
the simple review of the morphology of the spirometry curves
could lead to the distinction of new subgroups—another example
of the pathology’s heterogeneity.

In both health and disease, exercise is a model of
integrative physiology and provides a great opportunity to study the
combined cardiopulmonary insufficiency. Rocha and colleagues
have used this model to start understanding the determinants
of exercise limitation resulting from a complex interaction between
HF and COPD (4). Further research could bring new insights into
these patients’ behavior. Moreover, measurement of additional
variables could provide newer information but simultaneously
reveal new subgroups of patients not imagined today. n
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Extracellular Vesicle Transfer from Mesenchymal Stromal Cells
Modulates Macrophage Function in Acute Lung Injury
Basic Science and Clinical Implications

Once considered to be nothing more than nonspecific debris
released from dying cells, extracellular vesicles have attracted
growing interest from basic and clinical investigators. A wide
variety of cells release extracellular vesicles as a response to

pathophysiologic stimuli. Extracellular vesicles include exosomes,
microvesicles, and apoptotic bodies. Although apoptotic bodies
(.1,000 nm) are products of dying cells, exosomes (20–100 nm)
are formed by the fusion of multiple endosomes, including lipids,
proteins, and nucleic acids. Microvesicles (100–1,000 nm)
are formed by budding off from the plasma membrane and
contain cellular fractions that include proteins, lipids, mRNA and
microRNA, and mitochondria. Both exosomes and microvesicles
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can interact with other cells via ligand–receptor pathways, and
they can be internalized, leading to biologic responses (1).

In this issue of the Journal, Morrison and colleagues
(pp. 1275–1286) report that conditioned media (CM) of bone
marrow-derived mesenchymal stromal cells (MSCs) (MSC-CM)
contain extracellular vesicles that alter the function of macrophages
so that they acquire the capacity to reduce experimental acute lung
injury (2). For the in vitro studies, human-derived monocytes were
differentiated into alveolar-like macrophages that produced increased
quantities of tumor necrosis factor (TNF)-a and IL-8 when
exposed to endotoxin or bronchoalveolar lavage from patients
with acute respiratory distress syndrome (ARDS). When the
macrophages were cocultured with MSC-CM, there was a
significant reduction in the secretion of TNF-a; enhancement of
their expression of the antiinflammatory M2 marker, CD-206;
and an increase in phagocytosis of bacteria. A blocking antibody
to CD-44 partially inhibited the beneficial effects of reducing
TNF-a secretion and the increased phagocytic activity of the
macrophages. To test in vivo relevance, the authors isolated
alveolar macrophages from C57/BL6 mice and treated them
ex vivo with MSC-CM; the alveolar macrophages were then
adoptively transferred intranasally into mice that had been injured
with endotoxin. Compared with untreated macrophages, the
MSC-CM–treated alveolar macrophages reduced lung injury, as
measured by reduced bronchoalveolar lavage concentrations of
protein and inflammatory cells. By flow cytometry, the MSC-CM
contained extracellular vesicles, and 25% of the vesicles were positive
for mitochondria. In addition, these mitochondria were identified in
the mitochondrial network of the monocyte-derived alveolar-like
macrophages. Using oligomycin as an ATP synthase inhibitor, the
antiinflammatory effect and the up-regulation of phagocytosis in
MSC-CM–treated macrophages was blocked, providing evidence
for mitochondrial oxidative metabolism in the MSC-mediated
extracellular vesicle modulation of macrophage function, primarily
from transfer of functional mitochondria from the MSCs to the
macrophages.

These studies add to a growing body of evidence that the
therapeutic effects of MSCs in preclinical models of acute lung
injury are mediated in part by extracellular vesicles that transfer
biologically active material to host cells, including monocytes and
macrophages. Pioneering work in 2012 by Islam and colleagues
(3) established connexin-43–dependent mitochondrial transfer
from MSCs to alveolar epithelial cells in endotoxin-injured
mice, resulting in restoration of surfactant secretion, normalization
of alveolar epithelial cell ATP concentrations, and increased
survival. More recently, Phinney and colleagues (4) demonstrated
mitochondrial transfer from MSCs to macrophages by extracellular
vesicles, resulting in enhanced bioenergetics in the macrophages
(4), and Jackson and colleagues (5) reported MSCs induced
mitochondrial transport by tunneling nanotubes that enhanced
macrophage phagocytosis. Research from the laboratory of Dr.
Jae Woo Lee has demonstrated that microvesicles from MSCs
restore alveolar fluid clearance in ex vivo perfused human
lungs (6) and reduce lung injury in mice from endotoxin (7)
and from live bacteria (8). Also, there was an equivalent
therapeutic effect of the MSC-derived microvesicles
compared with MSCs themselves. In addition, studies from
Dr. Kourembanas’s neonatology research group indicate that
density gradient preparations of exosomes from MSCs can

reverse bronchopulmonary dysplasia in mice, in part by
modulating macrophage function (9, 10). Favorable therapeutic
effects of MSC-derived extracellular vesicles have also been
reported in preclinical models of acute kidney injury (11),
myocardial ischemia (12), and traumatic brain injury (13).

