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Abstract

Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 

compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) 

comprised 57% of 406 organics detected at least once. The 10 most-frequently detected 

anthropogenic-organics included 8 pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, 

metolachlor, atrazine, CIAT, glyphosate) and 2 pharmaceuticals (caffeine, metformin) with 

detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied 

from less than 1 ng L−1 to greater than 10 μg L−1, with 77 and 278 having median detected 

concentrations greater than 100 ng L−1 and 10 ng L−1, respectively. Cumulative detections and 
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concentrations ranged 4-161 compounds (median 70) and 8.5–102,847 ng L−1, respectively, and 

correlated significantly with wastewater discharge, watershed development, and Toxic Release 

Inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine 

explained 71%–82% of the variability in the total number of compounds detected (linear 

regression; p-values: <0.001–0.012), providing a statistical inference tool for unmonitored 

contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct 

environment application (pesticides), designed-bioactive organics (median 41 per site at μg L−1 

cumulative concentrations) in developed watersheds present aquatic health concerns, given their 

acknowledged potential for sub-lethal effects to sensitive species and lifecycle stages at low ng 

L−1.
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Introduction

Chemical-mixture exposures in streams are global concerns1, 2 and the lack of information 

on the composition and associated effects of real-world-mixture exposures are fundamental 

obstacles to aquatic-ecosystem risk assessment3–9. Comprehensive targeted-chemical 

surface-water assessments are expensive and, consequently, uncommon10, 11 despite the 

acknowledged importance of improved understanding of surface-water contaminant 

complexity2, 8, 12 and the direct influence of the scope of contaminant characterization on 

perceived risks to stream health2, 12. Combined approaches incorporating chemical and 

effects-based analyses simultaneously preserve targeted-chemical forensic capabilities, 

interrogate cumulative bio-activities at multiple molecular endpoints without prior 

knowledge of mixture composition, and promote technical improvement via cross-

examination of respective results mismatches3, 8, 9, 11, 13–16. To that end, the U.S. Geological 

Survey (USGS) and U.S. Environmental Protection Agency (EPA) conducted an extensive, 

field-based, split-sample assessment of targeted-chemical composition (14 methods, 916 

total analytes, 893 organic analytes) and cumulative biochemical activity of water samples 

from urban/agricultural-impacted streams across the United States (USA) during 2012–147. 

The results of the target-organic, contaminant-mixture exposure assessment are presented 

herein; split-sample biological-activity results are presented separately (e.g.,17). Candidate 

contaminant subsets for improved multi-residue chemical screening8 and potential land-use 

land-cover (LULC) predictors of surface-water organic-contaminant-mixture complexity 
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(composition and concentrations) are also assessed, herein. Results of this overall effort are 

expected to yield insights into chemical mixtures present in a wide range of surface waters 

across the USA and their potential for eliciting adverse ecological health consequences.

Material and Methods

Site Selection

Thirty-four urban/agricultural-impacted sites and 4 undeveloped sites spanning 24 States and 

Puerto Rico (Figure 1, Table S1) were selected based on data from more than a thousand 

stream sites assessed in previous USGS studies of contaminants of emerging environmental 

concern7. Upstream drainage areas and population densities ranged 12 to 16,000 km2 and 0 

to 1,200 people per km2, respectively7, 18. Site selection and sample collection timing 

focused on capturing a range of mixed-contaminant exposure profiles; no effort was made to 

address site-specific temporal variability or to target high-impact contamination events, such 

as seasonal pesticide application windows.

Sampling Methods

Water samples were collected once from each stream during November 2012 to June 2014. 

Sampling protocols, bottles, preservation supplies, pre-printed laboratory request and chain 

of custody forms, shipping labels, and cooler packing diagrams were provided to each 

sampling team, to ensure consistency in sampling methods. Grab samples were collected 

(approximately 1h total sampling time) from the center of flow at each site by USGS staff 

using established trace-level protocols19–23. Water samples were homogenized in Teflon 

churns, decanted into individual containers, and shipped over night on ice to USGS and EPA 

laboratories for analysis. Complete sampling details are provided elsewhere18.

