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ABSTRACT Cryptococcus neoformans, the causative agent of cryptococcosis, is an
opportunistic fungal pathogen that kills over 200,000 individuals annually. This yeast
may grow freely in body fluids, but it also flourishes within host cells. Despite exten-
sive research on cryptococcal pathogenesis, host genes involved in the initial engulf-
ment of fungi and subsequent stages of infection are woefully understudied. To ad-
dress this issue, we combined short interfering RNA silencing and a high-throughput
imaging assay to identify host regulators that specifically influence cryptococcal up-
take. Of 868 phosphatase and kinase genes assayed, we discovered 79 whose silencing
significantly affected cryptococcal engulfment. For 25 of these, the effects were fungus
specific, as opposed to general alterations in phagocytosis. Four members of this group
significantly and specifically altered cryptococcal uptake; one of them encoded CaMK4, a
calcium/calmodulin-dependent protein kinase. Pharmacological inhibition of CaMK4 re-
capitulated the observed defects in phagocytosis. Furthermore, mice deficient in CaMK4
showed increased survival compared to wild-type mice upon infection with C. neofor-
mans. This increase in survival correlated with decreased expression of pattern recogni-
tion receptors on host phagocytes known to recognize C. neoformans. Altogether, we
have identified a kinase that is involved in C. neoformans internalization by host cells
and in host resistance to this deadly infection.
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Cryptococcus neoformans is a ubiquitous encapsulated fungal pathogen that causes
pneumonia and meningitis in immunocompromised individuals. Cryptococcal in-

fection is responsible for significant morbidity and mortality in AIDS patients and is the
third most common invasive fungal infection in organ transplant recipients (1, 2),
causing an estimated one million cases of meningitis and over 200,000 deaths each
year (3–5). Current antifungal therapy is hampered by toxicity, the emergence of
drug-resistant organisms, and the inability of the host’s immune system to aid in
resolution of the disease; treatment is further limited by drug cost and availability in the
resource-limited settings where this disease is rampant (6, 7).

Cryptococcosis is primarily an opportunistic infection, highlighting the vital role of
host immune responses in control of this infection. Once C. neoformans enters the host,
the first line of defense it encounters is the innate immune system. Phagocytic cells,
including macrophages and dendritic cells (DCs), engulf C. neoformans and present
antigen to initiate the adaptive immune response.

Fungal internalization by host phagocytes may benefit either the pathogen or the
host, depending on microbial virulence factors, host species, host immune status, and
the stage of infection. Cryptococci can survive and even proliferate in macrophage
phagosomes (8, 9), potentially using these host cells to disseminate. This idea is
supported by the reduced C. neoformans burden observed in multiple tissues when
clodronate liposomes were used to deplete phagocytes in mice before infection (10).

Received 10 May 2017 Returned for
modification 24 May 2017 Accepted 25
September 2017

Accepted manuscript posted online 2
October 2017

Citation Srikanta D, Hole CR, Williams M,
Khader SA, Doering TL. 2017. RNA interference
screening reveals host CaMK4 as a regulator of
cryptococcal uptake and pathogenesis. Infect
Immun 85:e00195-17. https://doi.org/10.1128/
IAI.00195-17.

Editor George S. Deepe, University of
Cincinnati

Copyright © 2017 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Tamara L. Doering,
doering@wustl.edu.

* Present address: Deepa Srikanta, Michigan
State University, East Lansing, Michigan, USA.

D.S. and C.R.H. contributed equally to this
article.

FUNGAL AND PARASITIC INFECTIONS

crossm

December 2017 Volume 85 Issue 12 e00195-17 iai.asm.org 1Infection and Immunity

http://orcid.org/0000-0002-5179-7393
https://doi.org/10.1128/IAI.00195-17
https://doi.org/10.1128/IAI.00195-17
https://doi.org/10.1128/ASMCopyrightv2
mailto:doering@wustl.edu
http://crossmark.crossref.org/dialog/?doi=10.1128/IAI.00195-17&domain=pdf&date_stamp=2017-10-2
http://iai.asm.org


Engulfment by host cells is not always a benefit, however, as internalized fungi may also
be destroyed by classically activated phagocytes (11–13).

C. neoformans enters host phagocytes via multiple receptor-mediated interactions.
Cryptococcal cells may be opsonized by complement deposited on the capsule surface,
leading to recognition by host complement receptors. They may also be opsonized by
antibody binding, with subsequent recognition by host Fc receptors (14). Finally, the
polysaccharide capsule itself may directly interact with macrophage cell surface pro-
teins, including multiple pattern recognition receptors (PRRs) (15). We speculated that
additional host factors are important for specific fungal internalization and designed a
screen to identify the host genes encoding such proteins.

