
Disruption of the gut microbiome as a risk factor for microbial 
infections

Arya Khosravi1 and Sarkis K. Mazmanian1,*

1Division of Biology, California Institute of Technology, Pasadena, California, 91125

Abstract

The discovery that microorganisms can be etiologic agents of disease has driven clinical, research 

and public health efforts to reduce exposure to bacteria. However, despite extensive campaigns to 

eradicate pathogens (via antibiotics, vaccinations, hygiene, sanitation, etc.), the incidence and/or 

severity of multiple immune-mediated diseases including, paradoxically, infectious disease have 

increased in recent decades. We now appreciate that most microbes in our environment are not 

pathogenic, and that many human-associated bacteria are symbiotic or beneficial. Notably, recent 

examples have emerged revealing that the microbiome augments immune system function. This 

review will focus on how commensal-derived signals enhance various aspects of the host response 

against pathogens. We suggest that modern lifestyle advances may be depleting specific microbes 

that enhance immunity against pathogens. Validation of the notion that absence of beneficial 

microbes is a risk factor for infectious disease may have broad implications for future medical 

practices.

Introduction

The discovery of antibiotics in the last century is one of the most significant achievements of 

modern medicine. Pathogens that once devastated entire civilizations, such as 

Mycobacterium tuberculosis, could finally be controlled, suggesting a triumph over 

infectious disease. However, the rampant rise of antibiotic resistance among pathogens, 

compounded by a drying pipeline of novel antibiotic development by pharmaceutical 

companies has rendered current therapeutic strategies ineffective. As such, we have entered 

the post-antibiotic era where pathogens once again reign with limited opposition and a minor 

scrape may pose the risk of a fatal infection [1,2]. To combat the renewed threat of 

pathogenic microorganisms, clinical approaches towards eradicating infectious disease must 

evolve.

The recent increase in the severity and incidence of Clostridium difficile-associated diarrhea 

(CDAD) is emblematic of medicine’s current failings as well as its possible future. The 

disruption of intestinal microbiota, most commonly by antibiotics, prompts infection by C. 
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difficile resulting in disease that ranges from mild diarrhea to fulminant colitis [3]. Once 

fatal, the advent of antibiotics consigned it to a manageable infection. However, the spread 

of antibiotic-resistant, hypervirulent strains in recent years has created an epidemic that is 

exceedingly difficult to manage [4]. Currently, 20–25% of patients experience relapsing 

disease, further reflecting the reduced efficacy of antibiotic therapy [3]. Besieged by an 

unrelenting pathogen, clinicians began to supplement patients with the fecal contents of 

healthy donors in an attempt to reestablish the natural resistance afforded by the microbiota 

against C. difficile. Fecal transplantation embraces the hygiene hypothesis which argues 

microbial exposure, particularly that of commensal microbes, is beneficial to host health. 

This approach of administering microbes to combat disease is in shocking contrast to 

standard medical practices of the last century that, abiding by the principles of germ theory, 

indiscriminately targets microbes as a means of promoting individual health. Yet, achieving 

a 91% primary cure rate, the use of fecal transplantation insists upon a reassessment of our 

clinical strategy towards preventing and treating infectious disease [5].

The commensal microbiota is primarily comprised of indigenous bacteria that colonize the 

external interfaces of its host. Co-evolution has resulted in microbes with extensive and 

diverse impacts on multiple aspects of host biology including nutrient acquisition, immune 

development and neurological function [6–8]. Appropriately, conditions that disrupt the 

symbiotic host-microbial coexistence significantly alter predisposition to a wide spectrum of 

disorders. This review will focus on the contribution of commensal microbiota in promoting 

host resistance against infectious disease. Furthermore, we will discuss how efforts to 

support the integrity of the microbiota, as through bacteriotherapy or the supplementation 

with microbial products, may be an effective means of achieving protection against 

infection.

The intestinal microbiota promotes host resistance against mucosal 

infection

The development of enteric infection following antibiotic use has long been observed in both 

clinical practice and animal models of disease [3]. This observation suggests some 

mechanism by which the commensal microbiota protects against pathogen invasion and 

dissemination. The utilization of animal models to study the microbiota, including germ-free 

(GF) mice that lack microbial exposure, has revealed significant insight into the diverse and 

intricate contribution of the commensal microbes to host resistance against infectious 

disease.

Commensal microbes directly resist enteric pathogens

The commensal microbiota achieves resistance against opportunistic infection, in part, 

through niche competition. By competing for sites of colonization and nutrient uptake, 

commensal microbes are able to limit pathogen expansion at host epithelial surfaces [9]. GF 

mice are highly susceptible to enteric infection with Citrobacter rodentium, a murine 

pathogen used to model infection with enterohemorragic and enteropathogenic Escherichia 
coli [10]. Bacteriotherapy with isolated commensal microbes results in pathogen clearance, 

in part, due to the enhanced glycan acquisition capabilities of the transferred bacteria. These 
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findings reveal direct competition between commensal microbes and pathogens for nutrients 

as a means of limiting infection at sites of colonization.

