Supplementary Fig. 20.

Community detection on real networks. Once in possession of
fast methods that are able to map complex networks in the
hyperbolic space with high precision and to disclose the hidden
geometry behind their topologies, several studies can be lead
exploiting the geometrical information. The analyses can cover
disparate fields like social, communication, transportation, bio-
logical, and brain networks. As an example of application, we
show how the hyperbolic distances can be used to feed commu-
nity detection algorithms. Community structure is one of the
most relevant features of real networks, and consists in the
organization of network nodes into groups within which the
connections are dense, but between which connections are
sparser. The development of algorithms for detection of such
communities is a key topic that has broad applications in network
science, for example, in identifying people with similar interests
in social networks, functional molecular modules in biological
networks, or papers with related topics in citation networks>2. We
modified four approaches for community detection that a recent
comparative study>> has shown to be the best among the state-of-
the-art and that acc%gt in input also weighted adjacency matrices:
Louvain®, Infomap>>, Label propagation’, and Walktrap®’. We
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demonstrate that they can be boosted when applied to the net-
works weighted according to the hyperbolic distances, which were
inferred by some of our coalescent embedding techniques (see
“Methods” section for details). In general, our results show that,
regardless of the approach used for community detection, ncISO-
based and MCE-based coalescent embedding techniques are sig-
nificantly better than LE-based in this task on real networks
(Tables 1 and 2 and Supplementary Tables 1-4).

The improvement obtained for Infomap is moderate but very
reliable: indeed, EBC-ncISO-EA allows always (on every network)
the improvement or the same performance in respect to standard
Infomap (unweighted). The boost obtained for Louvain is
remarkable (but less stable), indeed EBC-ncISO-EA, which is
also here the best method, offers an overall improvement of
+13.2%. In particular, an astonishing performance is obtained for
a social network, the Karate Club>8 (Table 1, first column), where
the Louvain algorithm based on the EBC-ncISO-EA embedding
reaches the perfect community detection—a result that is evident
also in the hyperbolic space visualization (Fig. 7a)—whereas the
unweighted Louvain, Infomap, Label propagation, and Walktrap
algorithms on the same network attain a mediocre performance.
The Karate network represents the friendship between the
members of a university Karate club in the United States:
communities are formed by a split of the club into two parts, each
following one trainer. This is a valuable pedagogic result, indeed
to the best of our knowledge it is the first time that the
communities present in the Karate network are perfectly
untangled by means of the Louvain algorithm (which is
ineffective without the “geometrical” boost of the coalescent
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Table 2 Community detection on real networks with Infomap algorithm
Method Karate Opsahl 8 Opsahl 9 Opsahl 10 Opsahl 11 Polbooks Football Polblogs Mean % Impr.

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N =1222

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16,714

m=229 m=449 m=791 m=6.73 m=14.13 m=4.20 m=>5.33 m=13.68

T=043 T=0.43 T=0.32 T=0.35 T=0.28 T =0.51 T=0.60 T=0.68

y=212 y=8.20 y="5.92 y=5.06 y=4.87 y=2.62 y=9.09 y=2.38

N.=2 N. =7 N.=7 N.=4 N.=4 N.=3 N.=12 N.=2
EBC-ncISO-EA 0.68 0.75 0.47 1.00 1.00 0.54 0.92 0.53 0.74 +4.2
ncMCE-EA 0.68 0.74 0.47 1.00 0.93 0.50 0.92 0.52 0.72 +1.4
unweighted 0.55 0.69 0.47 1.00 1.00 0.52 0.92 0.52 0.71 0.0
EBC-MCE-EA 0.68 0.55 0.53 1.00 0.96 0.52 0.93 0.52 0.7 0.0
EBC-ncMCE-EA  0.58 0.55 0.53 1.00 1.00 0.52 0.93 0.52 0.70 -1.4
ISO-EA 0.68 0.53 0.47 1.00 0.96 0.52 0.92 0.53 0.70 -1.4
LE-EA 0.68 0.54 0.47 1.00 0.96 0.53 0.92 0.51 0.70 -1.4
EBC-LE-EA 0.68 0.55 0.47 0.95 0.96 0.52 0.93 0.53 0.70 -1.4
nclSO-EA 0.68 0.53 0.47 1.00 0.96 0.47 0.92 0.53 0.69 -2.8
EBC-ISO-EA 0.55 0.55 0.47 1.00 1.00 0.52 0.92 0.53 0.69 -2.8
MCE-EA 0.68 0.54 0.47 0.95 0.93 0.51 0.92 0.52 0.69 -2.8
RA-ncISO-EA 0.55 0.55 0.47 1.00 1.00 0.52 0.92 0.52 0.69 -2.8
RA-ISO-EA 0.58 0.55 0.47 1.00 0.96 0.52 0.92 0.52 0.69 -2.8
RA-ncMCE-EA  0.47 0.55 0.53 1.00 1.00 0.52 0.92 0.50 0.69 -2.8
LPCS 0.55 0.55 0.53 1.00 0.96 0.52 0.93 0.51 0.69 -2.8
RA-LE-EA 0.55 0.55 0.47 1.00 0.93 0.52 0.92 0.52 0.68 -4.2
RA-MCE-EA 0.47 0.55 0.53 1.00 0.92 0.52 0.92 0.51 0.68 -4.2
HyperMap-CN 0.52 0.55 0.41 1.00 0.86 0.57 0.89 0.46 0.66 -7.0
HyperMap 0.52 0.60 0.32 1.00 0.92 0.49 0.90 0.46 0.65 -85
Normalized mutual information (NMI) computed between the ground truth communities and the ones detected by the Infomap algorithm for eight real networks. NMI =1 indicates a perfect match
between the two partitions of the nodes. For each method, the network has been embedded in the hyperbolic space and the hyperbolic distances between the nodes are used to weight the observed links
in the input matrix for the Infomap algorithm (see “Methods"” section for details). As a reference, the Infomap algorithm has been run giving in input also the unweighted adjacency matrix, the related row
is highlighted in italic. The table contains also some statistics for each network: number of nodes N, number of edges E, temperature T (inversely related to the clustering coefficient), power-law degree
distribution exponent 7, half of average degree m, and number of ground truth communities N.. Due to the higher performance, only the EA methods are here reported, whereas the complete table is
shown as Supplementary Table 2. The rightmost column reports the percentage of improvement with respect to the unweighted variant

embedding), and few algorithms can achieve these results in
general®. On the other hand, significant Louvain improvements
are obtained for the majority by the MCE-based approaches
(Table 1): in Fig. 7b-d, we offer some real network examples of
the embedding efficacy of these techniques for disclosing and
visualizing the communities directly in the hyperbolic space. We
gained perfect community detection also for another type of
social network of larger size (composed of four hidden
communities), the Opsahl 1140 (Fig. 7c). This is a type of
intra-organizational network where a link indicates that the
connected employees have both awareness of each other’s
knowledge and skills on the job. The four hidden communities
are related with the location of the employers (Paris, Frankfurt,
Warsaw, and Geneva) and they were perfectly detected starting
from the social-based network topology (Fig. 7c). For the Label
propagation and Walktrap algorithms, the presence of a
performance improvement given by some coalescent embedding
techniques is confirmed (Supplementary Tables 3 and 4) and
most of them are again ncISO-based and MCE-based approaches.
Further discussions on the impact of the equidistant adjustment
and on the results for large-size real networks are provided in
Supplementary Discussion and Supplementary Tables 6-8.