We used an automated imaging-based assay that we previously developed (16)
to screen an RNA interference (RNAi) library that targets genes encoding host
phosphatases and kinases. We identified four genes whose products are involved in
C. neoformans internalization by human phagocytes; one of these encodes calcium/
calmodulin-dependent protein kinase 4 (CaMK4). Mice lacking CaMK4 survived longer
than wild-type (WT) mice after infection with C. neoformans, a result that was partly
recapitulated by pharmacological inhibition of CaMK4. Immune profiling revealed that
the increase in survival time was not due to changes in host cytokine responses or
infiltrating immune cells. However, CaMK4 knockout mice infected with C. neoformans
showed significantly reduced numbers of TLR2, Dectin-1, and CD206-positive phago-
cytes compared to infected wild-type animals. All three of these pattern recognition
receptors have previously been shown to recognize C. neoformans (see below). Our
studies therefore support a role for this kinase in C. neoformans internalization by host
cells and in host resistance to this infection.

RESULTS
RNAi screening for host factors that influence cryptococcal engulfment. We

hypothesized that host phosphatases and kinases would be among the factors that
regulate engulfment of C. neoformans by host phagocytes. We took an unbiased
approach to identify such proteins and screened human short interfering RNA (siRNA)
libraries that target the corresponding sequences. Using a human monocytic cell line,
THP-1, as the host cell population, we achieved an average silencing efficiency of over
65% (see Fig. S1 in the supplemental material). Following silencing, the treated THP-1
cells were cultured with stained and serum-opsonized fungi for 1 h and then washed,
fixed, and stained for imaging (16). Images were automatically collected and analyzed
(see Materials and Methods), and the phagocytic index (fungi internalized per 100 host
cells) was determined for each sample.

For our primary screen, we targeted each host gene with a pool of two siRNAs,
performing two biological replicates with assays in triplicate. We then analyzed the
results using a quartile-based threshold method to account for nonnormal data distri-
bution and control for false positives (Fig. 1A). We identified 79 host genes that, when
silenced, consistently and significantly affected fungal adherence, uptake, or both
(Table S1). The goal of our screen was to identify host factors with specific roles in
interactions with C. neoformans rather than in general phagocytosis. To rule out the
latter, we compared the uptake of cryptococcal cells by siRNA-treated THP-1 cells to
that of inert particles (1-�m fluorescent latex beads; Fig. 1B). Of the 79 candidates
assayed, 25 showed differences in uptake or adherence with the yeast but not with
latex beads (Table S2). We next tested these 25 targets with three additional organisms:
the pathogenic yeast Candida albicans, the model yeast Saccharomyces cerevisiae, and
the bacterium Escherichia coli. Four host genes showed specific alterations in uptake or
adherence of C. neoformans compared to the other particles (highlighted in Table S2).
Results for one of these genes (CaMK4) is shown in Fig. 1C.

CaMK4 influences cryptococcal infection. We chose CaMK4 for follow-up, because
silencing the corresponding gene yielded the most marked and reproducible reduction
in cryptococcal uptake and it had not previously been implicated in cryptococcal
interactions with host macrophages. To further investigate its role in C. neoformans
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infection, we treated THP-1 cells with KN93, a competitive inhibitor of CaMK4 and a
related kinase, CaMK2 (17). Treatment with 10 nM KN93 did not compromise host cell
growth or viability (not shown), but it did specifically reduce C. neoformans uptake in
standard assays, similar to the effects of silencing. It had no effect on the uptake of C.
albicans (Fig. 2A) or latex beads (not shown). We also tested whether treatment with
this compound would alter the survival of mice after intranasal infection with C.
neoformans. We found that treatment of C57BL/6 mice with KN93 modestly but
significantly increased survival compared to control treatment with phosphate-
buffered saline (PBS) alone (Fig. 2B and Fig. S2).

KN93 inhibits both CaMK4 and CaMK42. To more definitively address the role of
CamK4 in C. neoformans infection, we isolated peritoneal macrophages from WT and
CaMK4�/� mice and compared them in uptake assays. Consistent with the results of
siRNA silencing and KN93 treatment experiments, primary macrophages deficient in
CaMK4 showed significantly reduced uptake of C. neoformans compared to that of WT
microphages (Fig. 2C). Based on this defect, we next examined infection kinetics in
CaMK4�/� mice. Notably, these mice survived significantly longer than WT mice (Fig.
2D and Fig. S2). Interestingly, despite the survival difference, total fungal burden in
lung, spleen, and brain did not differ between the two strains at any time after infection
(Fig. S3).