Water Chemistry Assessment

Surface-water samples were analyzed using 14 methods for a total of 893 targeted organic 

analytes (719 non-redundant) at 3 USGS laboratories: National Water Quality Laboratory 

(NWQL), in Denver, Colorado (volatile organic compounds24; steroid hormones and related 

compounds25; wastewater indicator compounds26, 27; human-use pharmaceuticals, 

pharmaceutical metabolites, and polar organic compounds28; pesticides and pesticide 

metabolites29–31; and halogenated organic compounds18); Organic Geochemistry Research 

Laboratory (OGRL), in Lawrence, Kansas (acetamide herbicides and degradation 

products32; glyphosate, glufosinate, and aminomethylphosphonic acid33; steroid hormones 

and phytoestrogens34; triazine and phenylurea herbicides35; and antibiotics33); and Organic 

Chemistry Research Laboratory (OCRL), in Sacramento, California (pesticide and pesticide 

degradates36; diuron, diuron degradates, and neonicotinoid insecticides37; and disinfection 

by-products38). This study included filtered and unfiltered sample methods, as noted in 

Table S3. Method details and complete results are provided at18, 39, 40.

Quality Assurance Quality Control (QAQC)

Field blanks and matrix spikes were completed at 15 and 13 sites, respectively, with 2–8 

field blanks and 3–4 matrix spikes per method18. Nine organics were detected (once each) in 

both blank and environmental samples. Because the median sample concentration exceeded 
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the blank concentration, data for 7 of these are presented without censoring (Table S2); 

interpretation of environmental results below blank detection levels warrants caution. 

Because blank concentrations exceeded the median sample concentrations, 

hexachlorobenzene and pentachloroanisole data were censored to nondetect for this 

publication (Table S2). QAQC details are provided elsewhere18.

Statistical Analyses

Laboratory-reporting levels (LRL) were determined for each analyte based on the long-term 

method detection level (MDL)41, 42. Detections between the LRL and MDL are confirmed 

identifications but considered semi-quantitative (estimated)41. Results below the MDL were 

reported as censored (< LRL)41; censored data were set to half the LRL and estimated values 

were used as reported, for statistical analyses.

Site groupings with statistically distinct contaminant profiles were identified by 

unconstrained divisive cluster analysis (UncTree) of 4th-root-transformed data and 

statistical-significance testing (SimProf; α = 0.05) routines of Primer 7 (PRIMER-E Ltd., 

Plymouth, UK43–45). Statistical relations between Euclidean-distance-resemblance matrices 

for detected-contaminant and LULC were assessed by permutation-based, non-parametric, 

multi-variate analysis (Primer 7)43–45. Resemblance matrices were calculated on log-

transformed and normalized data to address method-related differences in reporting units 

and, thus, censoring levels43–45. Non-metric multi-dimensional scaling (NMDS), one-way 

analysis of similarity (ANOSIM), and permutation-based cophenetic correlation (RELATE, 

permutations = 999) routines (Primer 7)45 were used to explore relationships between site-

specific detected-contaminant and LULC resemblance matrices. Subsequently, correlations 

between site-specific summary contaminant metrics (cumulative, maximum, and median 

concentrations/detections) and individual LULC metrics, as well as individual contaminant 

metrics, were assessed by Spearman Rank Correlation (SigmaPlot 13, Systat Software, San 

Jose, CA).

Results and Discussion

Building on prior studies largely in Europe (see for overview46), in 1999–2000 the USGS 

Toxics program surveyed 139 stream sites across the USA using 5 target-organic-chemical 

methods (95 total organic waste analytes; geospatial-chemical space of 13k cells)10; this 

study established the ubiquity and corresponding geospatial importance of organic 

contaminants of emerging concern as potential drivers of aquatic-ecosystem and downstream 

human health in the USA47. The Kolpin et al. study10 also provided one of the earliest 

glimpses into the complexity of surface-water organic-contaminant mixtures, despite the fact 

that comprehensive chemical characterization was not a study objective and methods for 

some well-established environmental-contaminant classes (e.g., pesticides and VOC) were 

not included.

