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To survive, all animals must find, inspect, and ingest food.
Behavioral coordination and control of feeding is therefore a
challenge that animals must face. Here, we focus on how the
gustatory system guides the precise execution of behavioral
sequences that promote ingestion and suppresses compet-
ing behaviors. We summarize principles learnt from Drosophila,
where underlying sensory neuronal mechanisms are illustrated
in great detail. Moreover, we compare these principles with
findings in other animals, where such coordination plays prom-
inent roles. These examples suggest that the use of gustatory
information for feeding coordination has an ancient origin and is
prevalent throughout the animal kingdom.

gustatory sensory neuron; neuroethology; taste

Significance Statement

Efficient feeding requires coordination. We synthesize findings across diverse species, highlighting the
widespread and ancient role of taste in feeding coordination.

Introduction

All living organisms need energy to survive and repro-
duce. In contrast to plants and fungi, which rely on pho-
tosynthesis and absorption respectively, animals acquire
energy by feeding on other organisms. As feeding behav-
ior is essential for survival, animals have evolved special-
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ized feeding structures such as mouths, teeth, tongues,
and proboscises for food ingestion. These structures un-
derlie equally diverse ingestion strategies. For example,
many animals use their mouths to physically break down
their food, others swallow their prey whole, and some
feed by sucking nutritious fluids like nectar. Despite this
diversity, food ingestion follows three general principles.
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(1) First, the animal must decide whether or not to accept
a potential meal. (2) Upon acceptance, the animal must
precisely execute behavioral sequences such as synchro-
nized use of different effectors like jaws and tongues. (3)
At the same time, competing behaviors like locomotion
are often suppressed, so that the animal can focus on
feeding. These two latter features ensure coordinated,
efficient ingestion.

Sensory information, and especially taste, play critical
roles in these three steps. Here, we focus on the gustatory
control of steps (2) and (3), directing the reader to other
reviews as to step (1) (Scott, 2005; Yarmolinsky et al.,
2009; Liman et al., 2014; Joseph and Carlson, 2015). In
his seminal review, published more than two decades
ago, Reinhard Stocker provided a detailed description of
the anatomy and physiology of the chemosensory system
of Drosophila (Stocker, 1994). Based on these data, he
hypothesized that the gustatory organs distributed through-
out the body of the fruit fly have specialized functions.
This idea has been remarkably substantiated by recent
progress, which highlights the roles of distinct gustatory
sensory neurons in regulating different aspects of feeding.
Here, we review this progress and discuss the gustatory
sensory mechanisms that underlie feeding coordination in
other animals. By comparing the gustatory neuroethology
of feeding in different animals, this review tries to extract
common principles and discuss when these conserved
systems evolved.

Execution of Behavioral Sequences
during Feeding

To ingest food, humans and other primates use their
hands to deliver it to their mouth (McGraw and Daegling,
2012). Consequently, chewing and secretion of saliva
ensures that food is broken down physically and chemi-
cally. Once this is achieved, swallowing passes the food
toward the alimentary canal for further digestion. Eventu-
ally, animals reach satiation and stop ingesting food.
Similar behavioral sequences characterize the ingestion
behaviors of many animals. Indeed, even “primitive” ani-
mals like jellyfish have a stereotyped sequence of feeding
(Lindstedt, 1971b). Despite the prevalence of such se-
quences, the underlying sensory neuronal mechanisms
that ensure their precise execution are not well under-
stood.

Studies in insects provided important early contribu-
tions toward understanding the gustatory sensory control
of feeding sequences. Unlike mammals, where the tongue
is the main taste organ, insects have broadly distributed
gustatory organs that include the legs, wings, genitalia,
the surface and interior of the proboscis and, in some
species, the antennae and maxillary palps (Stocker,
1994). In his influential book, Vincent Dethier provided
detailed descriptions and studies of blowfly feeding be-
havior (Dethier, 1976). From a distance, a hungry blowfly
relies on visual and olfactory cues to guide it toward
potential food sources. When the blowfly eventually steps
on food, it immediately stops, orients itself toward the
food and extends its proboscis. Consequently, it opens its
oral lobes (labella), located at the tip of the proboscis, and
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Figure 1. The feeding sequence of Drosophila. A, Initially, a
hungry fly will search for food. This appetitive exploration relies
on visual and chemical cues. As soon as the fly steps on food, it
suppresses its movement (B), lowers its posture (C), and extends
its proboscis (D). The extension of the proboscis comprises of
four steps that use different muscles (i-iii). A schematic of the
surface of the proboscis, showing the spreading of the labella
from below, is shown in the last step (inset). Consequently, (E)
the fly ingests food until satiated and then (F) retracts its pro-
boscis and (G) moves away.