The extended survival of CaMK4�/� mice is not due to differences in cytokine
levels or immune cell infiltrate. Our infection studies indicated that decreased fungal
burden was not responsible for the prolonged survival of CaMK4�/� mice. We won-
dered whether the survival difference was instead due to adverse effects of the host
immune response, which is stimulated by wild-type infection. We first tested this by
cytokine profiling of WT and CaMK4�/� mice infected with KN99�. Analysis of pulmo-

FIG 1 RNAi screening for regulators of fungal uptake. (A) Fungal uptake by THP-1 cells treated with siRNA
pools targeting CamK4 (orange) or 867 other kinases and phosphatases (dark blue symbols), no siRNA (light
blue symbols), or scrambled siRNA (white symbols); see Materials and Methods for additional controls. The
red lines indicate the upper and lower boundaries of the plate averages using the quartile-based threshold
method. Candidate genes outside those bounds (79) advanced to the next round of screening. (B) A second
round of screening identified gene depletions that altered uptake of cryptococcal cells but not of an inert
particle control (latex beads). Results were normalized to no-siRNA control assays with the appropriate
particle and assessed by Student’s t test. Controls (as described for panel A) fitted to the diagonal (red line)
had an R2 value of 0.76. (C) THP-1 cells were treated with siRNA targeting CaMK4, and uptake of C.
neoformans (Cn), C. albicans (Ca), S. cerevisiae (Sc), E. coli (Ec), or latex beads (LB) was assayed. Phagocytosis
of C. neoformans was significantly decreased compared to that of the other particles (P � 0.1 for C. albicans
and P � 0.05 for all other particles). Red line, normalized uptake value of 1.
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nary homogenates from naive mice and from infected mice on days 7 and 14 postin-
oculation revealed no significant differences in any of the 23 cytokines or chemokines
assayed (Table 1).

We next assayed wild-type and CaMK4�/� mice for differences in infiltrating im-
mune cells after infection. To do this, we isolated pulmonary leukocytes on days 7 and
14 postinoculation and used flow cytometry to characterize the immune cells recruited
to the lungs. We observed no significant differences in percent (Fig. 3) or absolute
number (not shown) of any of the cell types assayed. The extended survival of
CaMK4�/� mice thus is not likely due to changes in cytokine or immune cell profiles.

CaMK4 ablation leads to reduced pattern recognition receptor expression. Our
studies using RNAi, a kinase inhibitor, and knockout mice all showed that lowering
CaMK4 activity leads to reduced cryptococcal engulfment by host phagocytes. Because
lack of CaMK4 did not alter fungal burden, cytokine profile, or leukocyte distribution
during infection, we hypothesized that the connection between this regulatory protein
and fungal uptake occurs at the level of immune cell surface receptor expression. To
test this, we used surface staining and flow cytometry to analyze pulmonary leukocytes
from wild-type and CaMK4�/� mice on day 7 postinoculation for expression of 10
receptors that have been implicated in interactions with cryptococcal cells. In
CaMK4�/� mice we observed a significant reduction in the percentage of exudate/
recruited macrophages (F4/80�, CD11b�, and CD11c�) positive for CD282/TLR2,
Dectin-1, and CD206/mannose receptor and the percentage of dendritic cells (F4/80�,
CD11b�, and CD11c�) positive for CD206 (Fig. 4), although for those cells that were
positive, the fluorescence intensity was comparable (Fig. S5). In contrast, we found no
significant differences in receptor expression between uninfected WT and CaMK4�/�

mice (Fig. S6). Thus, the reduced fungal uptake we observe in vitro likely is caused by
surface receptor expression that is altered in the absence of CaMK4.

FIG 2 Inhibition or knockout of CamK4 influences fungal uptake and pathogenesis. (A) THP-1 cells were
assayed for uptake of the organisms indicated after treatment with PBS alone (blue) or 10 nM KN93 in PBS
(orange). The averages and standard errors of the means (SEM) from five independent studies are shown
(*, P � 0.05 by Student’s t test). (B) Survival of C57BL/6 mice treated with either PBS alone (blue) or with
250 �g/g body weight KN93 in PBS (orange). Mice were treated 1 day prior to infection with 5 � 104

cryptococci and three times a week postinfection. Results are representative of two independent experi-
ments with 6 mice per group; P � 0.05 by log-rank test. (C) Peritoneal macrophages from WT (blue) and
CaMK4�/� (orange) mice were assayed for uptake of C. neoformans. The averages and SEM from four
independent studies are shown (***, P � 0.0001 by Student’s t test). (D) Wild-type (WT; n � 16) and CaMK4
knockout (n � 9) mice were infected with C. neoformans and monitored as detailed in Materials and
Methods. Results are representative of four independent experiments; P � 0.05 by log-rank test.
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DISCUSSION

Understanding host-pathogen interactions is vital to the development of new drugs
and/or immune therapies. C. neoformans, a facultative intracellular pathogen, interacts
with multiple facets of the immune system. Because the patients most susceptible to
this infection are severely immunocompromised, identifying key host factors poten-
tially can lead to ways to tip the balance in favor of the host. One way to identify
such host factors is by screening host genes for their impact on pathogen interactions.