In 2012–2014 the USGS and EPA conducted a follow-up survey of surface-water samples 

from 38 streams across the nation employing a substantially expanded target-organic-

analysis toolbox (14 chemical methods covering 719 unique compounds; a two-fold increase 

in geospatial-chemical space to 27k cells), to more realistically characterize surface-water 
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bioactive-contaminant space (contaminant-mixture complexity). Complementary biological-

effects assays were employed to link chemical exposures with the potential for associated 

stream-ecosystem health effects. The current results represent one of the most 

comprehensive quantitative target-organic-contaminant assessments conducted to date, 

particularly with respect to polar organics (see 48 for regional semi-volatile organic 

compound analysis approach), and, to our knowledge, the most comprehensive national/

regional-scale investigation involving split-sample chemical/effects-based analyses (see for 

comparison: 42 sites in 37 drainage basins and 33 target organic49; 18 Great Lakes Basin 

sites and 132 target organics11, 13, 50; 9 sites, 3 streams and 405 target organics51). The 

national-scale urban/agricultural-development gradient provides a unique opportunity to 

assess the scope and occurrence frequency of in-stream contaminants, the range and site-to-

site variability of in-stream-contaminant complexity, and the associated relation to readily 

available, watershed-scale LULC metrics.

Hundreds of bioactive contaminants detected in US streams

Accounting for method overlap, the 893 organic-chemical analytes targeted in this study 

corresponded to 719 unique organic compounds (Table S3). This exceeds the number of 

contaminant classes (e.g., 433 pesticide and degradates12, 107 pharmaceuticals52) or total 

analytes (e.g., 95-405 mixed, polar-organic contaminants in1, 2, 10, 13, 50, 51, 53–55) assessed 

quantitatively in previous target-chemical-based, regional/national investigations. 

Approximately 57% of these unique organics (406/719) were detected at least once across 

all sites (Figures 1–3, Table S3). Bioactive-anthropogenic-organic compounds (biocides 

[pesticides and antimicrobials] and pharmaceuticals) comprised 55% of the targeted organic 

analytes and 57% of those detected at least once in this study. The following discussion of 

frequently detected anthropogenic-organic contaminants excludes naturally-occurring sterols 

(cholesterol, coprastanol, B-sitosterol, etc), which are not uniquely associated with 

contamination.

The 10 most frequently detected anthropogenic-organic contaminants (not including 

cholesterol) were all designed-bioactive chemicals (Figure 3; Table 3). Eight were pesticides 

or pesticide degradates (desulfinylfipronil, AMPA [α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid], chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT [deethyl 

atrazine], glyphosate), with detection frequencies ranging from 26–32 sites. 

Desulfinylfipronil (fipronil-insecticide degradate) was pervasive, occurring at 32 sites (84%). 

The broad-spectrum herbicide, glyphosate, or its common environmental degradate, AMPA 

(also potential organophosphonate degradate56, 57), was detected at 30 sites (79%). 

Likewise, the broad-spectrum herbicide, atrazine, or its environmental degradate, CIAT, was 

detected at 27 sites (71%). The remaining two were caffeine (28 sites, 74%) and the anti-

diabetic medication, metformin (25 sites, 66%). High detection frequencies for caffeine and 

metformin in this study are consistent with but notably lower than those (92% and 97% of 

sites, respectively) reported in a recent survey of pharmaceutical contaminants in 59 

wadeable Piedmont streams of the southeastern USA52. Caffeine was the second most 

frequently detected compound (77.5% of samples) in a recent survey of 33 trace organic 

contaminants in 37 stream basins across the USA by Bernot et al.49; the most frequently 

detected contaminant, sucralose (87.5% of samples), in Bernot et al.49 was not assessed in 
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the present study. Thirty compounds (not including cholesterol and β-sitosterol) were 

detected at more than 50% of the sites in the current study; of these, 21 (70%) had designed-

bioactivities, including biocidal (13 pesticides or degradates), bacteriostatic (triclosan), and 

pharmacological (7 pharmaceuticals or metabolites/degradates) activities. Designed-

bioactivity is emphasized here as a conservative indicator of ecosystem concern, because 

established predictive-ecotoxicology models (e.g., Structure Activity Relationship, 

Quantitative Structure Activity Relationship) assume a non-specific toxicity mode of action 

which can substantially underestimate molecularly-targeted toxicity and a range of 

ecologically relevant, sub-lethal effects58–61.