begins sucking food until it is satiated. Finally, the fly
retracts its proboscis and eventually moves away, ignor-
ing further encounters with food. When specific gustatory
organs are stimulated, blowflies typically execute different
subsets of feeding behavior (Pollack, 1977). Based on
such observations, Dethier concluded that the legs con-
trol proboscis extension, while the gustatory hairs and
gustatory pegs of the proboscis control the opening of
its lobes and the sucking of food, respectively (Dethier,
1976). Chapman extended this observation to other in-
sects (Chapman, 1995). Moreover, he argued that feeding
sequences are not fixed, partly because gustatory organs
early in the sequence can be overridden by more “down-
stream” organs. For example, grasshopper nymphs will
lift their legs to avoid contact with a deterrent-covered leaf
while eating it (White and Chapman, 1990). In blowflies,
leg-driven proboscis extension is suppressed if an aver-
sive substance is presented on the proboscis (Dethier
et al., 1956). Despite their importance, these early studies
did not have the resolution of individual neurons, leaving
underlying neuronal mechanisms unanswered.

The advent of Drosophila neurogenetics has enabled
targeted manipulation of neurons, allowing experiments
that directly address their functions. Fruit flies and blow-
flies share a similar feeding sequence (Fig. 1; Pool and
Scott, 2014) and gustatory system (Fig. 2A). Typically, the
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Figure 2. Neuronal circuits coordinating feeding in Drosophila. A, Schematic of an adult fruit fly, indicating the central nervous system,
comprising of the brain and thoracic ganglia (white). The position of the gustatory organs (wings, tarsi, labella, and pharyngeal organs) are
highlighted. B, GRNs in the wings (green) are critical for long-range foraging. C, Circuits controlling the PER on leg stimulation. Out of two
groups of leg GRNs, brain-projecting GRNs (magenta) are more critical for PER, likely through more direct interactions with a brain
command neuron. Locally-projecting GRNs (green) exert a smaller role, likely through SGNs (black). D, Circuits controlling PER on labelar
stimulation. Labelar GRNs (green) connect to SGNs in the brain (black) that integrate taste and hunger. E, Circuits controlling food ingestion.
Pharyngeal GRNs regulate feeding by prolonging (magenta cell) or decreasing (green cells) ingestion time. The sucking command neuron
(black) directly receives information from pharyngeal GRNSs, integrates it with hunger and likely activates the central pattern generator that
controls pumping. F, Circuits controlling locomotion suppression when feeding. Locally-projecting leg GRNs (green) suppress movement
on food encounter. Proboscis extension also suppresses locomotion, although the underlying circuits are unknown. Question marks (?)

indicate speculative or unknown pathways. For simplicity, only one or a few GRNs or SGNs per category are shown.

detection of food causes the aggregation of many fruit
flies on it, both in nature and in the laboratory. Surpris-
ingly, this aggregation is dramatically reduced when the
gustatory receptor neurons (GRNSs) in the wings (Fig. 2B,
green) are specifically eliminated (Raad et al., 2016). The
authors of this study propose that GRNs in the wings
detect non-volatile chemicals in microdroplets, which are
produced by flying over liquids, and can therefore facili-
tate appetitive exploration (Fig. 1A). Once the flies land on
food, additional gustatory organs can be stimulated. Like
in blowflies, stimulating GRNs in the legs of hungry fruit
flies with food (Fig. 2C) elicits the proboscis extension
reflex (PER; Fig. 1D). PER can also occur after stimulation
of the labelar gustatory hairs (Fig. 2D; Shiraiwa and Carl-
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son, 2007). Spontaneous proboscis responses have also
been reported (Fujita and Tanimura, 2011), but they are
very infrequent (Mann et al., 2013) and less likely to
proceed to full extension in wild-type flies (Chabaud et al.,
2006). Such responses may be of lesser importance un-
der normal circumstances, as the legs typically contact
the food first. Leg-driven PER is controlled by a small
group of highly sensitive sugar GRNs, located in the tip of
each leg (Fig. 2C, magenta; Miyamoto et al., 2013; Ling
et al., 2014; Thoma et al., 2016). They are likely to con-
stantly evaluate potential food during walking. More-
over, they project directly to the brain, ensuring rapid
proboscis extension as soon as food is detected. Such
anatomical and physiological properties likely evolved
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to support a specialized and crucial role in the initiation
of feeding.