Conversely, recent studies show that certain enteric pathogens are able to outcompete 

commensal microbes by actively triggering host inflammation which favors pathogen 

invasion and dissemination [11]. C. rodentium, Campylobacter jejuni, and Salmonella 
enterica serovar Typhimurium (STm) appear to induce inflammation as part of their 

infectious process, and increasing intestinal inflammation actually promotes disease [12,13]. 

Further, these reports surprisingly demonstrate that pathogen-induced inflammation 

adversely affects the microbiota, reducing the numbers of beneficial bacteria, which protect 

us from infections. Collectively, there is growing evidence for the notion that pathogens and 

symbiotic bacteria are engaged in an ‘evolutionary combat’, with the host serving as the 

battlefield.

Under conditions in which direct competition is insufficient to limit pathogen invasion, the 

commensal microbiota promotes resistance to infection by mediating protective host 

immune responses. Immune modulation by commensal microbes is indispensable in 

achieving host-microbial symbiotic coexistence and preventing inflammatory disease [7]. 

We now appreciate that this influence extends into supporting protection against infectious 

disease by promoting both barrier immunity as well as priming immune defenses against 

pathogen insult (Fig. 1).

Commensal microbes promote barrier immunity

Immune modulation by the microbiota occurs through commensal-derived signals such as 

microbial associated molecular patterns (MAMPs). Host recognition of MAMPs is achieved 

by pathogen recognition receptors (PRRs), such as Toll-like receptors (TLRs). At mucosal 

surfaces, these commensal-derived signals drive epithelial production of mucin, secretion of 

immunoglobulin A (IgA), and the expression of antimicrobial peptides (AMPs) that limit 

microbial contact to mucosal tissue [14–16]. One such example is commensal driven 

expression of RegIIIγ by intestinal epithelial cells (Fig. 2). RegIIIγ is a C-type lectin that 

possesses antimicrobial activity against Gram-positive microbes [17]. Expression of RegIIIγ 
requires TLR recognition of commensal MAMPs [18]. As such, disruption of the 

microbiota, as through antibiotic treatment, reduces production of RegIIIγ resulting in a 

breakdown of barrier immunity. As a consequence, antibiotic-treated mice are highly 

susceptible to opportunistic infection with enteric pathogens such as vancomycin-resistant 

enterococcus (VRE) [19]. Supplementation of antibiotic-treated mice with purified MAMPs 

is sufficient to prime RegIIIγ expression and achieve resistance against infection. VRE is a 

common cause of antibiotic-associated diarrhea and, similar to C. difficile, exceedingly 

difficult to treat. Herein is another example of how current treatment strategies predispose 

the host to secondary infections and how efforts to maintain the integrity of the microbiota 

or supplement it during antibiotic treatment may be effective in limiting susceptibly to 

opportunistic pathogens.
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Commensal microbes prime immune resistance to pathogen invasion

Under conditions in which barrier resistance fails, commensal microbes continue to limit 

pathogen dissemination by enhancing immune clearance mechanisms. One such mechanism 

by which the microbiota promotes host resistance is through priming interleukin-1 (IL-1) β 
expression. IL-1β is a proinflammatory cytokine that is expressed in an inactive form (pro 

IL-1β) that is subsequently cleaved by caspases following inflammasome activation [20]. 

Intestinal mononuclear phagocytes isolated from specific pathogen-free (SPF) mice express 

pro-IL-1β, which is deficient in cells isolated from GF mice [21]. Cleavage of pro-IL-1β 
into its active form occurs after challenge with pathogenic microorganisms, such as STm, 

but not following exposure to commensal microbes. This would suggest that commensal 

microbes promote pro-IL-1β expression among intestinal mononuclear cells, which is 

specifically activated following pathogen insult. Appropriately, commensal-driven pro-IL-1β 
expression enhances resistance to enteric infection with STm.

Additional mucosal immune responses are driven by the microbiota, including the 

differentiation of T-helper 17 (Th17) cells and IL-22 expression by intestinal NKp46+ cells 

[22,23]. While specific details for the role of both cell types in regulating commensal 

microbes remains to be revealed, both are critical in combating mucosal infection with C. 
rodentium. It thus appears that the microbiota drives certain immune responses, including 

the production of pro-IL-1β, with the primary purpose of promoting resistance to pathogenic 

infection.