Beyond the two-dimensional space. In comparison to the other
approaches for hyperbolic embedding developed in previous
studies and tailored for the two-dimensional hyperbolic disk, a
peculiar property characterizes the class of unsupervised
topological-based nonlinear machine learning algorithms adopted
here. Being based on matrix decomposition methods for

10
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dimensionality reduction, there are not constraints on the num-
ber of dimensions that can be used to perform the embedding.
This led us to investigate the possibility to enlarge the geometrical
space from the hyperbolic disk to the hyperbolic sphere, with the
addition of a further dimension.

Therefore, we have adopted the manifold-based unsupervised
machine learning algorithms (LE, ISO, and ncISO) in order to
extend the coalescent embedding to the three-dimensional
hyperbolic space. After the pre-weighting step, the nonlinear
dimension reduction is performed using an additional dimension
with respect to the two-dimensional case. Considering a spherical
coordinate system, the polar and azimuthal angles of the nodes in
the hyperbolic sphere are preserved from the dimensionally
reduced coordinates, whereas the radial coordinate is assigned as
for the hyperbolic disk. The minimum-curvilinearity-based
algorithms as well as the equidistant adjustment are not suitable
for this extension, detailed explanations are provided in
Supplementary Discussion. The analysis of the 3D hyperbolic
embedding of the PSO networks highlighted the presence of
common patterns, for which Fig. 8 and Supplementary Fig. 21
shows an explanatory example. At low temperature (T =0), the
nodes appear distributed over a well-defined closed 3D curve.
Intuitively, it seems that the 2D hyperbolic disk already offers a
perfect discrimination of the similarities and with the addition of
the third dimension there is not much gain of information. With
the increase of the temperature, the nodes look more and more
spread around the closed 3D curve that was well defined at low
temperature. Even if one angular dimension of the sphere still
recovers most of the similarities present in the original network, it
is unknown if the higher spread along the second angular
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a  EBC-ncISO, NMI = 1 b

RA-MCE, NMI = 0.83

Cc

Fig. 7 Communities in Karate and Opsahl_11 networks. a, b Karate network
embedded with EBC-nclSO-EA and RA-MCE-EA. The network represents
the friendship between the members of a university karate club in the
United States. The two real communities are highlighted, they are formed
by a split of the club into two parts, each following one trainer. The NMI
obtained by the Louvain community detection algorithm is reported, where
the embedding coordinates were used to weight the input matrix: observed
links are weighted using the hyperbolic distances between the nodes and
non-observed links using the hyperbolic shortest paths (see “Methods”
section for details). NMI is the normalized mutual information and
represents the shared information between two distributions, normalized
between O and 1, where 1 indicates that the communities detected by the
algorithm perfectly correspond to the ground truth communities (see
“Methods" section for details). ¢, d Opsahl_11 network embedded with RA-
ncMCE-EA and RA-MCE-EA. This is a type of intra-organizational network,
where a link indicates that the connected employees have both awareness
of each other’s knowledge and skills on the job. The four real communities
are highlighted, they are related with the location of the employers. All the
approaches here adopted are adjusted according to EA strategy, although
this is not explicitly reported in the subtitles for brevity. Note that the
angular coordinates of the embedding in b, d have been aligned for a better
visualization, respectively, to the ones in a, ¢, as described for the scatter
plots in Fig. 4

dimension consists in a more refined discrimination between
similar nodes or in noise. Since the original coordinates are 2D,
this cannot be easily assessed.

In order to analyze the quality of the mapping from a
quantitative point of view, the improvement given by the 3D
hyperbolic embedding with respect to the 2D embedding is
evaluated for the greedy routing and the community detection
applications, the results are shown in Supplementary Tables 9-12
and commented in details in Supplementary Discussion.

Overall, the tests both on real and artificial networks represent
a quantitative evidence that the addition of the third dimension of
embedding in the hyperbolic space does not lead to a clear and
significant improvement in performance. Although for the PSO
model, this is indeed expected (because the synthetic networks are
generated by a 2D geometrical model), we obtain the same result
also on real networks, for which the hidden geometry is not
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necessarily 2D. Therefore, we might conclude that in practical
applications, at least on the tested networks, the 2D space appears
to be enough for explaining the hidden geometry behind the
complex network topologies. However, further investigations
should be provided on networks of larger size and different types
of origin, because the 3D space might conceptually offer an
advantage with networks of large size. An additional interesting
test can be to generate synthetic networks using a 3D PSO model,
and then to compare the embedding accuracy using mapping
techniques in 2D and 3D. Finally, we want to emphasize that,
while the other hyperbolic embedding methods should be
redesigned to fit for the 3D space, with the adoption of coalescent
embedding approaches the exploration of additional dimensions
of embedding is free of charge.

Discussion

The investigation of the hidden geometry behind complex net-
work topologies is an active research topic in recent years and the
PSO model highlighted that the hyperbolic space can offer an
adequate representation of the latent geometry of many real
networks in a low dimensional space. However, in absence of a
method able to map the network with high precision and in a
reasonable computational time, any further analysis in the geo-
metrical space would be compromised. Here we propose coales-
cent embedding: a class of unsupervised topological-based
nonlinear machine learning algorithms for dimension reduction
that offer a fast and accurate embedding in the hyperbolic space
even for large graphs, this is the main product of the work. The
embedding methods can be at the basis of any kind of investi-
gation about network geometry and, as examples of applications,
we presented community detection and greedy routing. However,
the impact of coalescent embedding can be of importance for
many disciplines including biology, medicine, computer science,
and physics.

Below, we will summarize the main findings of this study. The
first is that coalescent embedding significantly outperforms
existing state-of-the-art methods for accuracy of mapping in the
hyperbolic space and, at the same time, reduces the computa-
tional complexity from O(N?)-O(N%) of current techniques to O
(N?). In addition, the results obtained on synthetic networks are
indicative but should be considered with caution. In fact, LE-
based coalescent embedding that performs better on synthetic
networks is clearly outperformed in real network applications by
MCE-based coalescent embedding. This implies that real net-
works might have a geometry that is even more tree like and
hyperbolic (for this reason, MCE-based techniques can perform
better on real networks) than the one hypothesized by the PSO
model with uniform probability distribution of angular coordi-
nates. In addition, although the topology of many real networks is
certainly conditioned by the hyperbolic geometry, this is, how-
ever, one of the factors that shape their structure. Interestingly,
good results are achieved also for networks with out of range y
values. Since it has been demonstrated that a scale-free degree
distribution is a necessary condition for hyperbolic geometry*!,
this result demonstrates that the coalescent embedding methods
can reach good performances also for networks whose latent
geometry might be weakly hyperbolic or not hyperbolic.