TABLE 1 Pulmonary cytokine and chemokine levels

Cytokine or chemokine

Level on daya:

0 (naïve) 7 14

WT CaMK4�/� WT CaMK4�/� WT CaMK4�/�

Th-1 type
IL-2 12.3 � 2.0 37.4 � 10.5 57.5 � 9.9 64.3 � 12.7 43.9 � 7.5 27.0 � 3.5
IL-12p70 29.2 � 2.2 42.6 � 3.4 301.1 � 36.0 287.8 � 41.6 182.7 � 21.1 149.7 � 5.8
IFN-� 8.8 � 0.6 11.8 � 2.0 44.1 � 6.9 45.3 � 7.9 23.2 � 4.0 18.1 � 2.5

Th-2 type
IL-4 ND ND 168.5 � 23.4 268.0 � 24.4 644.5 � 60.6 765.3 � 56.5
IL-5 ND ND 123.5 � 12.6 433.5 � 71.8 169.4 � 24.1 330.0 � 40.9
IL-13 32.2 � 7.4 48.3 � 6.3 637.4 � 100.6 1,013.0 � 153.8 657.4 � 78.5 977.6 � 213.7

Proinflammatory
IL-1� 16.1 � 2.9 35.9 � 8.3 161.5 � 17.1 104.7 � 11.6 121.6 � 19.7 106.2 � 11.6
IL-1� 67.3 � 8.3 107.2 � 24.6 1,975.0 � 261.7 1,916.0 � 296.7 1,510.0 � 74.5 1,436.0 � 122.1
IL-17a 5.4 � 0.3 5.4 � 0.3 45.4 � 7.7 46.9 � 5.2 22.8 � 2.2 20.5 � 1.5
G-CSF 2.1 � 0.3 2.4 � 0.7 161.8 � 27.4 173.2 � 29.0 68.3 � 56.1 56.1 � 8.2
TNF-� 32.8 � 1.9 42.5 � 5.9 343.6 � 65.7 388.0 � 68.9 225.3 � 54.0 131.6 � 15.8

Chemokines
MIP-1� 20.3 � 1.9 19.8 � 4.6 1,108.0 � 119.3 1,002.0 � 116.4 1,991.0 � 143.2 1,974.0 � 144.0
MIP-1� 3.2 � 0.6 6.2 � 2.6 203.3 � 32.9 166.2 � 25.9 74.7 � 8.9 37.4 � 6.1
MCP-1 124.4 � 14.9 137.5 � 17.2 2,078.0 � 285.4 2,046.0 � 258.8 1,503.0 � 124.4 1,862.0 � 209.0
KC 8.2 � 0.9 9.2 � 1.4 362.7 � 61.4 344.8 � 44.4 181.8 � 16.5 133.7 � 17.8
RANTES 167.4 � 24.5 157.3 � 42.9 719.9 � 96.4 516.5 � 40.2 183.6 � 13.7 159.2 � 19.6

aResults are given as means � standard errors of the means. ND, not detected.

FIG 3 CaMK4 knockout mice exhibit no difference in leukocyte infiltration in response to C. neoformans infection. Shown are leukocyte
profiles of WT (blue circles) and CaMK4 knockout mice (orange squares) infected with 104 C. neoformans KN99� for the times shown.
Each symbol represents data from an individual mouse. Results from 2 independent experiments with 4 to 5 mice per group per time
point are shown; means � SEM are also plotted. Leukocytes were labeled with antibodies to identify B cells (CD45� and CD19�), CD4�

T cells (CD45�, CD4�, and CD8�), CD8� T cells (CD45�, CD8�, and CD4�), DCs (CD45�, CD11b�, CD11c�, and F4/80�), eosinophils
(CD45�, CD11b�, and SiglecF�), exudate or recruited macrophages (CD45�, CD11b�, CD11c�, and F4/80�), macrophages (CD45�,
CD11b�, CD11c�, and F4/80�), and polymorphonuclear leukocytes (PMNs; CD45�, CD11b�, and Ly6Ghi) and then analyzed by flow
cytometry (see Table S3 in the supplemental material for antibodies and Fig. S4 for gating strategy).
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We probed these complex interactions using siRNA gene silencing in a human
macrophage-like cell line.