Concentrations of detected organic contaminants varied by more than 5 orders of magnitude 

from less than 1 ng L−1 up to greater than 10 μg L−1 (Figure 3, Table S3). The highest 

detected concentration by far was the greater than 80 μg L−1 of 3,4-dichloroaniline in the 

sample from Sycamore Slough CA. Although 3,4-dichloroaniline has number of potential 

agricultural62 and industrial63 sources, in this setting it is most readily attributed to 

environmental degradation of propanil, a contact herbicide widely employed in rice 

agriculture in California’s Sacramento Valley and specifically in the Sycamore Slough 

watershed64, 65. Acetone and the glyphosate degradate, AMPA, were detected at maximum 

concentrations of approximately 10 μg L−1. Across all sites, 37 organic contaminants (not 

including cholesterol, 3β-coprostanol, β-sitosterol, β-stigmastanol) had maximum detected 

concentrations greater than 1 μg L−1, among which 20 were designed-bioactive 

contaminants including 10 pesticides or pesticide degradates (all herbicides or herbicide 

degradates) and 10 pharmaceuticals and metabolites.

In this study 6 organic contaminants had greater than 1 μg L−1 median detected 

concentrations, while 77 and 278 (not including cholesterol, 3β-coprostanol, β-sitosterol, β-

stigmastanol) had median detected concentrations greater than 100 ng L−1 and 10 ng L−1, 

respectively. Designed-bioactive contaminants included 14 pesticides and 12 

pharmaceuticals with median detected concentrations above 100 ng L−1 and 86 pesticides/

pesticide degradates and 58 pharmaceuticals with median detected concentrations above 10 

ng L−1. Detection of ng L−1 to μg L−1 concentrations of individual bioactive contaminants 

and frequent co-occurrence of multiple bioactive contaminants represent aquatic health 

concerns. Several of these contaminants are expected to elicit sub-lethal effects at low ng 

L−1 concentrations66–68 and many others remain largely uncharacterized regarding pathway-

specific toxicities for sensitive species and lifecycle stages in biodiverse stream 

environments.

Extensive and complex surface-water organic-contaminant mixtures

Detected anthropogenic-organic contaminants were numerous, diverse, and ubiquitous in the 

38 streams sampled across the USA (Figures 1–4; Tables S1 and S3). Cumulative (sum of 

detected organic contaminants) concentrations ranged 8.5–102,847 ng L−1 per site (Figures 

1–2; Table S3). At least one unequivocally anthropogenic contaminant was detected at all 38 

streams, including the four, targeted, undeveloped locations, with cumulative detections for 

all sites ranging 4–162 organic compounds/site and a median of 70 organic compounds/site 

(Figures 1–2).
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Samples collected from the 4 nominally-reference locations were characterized by the 

fewest detected analytes (Figures 1–2). Nevertheless, 27 organic compounds were detected 

at least once at these 4 sites, among which 19 were unequivocally anthropogenic (Table S3). 