The second important result is that the greedy routing per-
formance on real networks embedded in the hyperbolic space
using RA-ncMCE (which is a special type of coalescent embed-
ding based on minimum curvilinearity) is only slightly inferior
and in general comparable (no significant statistical difference is
detected) to the one of networks mapped using the state-of-the-
art methods. This is a remarkable result because the state-of-the-
art methods directly optimize the hyperbolic distances in order to
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Fig. 8 Comparison of 2D and 3D RA-ISO embedding for increasing temperature. The figure shows how the similarities of the original PSO network (N =
1000, m=6, y=2.5) (¢, h) are recovered either embedding in 2D (a, f) and arranging the angular coordinates over the circumference of a circle (d, i) or
embedding in 3D (b, g) and adjusting the angular coordinates over a sphere (e, j). a-e At low temperature (T=0), the nodes appear distributed over a
well-defined closed 3D curve. Intuitively, it seems that the 2D hyperbolic disk already offers a perfect discrimination of the similarities and with the addition
of the third dimension there is not much gain of information. f-j With the increase of the temperature (T=0.6 reported, T=0.3 and T=0.9 shown in
Supplementary Fig. 21), the nodes look more and more spread around the closed 3D curve that was well defined at low temperature. Even if one angular
dimension of the sphere still recovers most of the similarities present in the original network, it is unknown if the higher spread along the second angular
dimension consists in a more refined discrimination between similar nodes or in noise, therefore we have evaluated the improvement given by the 3D
mapping for the greedy routing and the community detection applications
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map connected nodes close and disconnected nodes far, which is
a key factor for effective greedy routing. RA-ncMCE, instead,
offers a comparable performance by ordering only the angular
coordinates, which is a promising starting point to develop more
effective strategies. In addition, RA-ncMCE can provide embed-
ding of networks with 30,000 nodes in few minutes (Supple-
mentary Fig. 22), hence can be of crucial aid for the investigation
of greedy routing in real large networks. However, this last claim
needs further analysis, because using the state-of-the-art methods
on networks of 30,000 nodes was not computationally achievable
in this study, therefore we cannot ensure that also on large net-
works RA-ncMCE provides a performance comparable to state-
of-the-art methods such as HyperMap.

The third important finding of this study is that coalescent
embedding can improve the performance of several state-of-the-
art community detection algorithms when they are applied to real
networks of small and medium size. But this improvement tends
to be of less entity for large networks.

The previous state-of-the-art methods, such as HyperMap,
were tailored for mapping networks in the hyperbolic space. The
fourth key achievement of this study is that coalescent embedding
techniques, although here adopted and tested for the inference of
hyperbolic angular coordinates, are topological-based machine
learning algorithms for nonlinear dimensionality reduction and
therefore theoretically able to unfold any network latent geo-
metry, not necessarily hyperbolic. The main point consists in the
ability to design or learn a kernel that approximates the geometry
of the hidden manifold behind the network topology. To this aim,
we proposed two network pre-weighting node similarity methods
(RA that is local topology based and EBC that is global topology
based) aimed to approximate link geometrical information
starting from the mere network topology. However, at the
moment, we are making the first steps toward understanding
these mechanisms of self-organization in complex networks, only
further scientific efforts will help in the years to come to take
advantage of the promising solutions proposed in this article to
address many other questions in network geometry. For instance,
the hidden geometry of networks with strong clustering and a
non-scale-free degree distribution has been demonstrated to be
Euclidean?3. Thus, for networks with these characteristics, the
Euclidean embedding obtained by the dimension reduction could
be in theory directly adopted rather than exploiting it for the
inference of the hyperbolic angular coordinates. However, this is
just a speculation that needs to be proved in future studies. The
fifth and last significant discovery of this study consists in an
innovation introduced with coalescent embedding techniques
that, although adopted for the mapping on a two-dimensional
hyperbolic space, offers the possibility to explore spaces of higher
dimensionality. Our simulations showed that the coalescent
embedding on a three-dimensional hyperbolic sphere does not
lead to a significant improvement on the tested data sets for tasks
such as greedy routing and community detection. However, this
result does not prevent further investigations that can lead to
different results when the method is employed for embedding in
arbitrary dimensions on new data and with different aims.
Although in this study, only unweighted networks have been
used, we let notice that the coalescent embedding methods can
work also on weighted networks, where the weights suggest
geometrical distances between the connected nodes, and this is a
further advantage with respect to state-of-the-art methods such as
HyperMap.

We want to stress that the exploitation of these machine
learning techniques in complex network latent geometry is, as a
matter of fact, initiated in this article, hence we suggest to take all
the results here presented with a “grain of salt.” Nevertheless,
gathered all together, our findings suggest that the idea to connect
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unsupervised topological-based nonlinear machine learning the-
ory with network latent geometry is a promising direction of
research. In fact, coalescent embedding algorithms combine
important performance improvement with a spectacular speed up
both on in silico and real tests. We hope that this article will
contribute to establish a new bridge at the interface between
physics of complex networks and computational machine learn-
ing theory, and that future extended studies will dig into real
applications revealing the impact of coalescent network embed-
ding in social, natural, and life sciences. Interestingly, a first
important instance of imgact on network medicine is given in the
article of Cacciola et al.*, in which coalescent embedding in the
hyperbolic space enhances our understanding of the hidden
geometry of brain connectomes, introducing the idea of network
latent geometry marker characterization of brain diseases with
application in de novo drug naive Parkinson’s disease patients.