Qin et al. previously performed a manual siRNA screen for host factors involved in
cryptococcal uptake (18), although multiple key features distinguish our study from
that work. Most central to the project design, the prior study targeted genes that were
preselected for known involvement in membrane traffic, membrane remodeling,
phagosome establishment, or phagosome maturation and thus were expected to affect
fungal engulfment or survival. The screen also used insect cells, rather than mammalian
cells, to represent the host. Finally, fungi in the earlier study were not opsonized,
although some form of opsonization likely occurs in all disease contexts (14), and were
not exposed to host-like growth conditions (e.g., 37°C and 5% CO2) that are known to
dramatically alter virulence factor expression (19) and engulfment by host cells (16). A
subset of the genes targeted by Qin et al. did, as hypothesized, alter fungal uptake;
several of them, initially selected for their role in autophagosome biogenesis, were also
shown to influence uptake and/or replication of unopsonized fungi in a mammalian
system (murine RAW264.7 macrophages).

FIG 4 Leukocytes from CaMK4�/� mice show reduced expression of PRRs implicated in cryptococcal
recognition. PRR profiling of leukocytes from WT (blue circles) and CaMK4 knockout (orange squares)
mice 7 days after infection with 104 C. neoformans KN99�. Antibody labeling and flow cytometry was
used to classify pulmonary leukocytes as DCs (CD45�, CD11b�, CD11c�, and F4/80�), exudate or
recruited macrophages (Ex M�) (CD45�, CD11b�, CD11c�, and F4/80�), or macrophages/monocytes
(CD45�, CD11b�, CD11c�, and F4/80�) and to assess PRR expression. Symbols indicate data from
individual mice in 2 independent experiments with 4 to 5 mice per group; means � SEM are also shown
(*, P � 0.05; **, P � 0.01 by Student’s t test).
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We performed an automated, unbiased screen of RNAi-treated human phagocytes,
which were exposed to fungi opsonized with human serum under host-like conditions.
We targeted 868 genes encoding two classes of host proteins that frequently act in
regulatory processes, kinases and phosphatases, because we hypothesized that some
of these would regulate host-fungus interactions. From 79 first-round hits of this screen,
we refined our results based on specificity for C. neoformans interactions.

Of the four cryptococcus-specific genes that we identified, one prominent hit was
the gene encoding calcium/calmodulin-dependent protein kinase 4 (CaMK4). CaMKs
are serine/threonine kinases sensitive to changes in intracellular calcium. They are
involved in cellular processes ranging from gene regulation, apoptosis, and cytokine
release to differentiation and survival of T-lymphocytes and monocyte-derived cells (20,
21). Interestingly, a recent study based on phosphoproteomic analysis identified an-
other member of this family, CaMK2, as a protein involved in C. neoformans phagocy-
tosis (22). This work did not yield CaMK2, which may reflect the very distinct approaches
of the two studies.

Multiple isoforms of CaMK display tissue-specific expression, with CaMK4 predom-
inantly expressed in cells of the nervous and immune systems (20, 21). Both of these are
significant lineages for cryptococcal infection, as C. neoformans shows tropism for the
central nervous system. CaMK4 occupies a key position between upstream Ca2�/
calmodulin-dependent protein kinase kinase (CaMKK) and downstream transcription
factors in a Ca2�/calmodulin-regulated pathway or CaM kinase cascade (20). Once
activated by phosphorylation, CaMK4 translocates to the nucleus and can phosphory-
late multiple proteins, including CREB (21).