What are some of the basic science implications of these studies
of extracellular vesicles generated by MSCs? The preclinical
studies of ARDS, bronchopulmonary dysplasia, and nonpulmonary
organ injury provide evidence that transfer of extracellular vesicles
may mediate most of the therapeutic effects of MSCs. However,
independent of extracellular vesicles, several secreted soluble
factors are present in MSC-CM, including IL-1 receptor antagonist,
tumor necrosis–stimulated gene 6 protein, keratinocyte growth
factor, angiopoietin-1, lipoxin A4, and prostaglandin E2, all of
which have therapeutic effects experimentally in acute lung injury
(14). Some of these beneficial proteins and lipids may be produced
by the transfer of mRNA in extracellular vesicles released by MSCs
to injured epithelium or to activated macrophages. For example, in
one study, the transfer of KGF mRNA in microvesicles may have
been the main pathway for an increase in KGF protein (8). As
another possibility, transfer of mRNA for COX2 could have been
the main pathway for increased PGE2 production and part of the
beneficial effect of MSCs in experimental sepsis (15). The current
study by Morrison and colleagues (2) provides evidence that
transfer of mitochondria itself from MSCs through extracellular
vesicles can modulate macrophages from a proinflammatory to an
antiinflammatory phenotype that might accelerate the resolution of
lung injury, findings that are consistent with findings from other
studies (5, 8, 10).

What are the clinical implications of these studies? Do these
findings mean that cell-based clinical trials with intact MSCs for
treating acute organ injury such as ARDS, infant respiratory distress
syndrome, or sepsis are misguided? In one preclinical study,
MSCs were more effective than MSC-CM in recovery from
ventilator-induced lung injury (16). Also, MSCs have been effective
in neonatal models of perinatal lung injury (17). Moreover, it is
possible that the direct cell contact from intact MSCs in the acutely
injured organ might generate soluble factors that can diffuse
through the injured tissues and release exosomes and microvesicles
that transfer to injured cells and favorably affect the resolution
properties of recruited monocytes and tissue macrophages.
Although there are challenges with MSC-based therapies, including
variations in production and cryopreservation and determining the
optimal source (bone marrow vs. umbilical cord, for example), the
safety record with MSCs as a therapeutic has been excellent (14).
Nevertheless, the growing evidence for the therapeutic effects of
extracellular vesicles from MSCs does raise the possibility that a
cell-free therapy consisting of exosomes or microvesicles or
MSC-CM might be produced that could be tested in patients with
ARDS, respiratory distress syndrome of the premature infant,
sepsis, acute kidney injury, or traumatic brain injury. Several steps
would be needed for this approach to become a reality, including
optimization of purification methods for isolation of the required
fractions of extracellular vesicles from MSCs, accompanied by a
comprehensive characterization of the RNA, microRNA, lipids,
and proteins in exosomes or microvesicles that would satisfy
regulatory requirements from the U.S. Food and Drug
Administration, along with a significant scale-up to provide
sufficient quantities for clinical testing.
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In summary, much has been learned about the role of
extracellular vesicles in mediating the therapeutic effects of MSCs
in clinically relevant experimental studies of acute organ injury,
with transfer of mitochondria, mRNA, and soluble factors that
can improve the function of injured endothelial and epithelial cells
and modulate macrophage function to advance repair. n
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Severity Scores and Community-acquired Pneumonia
Time to Move Forward

Ever since the success of the pneumonia severity index (PSI) (1),
a favorite pastime of community-acquired pneumonia (CAP)
researchers has been to sort through their databases and try to prove
that one score is better than another at predicting an important
outcome, typically mortality. Over the past 20 years since the
publication of the PSI, more than a dozen scores have been
promulgated, some specific to pneumonia and others more generic
across all patients with sepsis. Although the addition of a severity score

to clinical assessment has been shown to be associated with better
patient outcomes, a clear consensus from the dozens of comparative
analyses of different scores or even meta-analyses (2, 3) is hard to find.

In this issue of the Journal, Ranzani and colleagues (pp. 1287–
1297) compare the performance of the criteria for systemic
inflammatory response syndrome (SIRS); quick sepsis organ failure
assessment (qSOFA); confusion, respiratory rate, and blood pressure
(CRB); modified sepsis organ failure assessment (mSOFA); confusion,
urea, respiratory rate, blood pressure, age . 65 years (CURB-65);
and PSI in a large retrospective cohort of 6,874 patients with CAP
from Spain (4). Not surprisingly, the best predictor of mortality
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