Methods
Coalescent embedding algorithm in 2D. Input: adjacency matrix, x
Output: polar coordinates of nodes, (r, )

1. Pre-weighting rules
1.1. Repulsion-attraction rule (RA, local)
d; +d; + did;
Rl _ % T4 T didj e
o= oN, (ifxy =1) (1)
rRaz 1+ ei+e+epg

= 15Ny (if x5 =1) (2)

x;; value of (i, j) entry in matrix x; d; degree of node i; e; external degree of
node i (links neither to CNj; nor to j); CNj;; common neighbors of nodes i and

1.2. Edge betweenness centrality rule (EBC, global)

o(s, t|l;
PSS (S(sl:‘t;) 3)

siteV 4

V set of nodes; s, t any combination of network nodes in V; o(s, t) number of
shortest paths (s, t); a(s, t‘l,»j) number of shortest paths (s, t) through link ;.
2. Nonlinear dimension reduction
2.1 Laplacian eigenmaps (LE), 2nd-3rd dimensions
2.2 Isomap (ISO), 1st-2nd dimensions
2.3 Noncentered Isomap (ncISO), 2nd-3rd dimensions
2.4 Minimum curvilinearity (MCE), 1st dimension
2.5 Noncentered minimum curvilinearity (ncMCE), 2nd dimension
3. Angular coordinates (6)
3.1 Circular adjustment
3.2 Equidistant adjustment
4. Radial coordinates (r)

Nodes are sorted according to descending degree and the radial coordinate of
the i-th node in the set is computed according to:

r,-:%[/)‘lniJr(l—ﬂ)lnN] i=1,2,....N @)

N number of nodes; { = v/—K, we set { = 1; K curvature of the hyperbolic space;
p= y%l popularity fading parameter; y exponent of power-law degree distribution.

A flow chart with the visualization of the intermediate results produced by the
algorithmic steps on a toy network are provided in Fig. 2.

Coalescent embedding algorithm in 3D. Input: adjacency matrix, x
Output: spherical coordinates of nodes, (r, 6, ¢)

1. Pre-weighting rules (same as 2D)
1.1. Repulsion-attraction rule (RA, local)
1.2. Edge betweenness centrality rule (EBC, global)
2. Nonlinear dimension reduction
2.1 Laplacian eigenmaps (LE), 2nd-3rd-4th dimensions
2.2 Isomap (ISO), 1st-2nd-3rd dimensions
2.3 Noncentered Isomap (ncISO), 2nd-3rd-4th dimensions
3. Angular coordinates (6, ¢)
The angular coordinates obtained from the nonlinear dimension reduction
are used.
4. Radial coordinates (r) (same as 2D)

Notes:
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Four variants of the RA pre-weighting rule have been tested, the results are
shown in Supplementary Fig. 23 and commented in Supplementary Discussion.
Here only the two best rules are reported.

The exponent y of the power-law degree distribution has been fitted using the
MATLAB script “plfit.m.” according to a procedure described by Clauset et al.*3
and released at http://www.santafe.edu/~aaronc/powerlaws/.

Manifold-based embedding. The first type of topological-based unsupervised
machine learning for nonlinear dimension reduction adopted in this study are
Isomap, ISO%, and Laplacian eigenmaps LE?S. These two methods are manifold-
based machine learning because, in classical dimension reduction of multi-
dimensional data sets, they approximate the sample data manifold using a proxi-
mity graph, and then they embed by matrix decomposition the sample distances in
a 2D space. In our application the proximity graph is already given, representing an
important advantage, because the topological connections (similarities) between
the nodes are already known. In fact, the problem to infer a proximity graph is not
trivial and generally requires the introduction of at least a tuning parameter, for
instance, in the procedure to learn a nearest-neighbor graph (network) that
approximates the manifold. Furthermore, there is not a clear strategy to unsu-
pervisedly tune these kinds of parameters to infer the proximity graph.

ISO is based on extracting a distance matrix (or kernel) that stores all the
network shortest path distances (also named geodesic distances) that approximate
the real distances over the manifold. Then the kernel is centered and in this work
singular value decomposition (SVD) is applied to embed the nodes in the 2D space.
We also propose the noncentered version of the same algorithm, named ncISO, in
which the kernel centering is neglected. Consequently, the first dimension of
embedding is discarded because, since it points toward the center of the manifold,
is not useful. For more computational details on the implementation of ISO, please
refer to refs. & 2627,

LE is a different type of manifold machine learning. In fact, the inference of a
distance kernel (for instance, the shortest path kernel for ISO) starting from the
network structure is not required in this algorithm, which makes it faster than ISO.
Indeed, the idea behind LE is to perform the eigen-decomposition of the network’s
Laplacian matrix, and then to perform 2D embedding of the network’s nodes
according to the eigenvectors related to the second and third smallest eigenvalues.
The first smallest eigenvalue is zero, thus the related eigenvector is neglected. In
order to implement a weighted version of this algorithm we used, as suggested in
the original publication?®, the “heat-function” (instead of the pre-weighting values
as they are in their original scale):

2

Xij = e (5)

Where x;; is the original pre-weighing value for the link 4, j, and ¢ is a scaling factor
fixed as the squared mean of all the network’s pre-weighting values. For more
computational details on the implementation of LE, please refer to ref. 25,

Minimum curvilinearity and minimum curvilinear embedding. The centered and
noncentered versions of the minimum curvilinear embedding algorithm—respec-
tively named MCE and ncMCE—are based on a general nonlinear dissimilarity
learning theory called minimum curvilinearity?®. These approaches compress the
information in one unique dimension because they learn nonlinear similarities by
means of the minimum spanning tree, providing a hierarchical-based mapping.
This is fundamentally different from the previous algorithms (Isomap and LE),
which are manifold-based. If we would consider the mere unsupervised machine
learning standpoint, we would notice that manifold-based techniques in this study
showed two main weaknesses: (1) they offer less compression power because two
orthogonal dimensions of representation, instead of one, are needed; (2) the node
similarity pattern remains nonlinear (circular) also in the embedded space, thus the
goal of the nonlinear dimension reduction to linearize a (hidden) nonlinear pattern
in the embedding space is missed.

In unsupervised tasks where the objective is to discover unknown and
unexpected sample stratifications—for instance, the discovery of unforeseen groups
of patients with undetected molecular-based disease variations—the linearization
of a pattern along one unique embedding dimension can offer an undisputed help
to recognize hidden and hierarchical organized subgroups®® 44,

However, the utility of a computational technique varies in relation to the
designed target to reach. In fact, when the goal is to perform embedding of the
points of a multidimensional data set for unsupervised pattern detection and
linearization, the graph that connects the points and approximates the manifold is
unknown, and the minimum-curvilinearity-based techniques offer an advantage
over manifold approaches. Conversely, when the task is to embed a network in the
hyperbolic space, the graph that approximates the manifold is already given, and
the goal of embedding is to retain—and not to linearize—the circular node
similarity pattern in the 2D space. Therefore, the manifold-based techniques,
compared to the minimum-curvilinearity-based, could offer a better approximation
of the angular coordinates (representing the network node similarities) especially
for high temperatures of the PSO model, when the tree-like network organization
and the related hyperbolic geometry degenerate.