In phagocytic cells CaMKs are involved in several PRR signaling pathways, including
those initiated by TLR2 and TLR4, where they act to modulate the transduced signal by
phosphorylating CREB (20, 23). CREB activation is also involved in expression and
signaling of the C-type lectin receptors Dectin-1 and CD206/mannose receptor (24, 25).
We observed a significant reduction in cells positive for TLR2, Dectin-1, and CD206
across multiple phagocytic cell types during infection in CaMK4�/� mice compared to
WT mice (Fig. 4). Notably, all three of these PRRs can recognize cryptococcal cells. TLR2
recognizes components of the cryptococcal capsule (26–28). Peripheral blood mono-
nuclear cells (PBMCs) isolated from patients with cryptococcal meningitis also exhibit
significantly less TLR2 than healthy control PBMCs, which has been interpreted as
demonstrating a role for TLR2 in cryptococcal infection (29). TLR2 in combination with
Dectin-1 can recognize fungal �-glucan and is important in protection against Asper-
gillus, Candida, and Pneumocystis infections (30–32). While Dectin-1 alone can recognize
cryptococcal cells, there is no significant difference in disease progression in Dectin-1
KO mice compared to that of WT mice, suggesting that Dectin-1 is not required for host
defense against C. neoformans (33, 34). CD206 recognizes heavily mannosylated cryp-
tococcal mannoproteins (35), and the corresponding knockout mice succumb to C.
neoformans infection significantly faster than WT mice (36). Increased surface expres-
sion of CD206, which is upregulated on M2 macrophages, results in increased phago-
cytosis, consistent with our results, but is also accompanied by decreased intracellular
killing and tumor necrosis factor alpha (TNF-�) production (36). Although the roles of
these three PRRs are complex, the changes observed in their expression could explain
the reduced uptake of cryptococci by cells lacking CaMK4.

As discussed above and recently reviewed (15), host phagocytes play disparate roles
in C. neoformans infection. These range from killing the fungi to providing them with
a replicative niche or acting as Trojan horses to convey them to the brain, but all
depend on interactions between the yeast and host cells. Alanio et al. tested the
relationship between cryptococcus-macrophage interactions and disease outcome by
measuring the engulfment and intracellular proliferation of clinical isolates upon
exposure to murine phagocytes in vitro (37). They found that low phagocytic and
intracellular proliferation indices of C. neoformans strains correlated with longer patient
survival (37). The reduced uptake of fungi by innate immune cells with lower CaMK4
(Fig. 1A) therefore might account for the increased survival of CaMK4�/� mice com-
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pared to that of WT mice. Given this difference in survival, we were surprised that we
observed no significant change in fungal burden between the WT and the CaMK4�/�

mice (see Fig. S3 in the supplemental material). Importantly, assessment of organ
burden by CFU (as is standard in the field and done here) does not distinguish between
free and internalized fungi. It is possible that this is a key parameter in infection
outcome.

CaMK4 has been implicated in neurological disorders (38, 39) and the level of
Foxp3(�) regulatory T cells (Treg) (40). We considered the possibility that changes in
the neuroimmune response or in the number of pulmonary Treg in CaMK4�/� mice
could explain the difference in mouse survival, but we found no significant differences
in these parameters (data not shown). Finally, it is also possible that the global CaMK4
deletion influences mouse survival by altering processes other than those of the
hematopoietic compartment; these remain to be investigated.

In this study, we combined siRNA screening and an automated imaging-based assay
to identify host phosphatases and kinases that are involved in C. neoformans internal-
ization by human phagocytes. We identified four genes that, when silenced, demon-
strated C. neoformans-specific alterations in uptake and verified the role of one of them
in vivo. Unbiased strategies thus may be a powerful tool for identifying host factors
involved in cryptococcal pathogenesis and potentially inform efforts to develop im-
proved therapies that are desperately needed.

MATERIALS AND METHODS
Ethics statement. All animal protocols were reviewed and approved by the Animal Studies Com-

mittee of the Washington University School of Medicine and conducted according to National Institutes
of Health guidelines for housing and care of laboratory animals. Human serum was obtained from
healthy donors with informed consent under a protocol approved by the Washington University in St.
Louis Institutional Review Board (IRB).

Reagents. Unless otherwise stated, chemicals were purchased from Sigma-Aldrich (St. Louis, MO),
tissue culture medium from Invitrogen (Grand Island, NY), and plasticware from Fisher Scientific (Pitts-
burgh, PA).

Strains and media. Cryptococcus neoformans strains H99� (from Joe Heitman) and KN99� (from
Kirsten Nielsen), Saccharomyces cerevisiae strain W303 (from Randy Schekman), and a Candida albicans
efg1Δ cphΔ strain (a nonhyphenating mutant; from Aaron Mitchell) were recovered from 15% glycerol
stocks stored at �80°C and maintained on YPD plates (1% yeast extract, 2% peptone, 2% dextrose, and
2% Bacto agar). For all studies yeast cells were grown for 15 to 17 h at 30°C with shaking in YPD broth,
collected by centrifugation, washed three times with sterile phosphate-buffered saline (PBS), and
counted on a Cellometer Auto M10 (Nexcelom Bioscience, Lawrence, MA).