Detailed examination of the PER reveals that it can be
broken down to four sequential steps, namely lifting of the
rostrum, extension of the haustellum and extension and
spreading of the labella (Fig. 1D). These steps are inde-
pendent: later steps can be induced without earlier steps
(Schwarz et al., 2017), showing that the effectors within
the proboscis are not organized as a chain reaction, but
rather centrally coded via “command” interneurons (Flood
et al., 2013). Interestingly, at least one step, the spreading
of the labella (Fig. 1D, inset), was elicited more robustly by
labelar rather than tarsal stimulation, in line with findings
in the blowfly (Pollack, 1977). Such differences in effec-
tiveness may enable fine-tuning of the feeding response
based on positional information, in the case of a highly
localized appetitive stimulus.

After the proboscis is extended, flies start to ingest food
(Fig. 1E), bringing it into contact with pharyngeal GRNs
(Fig. 2E), which are in close proximity with the central
pattern generator that generates sucking behavior (Manzo
et al., 2012). Pharyngeal GRNs regulate food consump-
tion by influencing the duration of ingestion (LeDue et al.,
2015; Joseph et al., 2017). Surprisingly, two populations
of sugar-sensitive pharyngeal GRNs have opposite ef-
fects on consumption: a group of gustatory receptor-
expressing cells promotes it (LeDue et al., 2015), while a
pair of ionotropic receptor-expressing cells inhibits it (Fig.
2E, magenta and green, respectively; Joseph et al., 2017).
The ionotropic receptor-expressing cells were proposed
to prevent overconsumption following prolonged inges-
tion, because their calcium responses are slower than
those of the gustatory receptor-expressing cells (Joseph
et al.,, 2017). Interestingly, following the ingestion of a
small amount of sugar solution, flies execute a local ap-
petitive search, a behavior also controlled by pharyngeal
GRNs (Murata et al., 2017). Taken together, these findings
emphasize the role of highly specialized GRNs in the
execution of the Drosophila feeding sequence and in the
precise control of each step.

Because Drosophila feeding responses are not simple
monosynaptic reflexes (Gordon and Scott, 2009), the spe-
cialized functions of GRNs are likely enacted by central
neurons. Recent studies have identified several second-
order gustatory neurons (SGNs) that receive direct input
from GRNs and control different aspects of feeding (Fig.
2C-E; Kain and Dahanukar, 2015; Miyazaki et al., 2015;
Yapici et al., 2016; Kim et al., 2017). For example, two sets
of SGNs in the thoracic ganglia receive input from sugar
GRNs in the legs and their activation is sufficient, but not
necessary, to elicit PER (Fig. 2C, black; Kim et al., 2017).
This suggests redundancy in the neuronal pathways con-
trolling this behavior, in line with findings about the cor-
responding leg GRNs (Thoma et al., 2016). Interestingly,
two different groups of brain SGNs were recently shown
to control distinct aspects of the feeding sequence. The
first group receives input from labelar GRNs and controls
PER (Fig. 2D, black; Kain and Dahanukar, 2015), while the
second group receives input from pharyngeal GRNs and
controls ingestion (Fig. 2E, black; Yapici et al., 2016). Both
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Figure 3. The role of gustatory information in the feeding coordi-
nation of catfish and sea anemones. A, Catfish have external and
internal taste buds. The former control prey-capture behaviors,
while the latter control ingestive behaviors such as chewing and
swallowing. B, The sea anemone Anthopleura captures food (gray
circle) with its tentacles, brings it to its mouth, and swallows it.
Asparagine and glutathione, likely released from sting-injured prey,
control tentacle movements and swallowing, respectively.

groups not only enact the functions of their associated
GRNSs, but also integrate gustatory information with star-
vation state, the latter likely being conveyed to them by
dopaminergic circuits (Inagaki et al., 2012; Marella et al.,
2012). Future studies will be useful to place additional
feeding interneurons (Flood et al., 2013; Mann et al., 2013;
Pool et al., 2014) in the broader context of these estab-
lished gustatory neuronal circuits.