Contaminant profiles for 3 sites (North Sylamore Creek, AR; Swiftcurrent Creek, MT; West 

Clear Creek, AZ) were statistically (α = 0.05) different from all other sites including Penn 

Swamp Branch, the fourth targeted undeveloped site (Figure 4). The human population in 

the 4 low-impact watersheds (Tables S5–6) ranged from 0 at Penn Swamp Branch, NJ and 

Swiftcurrent Creek, MT up to 80 at North Sylamore Creek, AR (Table S6). The cumulative 

detections and concentrations, respectively, of organic analytes ranged from 4 (North 

Sylamore Creek, AR) to 11 (Penn Swamp Branch, NJ) compounds/site and 55 (North 

Sylamore Creek, AR) to 1408 (Penn Swamp Branch, NJ) ng L−1. Penn Swamp Branch 

drains a wetland area characterized by high natural organic content with the lowest pH 

(4.18) and fourth highest dissolved organic carbon concentration (15.9 mg L−1) measured in 

this study; cholesterol and β-sitosterol comprised 66% of the cumulative concentration of 

detected organics at Penn Swamp Branch. Cumulative detections and concentrations, 

respectively, of anthropogenic-organic contaminants ranged from 4–6 compounds/site and 

55–430 ng L−1. Among the 19 anthropogenic-organic contaminants detected at targeted 

undeveloped sites, 58% were designed-bioactives (6 pesticide/pesticide degradates and 5 

pharmaceuticals), with cumulative detections and concentrations accounting for 27–50% of 

all compounds/site (median 38%) and 19–99% of the cumulative concentrations (median 

76%), respectively. These results emphasize the environmental mobility, ubiquity, and, thus, 

potential concern of mixed, bioactive contaminants, in undeveloped and uninhabited 

watersheds.

The complexity and concentrations of organic contaminants detected in samples from the 34 

urban/agricultural-impacted sites were up to 2 orders of magnitude greater than from 

undeveloped sites (Figures 1–4; Table S3). Cumulative detections and concentrations ranged 

25–161 organic compounds/site and 1383–102847 ng L−1 per site. Median values for 

cumulative detections and concentrations of detected organics were 75 compounds/site and 

15800 ng L−1, respectively, for the impacted sites, 1 and 2 orders of magnitude higher, 

respectively, than the 8 compounds/site and 123 ng L−1 median values for targeted, 

undeveloped locations (Figures 1–2; Table S3). Cumulative detections and concentrations of 

designed-bioactive contaminants ranged 5–86 compounds/site (median 40.5) and 151–90340 

ng L−1 (median 6223 ng L−1), respectively, accounting for 20–69% of all compounds/site 

(median 50%) and 5–92% (median 35%) of the cumulative concentrations detected in 

samples from developed watersheds, respectively. Because anti-bacterial69, 

pharmaceutical70, 71, and pesticide70, 71 compounds are formulated to target modes of 

action, generally have high bioactivity, are biorecalcitrant, and have the potential to affect 

the entire foodweb (microorganisms, invertebrates, and vertebrates), multiple detections 

(median 41 per site) and μg L−1 cumulative concentrations in developed watersheds suggest 

the likelihood of complex interactive effects and the critical need to apply integrating (net) 

effects tools to evaluate risks posed by actual environmental mixtures.
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Chemical predictors of overall contaminant-mixture complexity

The BEST BVSTEP model (termination criteria: ρ > 0.95, Δρ < 0.001; Primer 744, 45), with 

random start-variable selection, was used to identify combinations of the 55 most frequently 

detected contaminants that best explained the variability in the detected-contaminants 

resemblance matrix. Two potential screening subsets of 10-11 compounds each were 

identified: 1) azithromycin, fipronil, 2-methylnapthalene, dimethenamid SA, linuron, 

lambda-cyhalothrin, ethyl methyl ketone, 1,1-dichloropropane, dichloromethane, loratadine 

(ρ= 0.950); and 2) dimethomorph, napropamide, atrazine, estrone, AHTN, glyphosate, 

BDE153, PCB118, loratadine, methocarbamol, MTBE (ρ= 0.951).

Significant (operationally defined as n > 19; ρ > 0.5; p-value < 0.05) relations between site-

specific summary metrics (cumulative detections, cumulative concentrations, maximum and 

median detected concentrations) and individual contaminant metrics also were explored 

using Spearman Rank Correlation (Table S4). A strong and highly significant (ρ = 0.865; p-

value < 0.0001) correlation between cumulative detections and concentrations was observed; 

significant (p-value < 0.0001) but weaker (ρ = 0.694–0.716) correlations were observed for 

cumulative detects and maximum and median detected concentrations across all sites. Not 

including Sycamore Slough, a strong, highly significant linear relation (Pearson Correlation; 

adjusted-r2 = 0.821, p-value < 0.001) between cumulative detections and concentrations was 

observed (Figure 5), providing a useful predictive relationship and a means to identify 

outlying contaminant hot-spots/hot-events (e.g., 3,4-dichloroanaline in Sycamore Slough) 

that deviate substantially from the general trend.