Cell culture. Mammalian cells were grown at 37°C and 5% CO2. THP-1, a male human monocytic cell
line (ATCC TIB-202), was cultured in RPMI 1640 with 10% heat-inactivated fetal bovine serum (FBS), 100
�g/ml penicillin, 100 U/ml streptomycin, 1 mM sodium pyruvate, and 48 �M �-mercaptoethanol and
passaged every 3 days to maintain cell density of 1.5 � 105 to 9 � 105/ml. Prior to uptake assays, cells
were seeded in flat-bottomed polystyrene 96-well microtiter plates (Costar) at 1.5 � 104 cells/well in
THP-1 differentiation medium (the growth medium described above with 0.2 �g/ml phorbol 12-
myristate 13-acetate) and grown for 48 h.

RNAi library testing. For treatment with Qiagen siRNA libraries targeting human phosphatases
and kinases (v 4.0), THP-1 cells were seeded in 96-well plates using a BioMek FX laboratory
automation workstation. Pools of two siRNAs per target (10 nM final concentration) were added to
each well with 100 �l of Polyplus INTERFERin transfection reagent (Polyplus Transfection, New York,
NY), and the cells were incubated for 2 h before the addition of THP-1 differentiation medium and
continued growth for 48 h. Host cell viability was monitored using alamarBlue (Life Technologies).
Twenty-four hours prior to uptake assays the transfected cells were washed and the medium
replaced with RPMI 1640 alone to induce starvation. For some studies, THP-1 cells were treated with
10 nM CamK4 inhibitor KN93 (dimethyl sulfoxide [DMSO]-soluble form; Sigma) for 24 h prior to
uptake assays (during the starvation phase). Cells were then washed and fresh RPMI 1640 was added
before initiation of the assays.

Uptake assays. Four particles were used for uptake assays: C. neoformans cells stained for 30 min at
room temperature (RT) with Lucifer yellow (Sigma) in McIlvaine’s solution (pH 6.0; final concentration,
100 �g/ml); S. cerevisiae and C. albicans stained for 30 min at RT with FUN-1 (2.0 �l of 10 mM stock;
Invitrogen) in 100 �l 1� PBS; and fluorescent yellow-green 1-�m latex beads (Sigma). All particles were
opsonized for 30 min at 37°C with 40% human serum before addition at a multiplicity of infection (MOI)
of 16 to the plates of transfected and starved THP-1 cells, and the plates then were incubated for 1 h at
37°C and 5% CO2. Human serum was obtained from individual healthy volunteers by following a protocol
approved by the Washington University School of Medicine IRB.

Postinfection, plates were processed as described in Srikanta et al. (16). Briefly, they were washed
with a BioTek ELx405 microplate washer (BioTek, Winooski, VT) to remove nonadherent cells, fixed
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in 4% formaldehyde, and permeabilized with 0.1% saponin. Host cells then were stained with 2
�g/ml 4=,6-diamidino-2-phenylindole (DAPI) to label host nuclei and 250 ng/ml CellMask plasma
membrane deep red to stain host cell bodies (both from Sigma). Plates were imaged using an IN Cell
analyzer (GE Healthcare) with scanning on 3 channels (wavelengths of 360/460, 475/535, and
620/460 nm to detect DAPI, Lucifer yellow, and CellMask, respectively). Fifteen to 20 images were
captured for each channel/well and analyzed using the IN Cell Developer Toolbox (GE Healthcare).
Each sample was assayed in one well in the same position on 3 separate 96-well plates, and all
experiments were repeated at least twice. All studies included controls for uptake (fungi with or
without serum opsonization) and for RNAi treatment (no siRNA, scrambled siRNA, and siRNA
targeting proteins required for general phagocytosis).

Quantitative real-time PCR. Total RNA was isolated using the RNeasy Plus minikit (Qiagen), and
first-strand cDNA was synthesized using SuperScript II (Invitrogen) per the manufacturer’s instructions.
mRNA levels were quantified with SYBR green-based detection using a Bio-Rad CFX96 instrument and 40
cycles of PCR (94°C for 15 s, 60°C for 30 s, and 72°C for 30 s). Gene expression was normalized to ACT1
levels and expressed as a percentage of WT control expression.

Pulmonary infections. Four- to 6-week-old female C57BL/6J mice or CaMK4�/� mice (The Jackson
Laboratory, Bar Harbor, ME) were anesthetized by intraperitoneal (i.p.) injection (of 150 �l of 2 mg/ml
xylazine [VEDCO] and 10 mg/ml of ketaset [Fort Dodge Animal Health]) and intranasally inoculated with
the indicated number of CFU (verified by quantitative culture on YPD agar) of C. neoformans strain KN99�

in 50 �l of sterile PBS. The mice were fed ad libitum and monitored daily for symptoms. For organ burden,
cytokine analysis, and flow cytometry studies, mice were euthanized at specific time points postinocu-
lation by CO2 inhalation, and the lungs, brain, and spleen were harvested. For survival studies, mice were
sacrificed when body weight fell below 80% of peak weight. For some survival studies, mice were
injected i.p. with water-soluble KN93 (250 �g/g body weight; EMD Millipore) in 100 �l of PBS or PBS
alone three times a week, beginning 1 day prior to infection.