Although gustatory information is critical for feeding,
nutritional needs and the caloric content of food also play
important roles. Nutritional needs are coded by central
neurons, which determine the substances to be ingested
(Bjordal et al., 2014; Jourjine et al., 2016). Importantly,
because nutrients can reach the brain within seconds of
feeding initiation (Itskov et al., 2014), caloric information
can be used in real-time to regulate ingestion (Qi et al.,
2015). This is accomplished by brain neurons, some of
which express gustatory receptors (Miyamoto et al., 2012;
Dus et al., 2013). For example, brain neurons expressing
a fructose receptor detect this sugar in the hemolymph,
and are involved in ingestion regulation and appetitive
learning (Miyamoto et al., 2012). The presence of nutrient-
detecting pathways is likely advantageous to flies, as
some naturally occurring sugars are sweet but offer no
nutrition. These findings demonstrate that there are com-
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Figure 4. Neuronal circuits underlying suppression of escape responses during feeding in leeches and crayfish. A, In leeches,
stimulation of taste sensory neurons in the lip inhibits nociceptive neurons through serotonergic interneurons. B, In crayfish, taste and
postingestive information suppresses the escape command neurons.

plex interactions between taste, hunger, caloric content
and nutritional needs, and they are crucial for the tight
regulation of feeding.

Feeding Sequences of Other Animals

Like insects, many aquatic animals have taste sensors
that are widely distributed over their body. In several
cases, these have been shown to play different roles in
feeding behavior. Catfish provide a striking example. They
have taste buds not only in their mouth and pharynx, but
also on their entire body surface, and are often described
as “swimming tongues” (Caprio et al., 1993). Their surface
taste buds are involved in capturing prey with their mouth,
while internal taste buds control chewing and swallowing
(Fig. 3A; Atema, 1971). Other aquatic animals also have
multiple taste organs. In blue crabs and leeches engaged
in feeding, the rejection of aversive tastants is controlled
by internal, and not external, taste sensors (Kornreich and
Kleinhaus, 1999; Aggio et al., 2012). In lobsters, taste
sensors in the legs are required for a food-clasping re-
sponse (Borroni et al., 1986). Although the functions of
taste organs are not always clear, these examples show
that they are often specialized.

Jellyfish and anemones belong to the phylum Cnidaria,
which represents one of the most basal animal phyla with
nervous systems. They typically capture prey with sting-
equipped tentacles and consequently transfer it to the
mouth for swallowing and digestion. In the freshwater polyp
Hydra, tentacle retraction and mouth opening are triggered
by the small peptide glutathione, presumably released from
sting-injured prey (Loomis, 1955). After swallowing, the
mouth constricts to form a “neck” that prevents prey es-
cape, a behavior controlled by tyrosine, which is detected
inside the mouth (Blanquet and Lenhoff, 1968). In the sea
anemone Anthopleura, tentacle bending and ingestion are
controlled by asparagine and glutathione, respectively (Fig.
3B; Lindstedt, 1971a). In the jellyfish Aglantha, orientation of
the mouth toward tentacle-captured prey and engulfing lip
movements, which promote ingestion, are controlled by
distinct conduction pathways (Mackie et al., 2003), although
gustatory signals that activate these pathways are unknown.
These examples suggest that coordination of feeding
through multiple gustatory sensors has ancient origins.
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How is feeding coordinated in animals with centralized
taste systems, like mammals? In mice, starvation alters
the activity of hypothalamic circuits, which causes ani-
mals to forage for food. The sensory detection of food
resets activity in these circuits, inhibiting foraging and
facilitating the transition to ingestive behaviors (Chen
et al., 2015). However, the specific role of taste informa-
tion in these circuits was not investigated in detail. The
initiation of ingestion, namely food delivery to the mouth,
must rely on other sensory modalities, as mammals lack
external taste sensors. However, taste sensory cells in the
mouth may play different roles in later phases of ingestion.
For example, like in fruit flies, pharyngeal taste sensors in
mammals may be important for swallowing (Yapici et al.,
2016). Spector and Glendinning suggest that the verte-
brate taste system serves three functions: stimulus iden-
tification, ingestive motivation and digestive preparation.
They speculate that different taste afferent inputs control
these different functions (Spector and Glendinning, 2009).
Future research is awaited to examine this hypothesis.