Cumulative detections were significantly (n > 19; ρ > 0.5; p-value < 0.05) related to the 

concentrations of 14 individual contaminants (Table S4) including, most notably, HHCB (n 

= 20; ρ = 0.882), triclosan (n = 23; ρ = 0.871), carbamazepine (n = 22; ρ = 0.815), 

desvenlafaxine (n = 22; ρ = 0.762), and metformin (n = 25; ρ = 0.735), as well as (n = 20–

32; ρ = 0.503–0.684) desulfinylfipronil, 3,4-dichloroaniline, acetone, cotinine, DEET, 

lidocaine, toluene, methyl-benzyltriazole, and sulfamethoxazole. Likewise, cumulative 

concentrations were significantly related to the concentrations of 16 individual contaminants 

including, most notably, HHCB (ρ = 0.780), triclosan (ρ = 0.772), carbamazepine (ρ = 

0.757), methyl-benzyltriazole (ρ = 0.734), and metformin (ρ = 0.704), as well as (ρ = 

0.538–0.673) AMPA, atrazine, CIAT, 3,4-dichloroaniline, acetone, isophorone, cotinine, 

DEET, desvenlafaxine, sulfamethoxazole, and tribromomethane. Statistically significant (p-

value: <0.001–0.012) simple linear regressions indicated that individual concentrations of 

HHCB, triclosan, and carbamazepine in log10 space explained 71%–81% of the variability in 

the total number of detected compounds (Figure 5). These statistical relations provide a tool 

(within the defined 0.1–100000 ng L−1 and 719 compound target-chemical space) to infer 

the presence of unmonitored contaminants based on concentrations of 3 widely monitored 

and generally well-documented contaminants.

Significant LULC predictors of overall contaminant-mixture complexity

No significant relation between resemblance matrices for detected contaminants and all 

readily available LULC (Tables S5–S6) was detected (NMDS, ANOSIM, RELATE; Primer 

743–45). However, significant (p-value = 0.001) but weak relations were identified between 
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the detected-contaminant resemblance matrix and resemblance matrices for select subsets of 

LULC data including wastewater discharge (Global R = 0.334), EPA Toxic Release 

Inventory site (TRI; Global R = 0.334), and urban development classification (Global R = 

0.334) metrics. Spearman Rank correlation (Table S7) identified significant (|ρ| > 0.5; p-

value < 0.05) relations between detected-contaminant summary metrics and multiple LULC 

metrics related to wastewater discharge (ρ = 0.528–0.795; p-values < 0.001), population 

density/urban development (ρ = 0.509–0.668; p-values < 0.001), and TRI (ρ = 0.583; p-

values < 0.0001). Among these metrics, the most strongly correlated to cumulative 

detections and concentrations were the number of major National Pollution Discharge 

Elimination System (NPDES) outfalls in the watershed (as defined in72; ρ = 0.795, p < 

0.0001 and ρ = 0.656, p < 0.0001, respectively) and the Nationa Land Cover Database 

(NLCD) 200173 percent developed medium intensity in the watershed (ρ = 0.668, p < 

0.0001 and ρ = 0.579, p < 0.0001, respectively), with TRI significantly correlated only to 

cumulative detected-organic contaminants. The results indicate LULC metrics are useful 

predictors of in-stream mixed-organic-contaminant complexity and, to a lesser extent, 

concentration.