Commensal microbes prevent pathogen invasion at colonization sites 

beyond the gut

While the majority of the studies assessing the contribution of the microbiota to host 

resistance to infection have focused on the gut, colonization by commensal microbes at other 

barrier sites also affords pathogen protection. Skin microbes prime local development of 

Th1, Th17 and IL-17+ gamma-delta T cells [24]. Cutaneous T cell differentiation by 

commensal microbes is achieved through MAMP-driven IL-1β signaling. This response is 

independent of the intestinal microbiota as oral antibiotic treatment, which reduced intestinal 

Th1 and Th17 cells, has no effect on the immune profile within the skin. Furthermore, 

colonization of GF mice with the prominent skin commensal Staphylococcus epidermidis is 

sufficient to rescue the defective immune response in GF mice. Priming of these immune 

responses by skin microbes is instrumental in promoting resistance against cutaneous 

infection with Leishmania major. Here we see a critical influence, afforded by commensal 

microbes, in localized host immune development and subsequent protection against 

infection.

Immune protection is also achieved by commensal microbes residing within the respiratory 

mucosa. Antibiotic-treated mice display reduced resistance to influenza infection [25]. 

Disease susceptibility is characterized by defective IL-1β production as well as reduced 

dendritic cell recruitment and T cell priming. As a consequence, antibiotic-treated animals 

display attenuated T cell and B cell responses following viral infection. Interestingly, 

depletion of the microbiota did not enhance susceptibility to infection with herpes simplex 
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virus type 2 or Legionella pneumophila indicating specificity for pathogens to which the 

microbiota promotes resistance. Intranasal inoculation with purified MAMPs, such as LPS, 

is sufficient to restore protective immunity to infection, as is, surprisingly, intrarectal MAMP 

administration. These findings suggest the imunoprotective properties of commensal 

microbes are not limited to the sites of colonization, but rather may extend to distal 

compartments and may even support host resistance against systemic infection.

Commensal microbes promote host resistance to systemic infection

While commensal microbes are physically restricted to external sites of colonization, their 

influence on host immune responses extends into systemic compartments. This concept was 

revealed with the finding that GF mice display a diminished splenic CD4+ T cell profile 

[26]. Monocolonization with a prominent intestinal commensal, Bacteroides fragilis, is 

sufficient to promote CD4+ T cell development within the spleen. The role of commensal 

microbes in driving systemic immune maturation suggests that disruption of the microbiota 

may compromise host immunity and increase susceptibility to systemic infection.

Deliberate depletion of the microbiota reduces resistance to systemic infection with 

Lymphocytic Choriomeningitis Virus (LCMV) [27]. Antibiotic-treated mice display 

increased viral burden as a consequence of attenuated anti-viral immune responses following 

infection. Macrophages isolated from antibiotic-treated mice are deficient in type I and II 

interferon (IFN) signaling, as well as in controlling viral replication ex vivo. This defect in 

innate immune resistance contributes to an impaired adaptive immune response, which 

includes deficient expansion and cytolytic activity of LCMV-specific CD8+ T cells as well 

as reduced serum titers of anti-LCMV IgG. Furthermore, the defect in anti-viral immunity 

among microbiota-depleted mice may also reflect altered transcriptional response following 

infection. Splenic mononuclear cells, isolated from GF mice, are deficient in expressing pro-

inflammatory cytokines when stimulated with purified MAMPs [28]. This defective 

response is associated with reduced transcription of various inflammatory response genes 

due to chromatin modification of the promoter region. These studies reveal a remarkable role 

for commensal microbes in programing host systemic defense responses during steady state 

conditions. Furthermore, as this influence is reversible, temporary depletion of the 

microbiota is sufficient to compromise systemic immune resistance to pathogen invasion.

In addition to priming anti-viral immune responses during steady state conditions, 

commensal microbes may also protect against systemic bacteremia. Neutrophils isolated 

from the bone marrow of antibiotic-treated or GF mice are attenuated in ex vivo killing of 

extracellular pathogens Staphylococcus aureus and Streptococcus pneumoniae [29]. This 

defect was reproduced in mice deficient in Nod1, a PRR which recognizes peptidoglycan 

derived meso-diaminopimelic acid (mesoDAP), but not in mice deficient in other PRRs. 

Molecules from intestinal microbes are found in the bone marrow neutrophil stores, 

indicating that direct stimulation by commensal MAMPs primes neutrophil activity. 

Appropriately, neutrophil antimicrobial activity among antibiotic-treated mice is rescued 

following stimulation with Nod1 ligand. While it remains to be shown that the absence or 

disruption of the microbiota actually reduces resistance to bacterial infection, these 
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collective findings suggest immune priming by commensal microbes is critical in promoting 

host resistance against systemic infections.