Pulmonary leukocyte isolation. For leukocyte isolation, lungs were enzymatically digested at
37°C for 30 min in 10 ml of digestion buffer (RPMI 1640 containing 1 mg/ml of collagenase type IV).
The digested tissues then were successively passed through sterile 70- and 40-�m-pore nylon
strainers (BD Biosciences, San Jose, CA). Erythrocytes in the strained suspension were lysed by
incubation in NH4Cl buffer (0.859% NH4Cl, 0.1% KHCO3, 0.0372% Na2EDTA; pH 7.4; Sigma-Aldrich) for
3 min on ice, followed by the addition of a 2-fold excess of PBS. The unlysed leukocytes then were
collected by centrifugation, resuspended in sterile PBS, and counted with a Cellometer Auto M10
(Nexcelom Bioscience).

Isolation and assay of peritoneal macrophages. Four- to 6-week-old female mice were injected i.p.
with 1 ml 5 mM sodium periodate (Sigma) in sterile PBS to induce cell recruitment into the peritoneal
cavity. Mice were euthanized 72 h postinjection, and peritoneal lavage was performed with ice-cold
sterile PBS. Macrophages were isolated from the lavage fluid by positive selection using biotinylated
�-F4/80 antibody (eBioscience) and �-biotin-conjugated magnetic beads (Miltenyi Biotec). Uptake assays
were performed as described above, except that C57BL/6 mouse serum was used for opsonization.

Flow cytometry. All flow cytometry steps were performed at 4°C. Pulmonary leukocytes in PBS were
stained using the LIVE/DEAD fixable blue dead cell stain kit (Invitrogen, Carlsbad, CA) for 30 min.
Following incubation, samples were washed and resuspended at 107/ml in 100 �l PBS plus 2% fetal
bovine serum (fluorescence-activated cell sorting buffer), and 100 �l was dispensed into wells of a
96-well U-bottom plate. Samples where Fc receptors were not to be directly analyzed then were
incubated with CD16/CD32 (Fc block; BD Biosciences, San Jose, CA) for 5 min. For flow cytometry, cells
next were incubated with the optimal concentrations of fluorochrome-conjugated antibodies (see Table
S3 in the supplemental material for antigen, clone, and source) in various combinations for 30 min,
washed, and fixed in 2% ultrapure formaldehyde. For data acquisition, �50,000 events were collected on
a BD LSRFortessa X-20 flow cytometer (BD Biosciences, San Jose, CA), and the data were analyzed with
FlowJo V10 (TreeStar, Ashland, OR).

Cytokine analysis. Cytokine levels in lung tissues were analyzed using the Bio-Plex protein array
system (Bio-Rad Laboratories, Hercules, CA) as described previously (41). Briefly, lung tissue was
excised and homogenized in ice-cold PBS (1 ml) and mixed with an equal volume of PBS containing
2� Pierce protease inhibitors (Thermo Scientific, Rockford, IL) and 0.05% Triton X-100, and the
samples were clarified by centrifugation. Supernatant fractions from the pulmonary homogenates
then were assayed using the Bio-Plex Pro mouse cytokine 23-plex (Bio-Rad Laboratories) for the
presence of interleukin-1� (IL-1�), IL-1�, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 (p40), IL-12 (p70),
IL-13, IL-17A, granulocyte colony-stimulating factor (G-CSF), granulocyte monocyte colony-
stimulating factor (GM-CSF), interferon gamma (IFN-�), CXCL1/keratinocyte-derived chemokine (KC),
CCL2/monocyte chemotactic protein-1 (MCP-1), CCL3/macrophage inflammatory protein-1� (MIP-
1�), CCL4/MIP-1�, CCL5/RANTES, and TNF-�.

Statistics. All in vitro experiments were performed independently in triplicate. Candidates from the
RNAi screen were assessed using the quartile-based threshold method described previously (42). To
compare results between experiments, the data from each plate were normalized to the plate
controls. Significance was assessed using the Student t test for individual paired comparison and by
one-way analysis of variance and Tukey’s test when multiple groups were compared. Mouse survival
was analyzed using Kaplan-Meier analysis and log-rank statistics. All statistical analyses were
confirmed using GraphPad Prism software, version 6.0 (GraphPad Software). P values of �0.05 were
considered significant.
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