Implications for ecosystem exposure effects

Based only on these target-organic results, the complexity and composition of contaminant 

mixtures are substantial environmental health concerns in streams across the USA. Although 

this study employed one of the most comprehensive targeted-analyte toolboxes currently 

available, particularly with respect to polar organics, 719 organic compounds is a fraction of 

the contaminant universe, estimated at more than 80000 parent compounds in current use74 

and an incalculable chemical-space75 of potential metabolites and degradates76; logically, 

actual surface-water contaminant complexity and concentrations may substantially exceed 

the current observations. Nevertheless, the ng L−1 to μg L−1 concentrations of individual 

contaminants and multiple detections per site (median = 70) at cumulative concentrations up 

to more than 102 μg L−1 are substantial concerns in their own right, because adverse 

environmental impacts have been documented for individual designed-bioactive 

contaminants at low ng L−1 concentrations66 and interactive effects of contaminant mixtures 

are poorly understood and are global priorities76–79. Because results of direct assessments of 

exposure effects using multiple bioassay platforms are presented elsewhere17, only select 

results are discussed here to emphasize the aquatic-health implications across the aquatic 

foodweb.

Detection of 17 pharmaceuticals (11 antibiotics, 4 antivirals, 2 antifungals), 9 fungicides, 

and triclosan (bacteriostat with recognized antibiotic selection potential69) in this study with 

individual detection frequencies up to 53% and maximum concentrations up to 1.8 μg L−1 

strongly suggests impacts at the microbial base of the aquatic foodweb in streams 

nationwide. Antibiotic-contaminant concentrations as low as 0.5 μg L−1 have been shown to 

affect the structure and composition of aquatic microbial communities80, 81. Individual 

detection frequencies (% of sites) and maximum and median detected concentrations for 

antibiotics alone ranged 3–53%, 12–1800 ng L−1, and 12–135 ng L−1, respectively, with 

multiple antibiotics (up to 8 per site) detected at 18 sites. Likewise, antibiotic-resistance 

selection is a global concern82 and sub-lethal selection of antibiotic-resistant bacteria has 
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been documented at ciprofloxacin concentrations as low as 100 ng L−1 83. Ciprofloxacin was 

detected in this study at 26% of the sites, with maximum and median detected 

concentrations of 400 ng L−1 and 135 ng L−1, respectively. Triclosan was detected at 61% of 

sites, with maximum and median detected concentrations of 543 ng L−1 and 14.6 ng L−1, 

respectively.

Invertebrates comprise most animal biomass in aquatic ecosystems and the current results 

suggest substantial potential for adverse contaminant impacts. For example, the 

phenylpyrazole insecticide, fipronil, blocks GABA-gated chloride channels of insect central 

nervous systems leading to reduced reproduction and survival and at least two fipronil 

degradates (sulfide, sulfone) are reported to be more toxic to sensitive aquatic invertebrates 

than the parent compound68. In this national study, desulfinylfipronil, a fipronil degradate, 

was the most frequently detected contaminant (32 sites). Two or more fipronil-related 

compounds (fipronil, fipronyl sulfide, fipronil sulfone, desulfinylfipronil) were detected at 

19 sites (50% of all sites; 56% of 34 impacted sites). The EPA Office of Pesticide Programs’ 

fipronil 21-day-chronic and acute benchmarks for invertebrates are 11 ng L−1 and 110 ng 

L−1, respectively84, but substantially lower acute endpoints (mean 96-h EC50) of 32.5 ng/L 

for fipronil and 7−10 ng/L for fipronil sulfide and fipronil sulfone have been reported for 

sensitive aquatic species68. Similarly, neonicotinoid insecticides can severely impair 

sensitive insect communities85 and imidacloprid and clothianidin were detected at 37% and 

24% of sites, respectively, with maximum and median concentrations ranging 175–475 ng 

L−1 and 66–143 ng L−1, respectively. Acute and chronic ecological health thresholds below 

200 ng L−1 and 35 ng L−1, respectively, have been recommended to protect aquatic 

invertebrate communities85. Lastly, histamines are neurotransmitters for many aquatic 

insects86 and exposure to approximately 2 μg L−1 fexofenadine has been shown to impair 

survival behavior (flight response) in damselfly (Zygoptera) species and result in 

bioconcentration up to 2000 times the dissolved concentration87. Multiple (fexofenadine, 

diphenhydramine, loratadine, hydroxyzine) antihistamines were detected in this study (16–

42% of sites) at concentrations up to approximately 4 μg L−1. Fexofenadine was detected at 

42% of sites, with maximum and median concentrations of 2047 ng L−1 and 576 ng L−1, 

respectively; two or more antihistamines were detected at 13 sites (34%).