Interestingly, MCE and ncMCE were theoretically designed by Cannistraci
et al.® 20 according to a previous theory of Bogugna et al. presented in the
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“Navigability of complex networks”2. This article was clearly explaining that to
navigate efficiently a network (and thus approximate geodesic/curvilinear pairwise
node connections over the hidden manifold) it was not necessary to know the
complete information of network topology in the starting point of the navigation.
A greedy routing process (thus, based on the neighborhood information) was
enough to efficiently navigate the network. This triggered an easy conclusion at the
basis of the minimum curvilinearity learning theory design: to approximate
curvilinear distances between the points of the manifold it is not necessary to
reconstruct the nearest-neighbor graph. Just a greedy routing process (that exploits
a norm, for instance, Euclidean) between the points in the multidimensional space,
is enough to efficiently navigate the hidden network that approximates the
manifold in the multidimensional space. In few words, learning nonlinear distances
over the manifold by navigating an invisible and unknown network was possible,
because the navigation process was instead guided by a greedy routing. Hence,
according to Cannistraci et al.> 2%, a preferable greedy routing strategy was the
minimum spanning tree (MST). The only hypothesis of application of this
approach was that the points were not homogenously distributed in a lattice regular
structure, or a similar degenerative condition. Thus, the minimum curvilinear
kernel is the matrix that collects all the pairwise distances between the points (or
nodes) computed over the MST. And the ncMCE is the embedding of the
noncentered minimum curvilinear kernel by means of the SVD. The reason why to
exploit the ncMCE—noncentered version of MCE?®—is discussed in a second
article® that presents how to use this approach for link prediction in protein
interaction networks. The main difference between MCE and ncMCE is that in
general MCE linearizes the hidden patterns along the first dimension of embedding
while ncMCE along the second dimension (since it is noncentered, the first
dimension of embedding should be generally neglected because it points toward the
center of the manifold). To conclude this part, MCE/ncMCE are conceptually
different from all the other approaches because they are one of the few (maybe the
only, to the best of our knowledge) dimensionality reduction methods that
performs hierarchical embedding, and they exploit the MST as a highway to
navigate different regions of the network. Although they exploit a small fraction of
the network links—practically only the MST, which consists of N-1 links in a
network with N nodes—the reason why they work efficiently to infer the angular
coordinates of networks that follow the PSO model is well explained in the article
of Papadopoulos et al.?%; thus, we take the advantage to report the full paragraph:
<<This work shows that random geometric graphs*’ in hyperbolic spaces are an
adequate model for complex networks. The high-level explanation of this
connection is that complex networks exhibit hierarchical, tree-like organization,
while hyperbolic geometry is the geometry of trees*®. Graphs representing complex
networks appear then as discrete samples from the continuous world of hyperbolic
geometry.>>

However, the problem to compute the MST on an unweighted adjacency matrix
is that we do not have a norm that suggests the hidden connectivity geometry.
Thus, there was a clear margin to improve the performance of MCE/ncMCE by
pre-weighting the links in the network (and the adjacency matrix) using a
convenient strategy to suggest topological distances between the connected nodes.
In fact, in the Supplementary Figs. 5 and 6, we notice that the pre-weighting
strategy significantly boosts MCE/ncMCE performance.

HyperMap. HyperMap?® is a method to map a network into its hyperbolic space
based on maximum likelihood estimation (MLE). For sake of clarity, the first
algorithm for MLE-based network embedding in the hyperbolic space is not
HyperMap, but to the best of our knowledge is the algorithm proposed by Boguria
et al. in ref. '2. HyperMap is basically an extension of that method applied to the
PSO model. Unlike the coalescent embedding techniques, it can only perform the
embedding in two dimensions and cannot exploit the information of the weights. It
replays the hyperbolic growth of the network and at each step it finds the polar
coordinates of the added node by maximizing the likelihood that the network was
produced by the E-PSO model?.

For curvature K = -1, the procedure is as follows:

(1) Nodes are sorted decreasingly by degree and then labeled i=1, 2, ..., N
according to the order;

(2) Node i=1 is born and assigned radial coordinate r; =0 and a random
angular coordinate 6; € [0, 2x];

(3) For each node i=2, 3, ..., N do:

(3.a) Node i is added to the network and assigned a radial coordinate

r;=2lIni (6)

(3.b) The radial coordinate of every existing node j < i is increased according to
1i(i) = prj + (1 = B)r; 7)

where f € (0, 1] is obtained from the exponent y of the power-law degree
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distribution

y=l+% (8)

(3.c) The node i is assigned an angular coordinate by maximizing the likelihood

Li= T plhy)™ (1= p(hy)) " (9)

1<j<i
where p(h;) is the connection probability of nodes i and j

1
phy) = ————~
) () (10

which is function of the hyperbolic distance h;; between node i and node 9j, the
current radius of the hyperbolic disk R;, and the network temperature T2°. The
maximization is done by numerically trying different angular coordinates in steps
of 2z/N and choosing the one that leads to the biggest L;. The method has been
implemented in MATLAB.

HyperMap-CN. HyperMap-CN*’ is a further development of HyperMap, where
the inference of the angular coordinates is not performed anymore maximizing the
likelihood L;;, based on the connections and disconnections of the nodes, but using
another local likelihood L; cn, based on the number of common neighbors between
each node i and the previous nodes j < i at final time. Here the hybrid model has
been used, a variant of the method in which the likelihood L; ¢y is only adopted for
the high-degree nodes and L;; for the others, yielding a shorter running time.
Furthermore, a speed-up heuristic and corrections steps can be applied. The speed
up can be achieved by getting an initial estimate of the angular coordinate of a node
i only considering the previous nodes j < i that are i’s neighbors. The maximum
likelihood estimation is then performed only looking at an interval around this
initial estimate. Correction steps can be used at predefined times i after step 3.c (in
the description of HyperMap). Each existing node j < i is visited and with the
knowledge of the rest of the coordinates, the angle of j is updated to the value that
maximizes the likelihood L;;. The C++ implementation of the method has been
released by the authors at the website https://bitbucket.org/dk-lab/
2015_code_hypermap. For the embedding of all the PSO networks, the default
settings (correction steps but no speed-up heuristic) have been used, whereas for all
the real networks neither correction steps nor speed-up heuristic have been used.

LPCS. Link prediction with community structure (LPCS)3! is a hyperbolic
embedding technique that consists of the following steps: (1) Detect the hier-
archical organization of communities. (2) Order the top-level communities starting
from the one that has the largest number of nodes and using the community
intimacy index, which takes into account the proportion of edges within and
between communities. (3) Recursively order the lower-level communities based on
the order of the higher-level communities, until reaching the bottom level in the
hierarchy. (4) Assign to every bottom-level community an angular range of size
proportional to the nodes in the community, in order to cover the complete circle
with non-overlapping angular ranges. Sample the angular coordinates of the nodes
uniformly at random within the angular range of the related bottom-level com-
munity. (5) Assign the radial coordinates according to Eq. (4).

The LPCS code first takes advantage of the Louvain R function for detecting the
hierarchy of communities (see Louvain method), then we implemented the
embedding in MATLAB.