Suppression of Competing Behaviors
during Feeding

Feeding is typically incompatible with other behaviors.
For example, when feeding on blood, leeches can endure
aversive chemicals applied to the animal’s chemosensory
organ (Kornreich and Kleinhaus, 1999) and electric shocks
(Gaudry et al., 2010). Strikingly, highly dissected leeches
lacking a body wall and internal organs will still initiate and
commit to feeding, showing that they can even ignore se-
vere trauma to obtain a meal (Gaudry and Kristan, 2009).
Such remarkable concentration on feeding is observed in
many other animals including jellyfish (Mackie et al., 2003),
crayfish (Krasne and Lee, 1988), mollusks (Davis et al., 1977;
Advokat, 1980; Kovac and Davis, 1980; Norekian and Sat-
terlie, 1996), and insects (Mann et al., 2013; Thoma et al.,
2016). Despite the widespread occurrence of this phenom-
enon, the underlying sensory mechanisms are only partially
understood.

In his classical studies, Dethier observed that hungry
blowflies, upon encountering food, will immediately stop
walking (Dethier, 1976). Because the initial food contact
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must be made with the leg, before other gustatory organs
are stimulated, leg GRNs likely control this behavior. The
specific gustatory mechanisms underlying food-induced
locomotion suppression have been recently elucidated in
Drosophila (Mann et al., 2013; Thoma et al., 2016). Fruit
flies have two anatomically distinct sugar GRNs in the
legs: some project directly to the brain, whereas the rest
project locally to the thoracic ganglia (Fig. 2C, magenta
and green, respectively). The locally projecting neurons
are specifically required for locomotion suppression (Thoma
et al., 2016), most likely by influencing the motor neurons
controlling leg movements, which are also located in the
thoracic ganglia (Fig. 2F, green; Tuthill and Wilson, 2016).
Moreover, when the fruit fly starts to feed, the extension of
the proboscis itself inhibits locomotion via as yet uniden-
tified circuits (Mann et al., 2013). Therefore, two dedicated
neuronal mechanisms ensure that locomotion is inhibited
not only as an initial response to food, but also throughout
ingestion.

In the Drosophila larva, activation of a small set of in-
terneurons expressing the neuropeptide hugin suppresses
feeding and initiates locomotion, providing the basis for the
mutual exclusivity of these competing behaviors (Schoofs
et al., 2014). The dendrites of the hugin-expressing neu-
rons are in close proximity to the GRN axon terminals, and
their axons project to pharyngeal muscles (Melcher and
Pankratz, 2005). This strongly suggests that gustatory
information, by directly acting on hugin neurons, is critical
for choosing whether to feed or move in the larva. Taken
together, these results highlight Drosophila as a well-
established model system for understanding the gusta-
tory and neuronal mechanisms that govern the behavioral
switch towards feeding.

Many other animals can suppress competing behaviors
when feeding. In crayfish, mollusks and leeches, painful
stimuli elicit defensive responses such as escape, but these
are suppressed in the presence of food or when feeding
(Davis et al., 1977; Advokat, 1980; Kovac and Davis, 1980;
Krasne and Lee, 1988; Gaudry and Kristan, 2009). Behav-
ioral and electrophysiological studies highlight two opposing
mechanisms that underlie this suppression (Fig. 4). In
leeches, blood stimulates chemosensory neurons in the lip,
which in turn inhibit the nociceptive neurons, likely through
serotonergic interneurons. The escape command neurons
remain unaffected (Fig. 4A; Gaudry and Kristan, 2009, 2012).
In contrast, in crayfish and in mollusks, food and postinges-
tive stimuli inhibit the escape command neurons (Fig. 45;
Davis et al., 1977; Kovac and Davis, 1980; Krasne and Lee,
1988). These opposing mechanisms may underlie different
food requirements or feeding habits. Such circuits should be
able to “weigh” appetitive and aversive stimuli in the context
of the animal’s hunger state, and carry out the cost-benefit
analysis necessary for adaptive behavior.

Conclusions

Feeding behavior is essential for all animals and it has
played a critical role in shaping their evolution. Nervous
systems may have evolved to facilitate more efficient
feeding (Arendt et al., 2015), predation or predation avoid-
ance (Kristan, 2016). Because chemosensation has an-
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cient origins that trace back to bacteria (Baluska and
Mancuso, 2009), taste sensory neurons were most likely
important for improving feeding efficiency from an early
stage. The examples provided here highlight the impor-
tant role of taste in coordinating feeding in several animal
species. However, our understanding of feeding neuro-
ethology still remains limited to a handful of organisms. To
understand the evolution of the neural circuits underlying
feeding, we must first expand our knowledge to a broader
set of animals that better captures the full diversity of the
animal kingdom.
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