Pharmaceutical results best illustrate the concerns raised in this study with respect to 

aquatic-vertebrate impacts, because fish are widely used animal models for pharmaceutical 

efficacy testing88, 89. Eighty-four pharmaceuticals were detected across all sites, with 

detection frequencies for individual compounds ranging 3–74% of sites (median 24%). 

Frequent detection of metformin (66% of sites) at median concentrations greater than 400 ng 

L−1, including 7 sites with concentrations in the μg L−1 range, is noteworthy, because 

metformin is a designed endocrine-active compound and effluent-equivalent metformin 

exposures in the μg L−1 range induce up-regulation of vitellogenin mRNA88, 89 and male 

intersex90 in fathead minnow (Pimephales). However, mixed pharmaceutical contamination 

was the norm in this study, with 0-61 pharmaceuticals detected per site (median 7.5 across 

all sites; median 12.5 for impacted sites) and cumulative concentrations ranging 0–9580 ng 

L−1 (median 327 ng L−1).
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Understanding and mitigating the human and ecological health risks associated with 

chemical- and land-use practices require knowledge of environmental chemical mixtures. 

The results presented herein provide the most extensive, target-polar-organic-chemical 

characterization of the composition and concentrations of contaminant-mixture exposures in 

streams available to date and support cross-examination of split-sample effects results 

(presented separately) as well as subsequent methods development, prioritization of future 

ecotoxicological studies of chemical mixtures, and in-silico modeling of potential biological 

effects of multiple contaminants. Non-target screening of archived water samples, which has 

the potential to substantially expand the current contaminant profiles91, is ongoing.
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Figure 1. 
Total numbers and cumulative concentrations (ng L−1) of organic analytes detected in water 

during 2012–2014 sampling of 38 stream sites (Table S1) across the nation. Numeric labels 

indicate USGS NWIS92 stream station IDs.

Bradley et al. Page 17

Environ Sci Technol. Author manuscript; available in PMC 2018 May 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 2. 
Top: Total numbers (red circles) and cumulative concentrations (ng L−1; bars) of organic 

analytes detected in water by site during 2012–2014 sampling of 38 streams across the 

nation. Bottom: Concentrations (ng L−1, circles) of individual organics detected. Boxes, 

centerlines, and whiskers indicate interquartile range, median, and 5th and 95th percentiles, 

respectively.
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Figure 3. 
Detected concentrations (circles, ng L−1) and number of sites (in parentheses) for 389 

organic analytes (in order of decreasing median detected concentration, top to bottom left to 

right: 3a. 1–200; 3b. 201–389) in water samples during 2012–2014 sampling of 38 streams 

across the nation. Circles are data for individual samples. Boxes, centerlines, and whiskers 

indicate interquartile range, median, and 5th and 95th percentiles, respectively.
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Figure 4. 
Shadeplot of concentrations (scale in μg L−1) of 406 detected organic analytes (unlabeled, 

top to bottom in order of decreasing median detected concentration) in water from 38 stream 

sites, clustered (UncTree) by mixture pattern. White indicates less than MDL (minimum 

detection limit). Dashed-red dendrogram lines indicate sites not statistically different 

(SimProf; α = 0.05).
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Figure 5. 
Top: Simple linear regression (line) of cumulative concentration and total number of 

detected organic analytes (black circles) in water from 37 streams across the nation (not 

including Sycamore Slough, red circle). Bottom: Simple linear regressions (lines) of total 

number of detected organic analytes and concentrations of HHCB (black circles), triclosan 

(TCS, red triangles), and carbamazepine (CBZ, blue squares).
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