The C-score for angular coordinates evaluation. The inference of the angular
coordinates order is evaluated according to a modified version of the concordance
score (C-score)?’. The C-score is defined as the proportion of sample pairs for
which the ranking by a prediction model corresponds to the true ranking. Here, we
need to adapt the interpretation to our particular case, where the ranked samples
are not disposed along an axis but on a circle, hence the C-score can be interpreted
as the proportion of node pairs for which the angular relationship in the inferred
network corresponds to the angular relationship in the original network. Below, we
report the formula to compute the C-score in our case:
n—1 n P
€ — score = 22im1 iin 1)) (1)
nx(n—1)/2

Where: n is the total number of network nodes; i and j indicate two nodes and 6(i,
j) is 1 if the shortest angular distance from i to j has the same direction (clockwise
or counter-clockwise) in both the original and inferred coordinates, and 0 if the
direction is the opposite in the original and inferred coordinates.

Since in the inferred network, the nodes could have been arranged in the
opposite clock direction with respect to the original network, the C-score is
computed also considering the inferred angular relationships in the opposite clock
direction (the two conditions for the value of (i, j) are inverted) and the maximum
between the two values is chosen.
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Greedy routing. An important characteristic that can be studied in a network
embedded in a geometrical space is its navigability. The network is considered
navigable if the greedy routing (GR) performed using the node coordinates in the
geometrical space is efficient?. In the GR, for each pair of nodes i and j, a packet is
sent from i with destination j. Each node knows only the address of its neighbors
and the address of the destination j, which is written in the packet. The address of a
node is represented by its coordinates in the geometrical space. In the GR pro-
cedure adopted?’, the nodes are located in the hyperbolic disk and at each hop the
packet is forwarded from the current node to its neighbor closest to the destination,
meaning at the lowest hyperbolic distance. The packet is dropped when this
neighbor is the same from which the packet has been received at the previous hop,
since a loop has been generated. In order to evaluate the efficiency of the GR, two
metrics are usually taken into account: the percentage of successful paths and the
average hop-length of the successful paths?. The first one indicates the proportion
of packets that are able to reach their destinations—the higher the better—whereas
the second one indicates if the successful packets require on average a short path to
reach the destination—the lower the better. In order to compare the performance
of methods in a unique way while taking both of the metrics into account, a GR-
score has been introduced and it is computed as follows:

Pi
i Z;‘:l,j;éi o

nx(n—1)

GRscore = ( 1 2)

Where i and j are two within the set of n nodes, sp;; is the shortest path length from
i to j and p; is the GR path length from i to j. The ratio P assumes values in the
interval [0, 1]. When the GR is unsuccessful, the path length is infinite and
therefore the ratio is 0, which represents the worst case. When the GR is successful,
the path length is greater than 0 and tends to 1 as the path length tends to the
shortest path length, becoming 1 in the best case. The GR-score is the average of
this ratio over all the node pairs.

Louvain algorithm for community detection. The Louvain algorithm®* is sepa-
rated into two phases, which are repeated iteratively.

At first, every node in the (weighted) network represents a community in itself.
In the first phase, for each node i, it considers its neighbors j and evaluates the gain
in modularity that would take place by removing 7 from its community and placing
it in the community of j. The node i is then placed in the community j for which
this gain is maximum, but only if the gain is positive. If no gain is possible, node i
stays in its original community. This process is applied until no further
improvement can be achieved.

In the second phase, the algorithm builds a new network whose nodes are the
communities found in the first phase, whereas the weights of the links between the
new nodes are given by the sum of the weight of the links between nodes in the
corresponding two communities. Links between nodes of the same community lead
to self-loops for this community in the new network.

Once the new network has been built, the two phase process is iterated until
there are no more changes and a maximum of modularity has been obtained. The
number of iterations determines the height of the hierarchy of communities
detected by the algorithm.

For each hierarchical level, there is a possible partition to compare to the
ground truth annotation. In this case, the hierarchical level considered is the one
that guarantees the best match, therefore the detected partition that gives the
highest NMI value.

We used the R function “multilevel.community,” an implementation of the
method available in the “igraph” package*®.

In this study, the embedding of the network in the hyperbolic space has been
exploited in order to weight the input adjacency matrix. Given the hyperbolic
coordinates, the observed links have been weighted using the formula

1
HD _
N =17 HD, (13)

where HD; is the hyperbolic distance between nodes i and j. For the Louvain
algorithm, a further variant has been tested in which also the non-observed links
have been weighted using the formula

HSP 1

% T 13 HSpy (14)

where HSP;; is the hyperbolic shortest path between nodes i and j, computed as the
sum of the hyperbolic distances over the shortest path.

Infomap algorithm for community detection. The Infomap algorithm>® finds the
community structure by minimizing the expected description length of a random
walker trajectory using the Huffman coding process™.

It uses the hierarchical map equation (a further development of the map
equation, to detect community structures on more than one level), which indicates
the theoretical limit of how concisely a network path can be specified using a given
partition structure. In order to calculate the optimal partition (community)
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structure, this limit can be computed for different partitions and the community
annotation that gives the shortest path length is chosen.

For each hierarchical level, there is a possible partition to compare to the
ground truth annotation. In this case, the hierarchical level considered is the one
that guarantees the best match, therefore the detected partition that gives the
highest NMI value.

We used the C implementation released by the authors at http://www.
mapequation.org/code.html.

In this study, the embedding of the network in the hyperbolic space has been
exploited in order to weight the input adjacency matrix. Given the hyperbolic
coordinates, the observed links have been weighted using the hyperbolic distances
according to Eq. (13).

Label propagation algorithm for community detection. The label propagation
algorithm®® initializes each node with a unique label and iteratively updates each
node label with the one owned by the majority of the neighbors, with ties broken
uniformly at random. The update is performed in an asynchronous way and the
order of the nodes at each iteration is chosen randomly. As the labels propagate
through the network, densely connected groups of nodes quickly reach a consensus
on a unique label. The iterative process stops when every node has the same label as
the majority its neighbors, ties included. At the end of the procedure, the nodes
having the same label are grouped together to form a community. Since the aim is
not the optimization of an objective function and the propagation process contains
randomness, there are more possible partitions that satisfy the stop criterion and
therefore the solution is not unique. For this reason, the algorithm has been run for
10 independent iterations and the mean performance is reported.

We used the R function “label.propagation.community,” an implementation of
the method available in the “igraph” package*®.

In this study, the embedding of the network in the hyperbolic space has been
exploited in order to weight the input adjacency matrix. Given the hyperbolic
coordinates, the observed links have been weighted using the hyperbolic distances
according to Eq. (13).

Walktrap algorithm for community detection. The Walktrap algorithm?” is
based on an agglomerative method for hierarchical clustering: the nodes are
iteratively grouped into communities exploiting the similarities between them. The
nodes similarities are obtained using random walks and are based on the idea that
random walks tend to get trapped into densely connected subgraphs corresponding
to communities.

The agglomerative method uses heuristics to choose which communities to
merge and implements an efficient way to update the distances between
communities. At the end of the procedure, a hierarchy of communities is obtained
and each level offers a possible partition. The algorithm chooses as final result the
partition that maximizes the modularity.

We used the R function “walktrap.community,” an implementation of the
method available in the “igraph” package*s.

In this study, the embedding of the network in the hyperbolic space has been
exploited in order to weight the input adjacency matrix. Given the hyperbolic
coordinates, the observed links have been weighted using the hyperbolic distances
according to Eq. (13).

Normalized mutual information. The evaluation of the community detection has
been performed using the normalized mutual information (NMI) as in ref. 50, The
entropy can be defined as the information contained in a distribution p(x) in the
following way:

H(X) =) p(x)logp(x)

xeX

(15)
The mutual information is the shared information between two distributions:

1067) = Y 5 pleptos ([ 2520 (16

yEY xeX

To normalize the value between 0 and 1 the following formula can be applied:

I(X,Y)

NMI=——1"2
HX)H(Y)

(17)

If we consider a partition of the nodes in communities as a distribution (probability
of one node falling into one community), we can compute the matching between
the annotation obtained by the community detection algorithm and the ground
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truth communities of a network as follows:

H(Cp) = iﬂmg(’i) (18)
— N N
nr. nT l’lT
H(Cr) = —’log(—’) (19)
I:ZI N N
Ny Nyl
I(Cp,Cr) = ZZWI‘J%(W”IT) (20)
Bl
NMI(CD,CT) — I(CDyCT) (21>
H(Cp)H(Cr)
Where:
N—number of nodes;
D T

n"”, n' —number of communities detected by the algorithm (D) or ground truth
(1)

ny;—number of nodes assigned to the h-th community by the algorithm and to
the I-th community according to the ground truth annotation.

We used the MATLAB implementation available at http://commdetect.weebly.
com/. As suggested in the code, when & <100, the NMI should be adjusted in
order to correct for chance’.

Generation of synthetic networks using the PSO model. The popularity-simi-
larity-optimization (PSO) model! is a generative network model recently intro-
duced in order to describe how random geometric graphs grow in the hyperbolic
space. In this model, the networks evolve optimizing a trade-off between node
popularity, abstracted by the radial coordinate, and similarity, represented by the
angular coordinate distance, and they exhibit many common structural and
dynamical characteristics of real networks.

The model has four input parameters:

m > 0, which is equal to half of the average node degree;

P € (0, 1], defining the exponent y =1+ 1/f of the power-law degree distribution;
T> 0, which controls the network clustering; the network clustering is maximized
at T=0, it decreases almost linearly for T=[0, 1) and it becomes asymptotically
zero if T> 1;

¢ = V/=K>0, where K is the curvature of the hyperbolic plane. Since changing ¢
rescales the node radial coordinates and this does not affect the topological
properties of networks!, we considered K= -1.

Building a network of N nodes on the hyperbolic disk requires the following
steps: (1) Initially the network is empty. (2) At time i=1, 2, ..., N a new node i
appears with radial coordinate as described in Eq. (6) and angular coordinate 6;
uniformly sampled in [0, 27]; all the existing nodes j < i increase their radial
coordinates according to Eq. (7) in order to simulate popularity fading. (3) If T'=0,
the new node connects to the m hyperbolically closest nodes; if T > 0, the new node
picks a randomly chosen existing node j < i and, given that it is not already
connected to it, it connects to it with probability p(h;) (see Eq. (10)), repeating the
procedure until it becomes connected to m nodes. (4) The growing process stops
when N nodes have been introduced.

Real networks data set. The community detection methods have been tested on
eight small real networks, which represent differing systems, and on eight large
Internet networks.

The networks have been transformed into undirected, unweighted, without self-
loops and only the largest connected component has been considered. The
information of their ground truth communities is available. Every table, together
with the results, provides also some basic statistics of the networks.

The first small network is about the Zachary’s Karate Club®, it represents the
friendship between the members of a university karate club in the United States.
The communities are formed by a split of the club into two parts, each following
one trainer.

The networks from the second to the fifth are intra-organizational networks
from ref. “° and can be downloaded at https://toreopsahl.com/datasets/
#Cross_Parker. Opsahl_8 and Opsahl_9 come from a consulting company and
nodes represent employees. In Opsahl_8, employees were asked to indicate how
often they have turned to a co-worker for work-related information in the past,
where the answers range from: 0—I do not know that person; 1—Never; 2—
Seldom; 3—Sometimes; 4—Often; 5—Very often. Directions were ignored. The
data were turned into an unweighted network by setting a link only between
employees that have at least asked for information seldom (2).

In the Opsahl_9 network, the same employees were asked to indicate how
valuable the information they gained from their co-worker was. They were asked to
show how strongly they agree or disagree with the following statement: “In general,
this person has expertise in areas that are important in the kind of work I do.” The
weights in this network are also based on the following scale: 0—Do not know this

| DOI: 10.1038/541467-017-01825-5 | www.nature.com/naturecommunications


http://www.mapequation.org/code.html
http://www.mapequation.org/code.html
http://commdetect.weebly.com/.
http://commdetect.weebly.com/.
https://toreopsahl.com/datasets/#Cross_Parker.Opsahl_8
https://toreopsahl.com/datasets/#Cross_Parker.Opsahl_8
www.nature.com/naturecommunications

ARTICLE

person; 1—Strongly disagree; 2—Disagree; 3—Neutral; 4—Agree; 5—Strongly
agree. We set a link if there was an agreement (4) or strong agreement (5).
Directions were ignored.

The Opsahl_10 and Opsahl_11 networks come from the research team of a
manufacturing company and nodes represent employees. The annotated
communities indicate the company locations (Paris, Frankfurt, Warsaw, and
Geneva).

For Opsahl_10, the researchers were asked to indicate the extent to which their
co-workers provide them with information they use to accomplish their work. The
answers were on the following scale: 0—I do not know this person/I never met this
person; 1—Very infrequently; 2—Infrequently; 3—Somewhat frequently; 4—
Frequently; 5—Very frequently. We set an undirected link when there was at least a
weight of 4.

For Opsahl_11, the employees were asked about their awareness of each other’s
knowledge (“I understand this person’s knowledge and skills. This does not
necessarily mean that I have these skills and am knowledgeable in these domains,
but I understand what skills this person has and domains they are knowledgeable
in.”). The weighting was on the scale: 0—I do not know this person/I have never
met this person; 1—Strongly disagree; 2—Disagree; 3—Somewhat disagree; 4—
Somewhat agree; 5—Agree; 6—Strongly agree. We set a link when there was at least
a 4, ignoring directions.

The Polbooks network represents frequent co-purchases of books concerning
US politics on amazon.com. Ground truth communities are given by the political
orientation of the books as either conservative, neutral or liberal. The network is
unpublished but can be downloaded at http://www-personal.umich.edu/~mejn/
netdata/, as well as with the Karate, Football, and Polblogs networks.

The Football network®? presents games between division IA colleges during
regular season fall 2000. Ground truth communities are the conferences that each
team belongs to.

The Polblogs®? network consists of links between blogs about the politics in the
2004 US presidential election. The ground truth communities represent the
political opinions of the blogs (right/conservative and left/liberal).

The large size networks considered for community detection are autonomous
systems (AS) Internet topologies extracted from the data collected by the
Archipelago active measurement infrastructure (ARK) developed by CAIDA®. The
connections in the topology are not physical but logical, representing AS
relationships, and the annotated communities are the geographical locations
(countries). ARK200909-ARK201012 are topologies collected from September 2009
to December 2010 at time steps of 3 months (download available at https://
bitbucket.org/dk-lab/2015_code_hypermap/src/
bd473d7575¢35e099b520bf669d92aea81fac69b/AS_topologies/). AS201501_IPv4 is
a more recent version of the IPv4 Internet topology, collected on January 2015
(download at http://www.caida.org/data/active/
ipv4_routed_topology_aslinks_dataset.xml). AS201501_IPv6 is as recent as the
previous one but represents the IPv6 Internet network (download at https://www.
caida.org/data/active/ipv6_allpref_topology_dataset.xml).

Complexity of coalescent embedding algorithms. The time complexity of the
coalescent embedding algorithms proposed can be obtained summing up the
computational cost of the main steps: pre-weighting, dimension reduction,
assignment of angular coordinates, and radial coordinates. All the complexities
reported assume the network to be connected, therefore the number of edges E has
at least the same order of complexity as the number of nodes N.

1.  Pre-weighting rules

RA: it only requires basic operations on sparse matrices, whose complexity
is proportional to the number of nonzero elements, therefore O(E).

EBC: it requires the computation of the EBC, which takes O(EN) using the
Brandes’ algorithm for unweighted graphs>*.

2. Dimension reduction techniques

2.1) LE: the method performs the eigen-decomposition of the Laplacian
matrix solving a generalized eigenvalue problem and then uses the eigenvectors
related to the smallest eigenvalues, discarding the first because it is zero.
The computation of all the eigenvalues of the matrix requires O(N?), using
the MATLAB function “eig.” However, since the Laplacian matrix is sparse
and only a few eigenvalues are needed (k=3 for a 2D embedding and k=4
for a 3D embedding in the hyperbolic space), the MATLAB function “ei3gs”
can be executed. First, the matrix is factorized, which requires O(N°?)
for sparse matrices®®, then it uses the implicitly restarted Arnoldi method
(IRAM)*7 as implemented in ARPACK®S, It is an iterative method whose
convergence speed strictly depends on the relative gap between the
eigenvalues, which makes the computational complexity difficult to analyze
in terms of N and E.

2.2) ISO: the method computes as first all the pairwise shortest paths
between the nodes using the Johnson’s algorithm, which takes O(EN)*°. The
obtained kernel is centered, which costs O(N?) due to operations on dense
matrices, and finally singular value decomposition is applied, in order to
obtain the singular vectors related to the largest singular values. The
computation of all the singular values of the matrix requires O(N®)*°, using
the MATLAB function “svd.” However, since only a few singular values are
needed (k=2 for a 2D embedding and k=3 for a 3D embedding in the
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hyperbolic space), the function “lansvd” from the software package
PROPACK can be exploited, which has a lower computational complexity
equal to O(kN?)®0,

2.3) ncISO: the method performs the same operations as ISO, omitting the
kernel centering. As a consequence, the first dimension of embedding is
discarded, therefore the singular values to compute are k=3 for a 2D
embedding and k =4 for a 3D embedding in the hyperbolic space.

2.4) MCE: the method computes as first a minimum spanning tree over
the network using the Kruskal’s algorithm, whose complexity is O(E + X * log
(N)), where X is the number of edges no longer than the longest edge in the
MST®!. Starting from the minimum spanning tree, all the pairwise transversal
distances between disconnected nodes are computed in order to form the
MC-Kernel, the complexity of this step it O(EN) with E=(N-1) hence O
(N?). The following step is the kernel centering that costs O(N?). Since the
angular coordinates are inferred according to the first dimension of
embedding, the singular values to compute are k=1 for a 2D embedding
in the hyperbolic space.

2.5) ncMCE: the method performs the same operations as MCE, omitting
the kernel centering. As a consequence, the first dimension of embedding is
discarded and the angular coordinates are inferred according to the second
one. Therefore, the singular values to compute are k =2 for a 2D embedding
in the hyperbolic space.

3. Angular coordinates

3.1) Circular adjustment: the assignment requires the conversion from
Cartesian to polar coordinates for the methods LE, ISO, and ncISO and a
rescaling of the coordinates for MCE and ncMCE, in both the cases the cost is
O(N).

3.2) Equidistant adjustment: a sorting operation is performed, which costs
O(N log N).

4. Radial coordinates: the assignment is performed applying a given mathema-
tical formula, which requires the nodes to be sorted by degree, the cost is
therefore O(N log N).

Summarizing, if full matrix factorization techniques are used, all the methods
have a complexity of O(N?). Instead, if the truncated variants are used, for ISO,
ncISO, MCE, and ncMCE, the SVD takes O(N?) since k is a small constant,
therefore they have a complexity dominated by the shortest path computation,
which is O(EN) in case of ISO and ncISO and O(N?) in case of MCE and ncMCE.
The slowest pre-weighting is EBC and it is in the same order of complexity. The
Supplementary Fig. 22 where the RA pre-weighting is used shows that LE is faster
than the other methods and suggests that the computational complexity might be
in the same range of RA-ncMCE or even lower, certainly not higher. Therefore, we
conclude that the complexity would be O(EN) if the EBC pre-weighting is used;
and it could be even lower, and approximatively O(N?) for LE, MCE, and ncMCE,
if the RA pre-weighting is used.

Hardware and software details. Unless stated otherwise MATLAB code was used
for all the methods and simulations, which were carried out on a workstation under
Windows 8.1 Pro with 512 GB of RAM and 2 Intel(R) Xenon(R) CPU E5-2687W
v3 processors with 3.10 GHz.

Code availability. The MATLAB code for performing the coalescent embedding in
2D and 3D, together with functions for the evaluation (HD-correlation, C-score,
and GR-score) and visualization of the embedding are publicly available at the
GitHub repository: https://github.com/biomedical-cybernetics/
coalescent_embedding.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request. For real networks data that
have been obtained from publicly available sources, the corresponding URLs or
references are provided in the “Real networks data set” section.
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