Defects in host-microbial symbiosis may predicate susceptibility to 

infection

Factors that determine an individual’s susceptibility to infectious disease remain largely 

unknown. Here we suggest that environmental and genetic influences that disrupt the 

microbiota or impede host sensing of commensal-derived signals may confer vulnerability to 

pathogen infection (Fig. 3). As discussed earlier, depletion of the microbiota through 

antibiotics is sufficient to compromise host immune function and increase the risk of 

opportunistic infection. Other environmental factors that disrupt the composition of the 

microbiota, including gastrointestinal infection or diet, may additionally serve as a risk 

factor for disease [12,30]. Susceptibility to infection may even persist long after exposure to 

the microbiota-disrupting agent. Tracking the intestinal commensal profile among patients 

taking oral antibiotics revealed recovery in the composition of the microbiota following 

cessation of therapy [31]. However, there is a delay of several weeks to months between the 

final antibiotic administration and recovery of the microbiota to the pre-treatment 

composition. This delay, in animal models, was associated with increased susceptibility to 

infection, reflecting persistent consequences of antibiotic therapy [32]. Alternatively, certain 

individuals display alterations for up to four years after antibiotic treatment, indicating a 

defect in microbiota resilience [33]. We speculate that such a defect, while asymptomatic, 

may compromise the protective contribution of the commensal microbiota to host immunity 

and weaken resistance against pathogenic insult.

Defects in host sensing of the beneficial influence of commensal microbes may also serve as 

a risk factor for disease. Nod2 is an intracellular PRR that recognizes muramyl dipeptide, a 

conserved structural moiety of bacterial peptidoglycan [34]. Nod2 signaling promotes 

expression of Paneth cell α-defensin, a class of antimicrobial peptides, that, similar to 

RegIIIγ, limits microbial contact with host tissue [35]. As a consequence of the diminished 

α-defensin production, Nod2-deficient mice display heightened susceptibility to 

gastroenteritis by Listeria monocytogenes. Furthermore, as homozygous mutations in this 

receptor are associated with increased incidence of Crohn’s disease, defects in host sensing 

of commensal signals may be a risk factor for inflammatory bowel disease (IBD) by 

reducing clearance of pathogenic bacteria [34]. Indeed, the finding that adhesive and 

invasive E. coli (AIEC) are tightly associated with the intestinal epithelium among patients 

with Crohn’s disease may support this notion [36].

Finally, the genetic selection of one’s microbiota composition may reflect individual 

susceptibility to infection. NIH Swiss (NIH) mice are naturally resistant to gastrointestinal 

infection with C. rodentium, compared to C3H/HeJ (HeJ) mice which develop lethal disease 

[37]. Resistance among NIH mice is associated with increased expression of IL-22 and 

RegIIIβ, relative to HeJ mice. As the microbiota drives the expression of both antimicrobial 

mediators, susceptibility to infection may be a function of gut bacterial community 

composition. To test this hypothesis, HeJ mice were depleted of microbiota through 
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antibiotic treatment, and colonized with intestinal microbes from NIH mice. The bacterial 

community profile of transplanted mice was shown to resemble that of the NIH donor. 

Remarkably, transfer of commensal microbes from NIH to HeJ mice is sufficient to promote 

resistance to infection. Protection is associated with increased expression of IL-22 and 

RegIIIβ, and protection is lost following neutralization of IL-22. Reciprocally, 

transplantation of HeJ microbiota to NIH mice increased disease burden to C. rodentium. 

Finally, pups in the subsequent generation inherit the microbiomes transferred to their 

parents. Offspring remarkably display resistance patterns to C. rodentium infection relative 

to their microbiota composition, rather than their genetics. These data suggest that familial 

history of infectious disease may not only reflect the inheritance of susceptibility genes, but 

possibly the vertical transmission of a microbiota that is less protective against pathogen 

challenge.

Conclusion

The evidence summarized in this review suggests that disruption of the microbiota through 

environmental influences may compromise immune function, leading to increased 

susceptibility to infectious disease. In particular, we propose that antibiotic use may 

paradoxically promote bacterial and viral infections by depleting immune-promoting gut 

bacteria. For example, antibiotics are routinely administered in the hospital to patients 

admitted for various non-bacterial illnesses. Not only can this practice select for antibiotic-

resistant microbes (an extensively reported phenomenon), but may also lead to nosocomial 

infections by reducing the ability of the immune system to fight infections. Furthermore, 

antibiotic use over several generations may reduce gut bacteria diversity in entire 

populations, a notion proposed by the ‘disappearing microbiota’ hypothesis [38]. In cases 

where antimicrobial use is justified, we speculate that the administration of commensal-

derived products that promote immunity may represent a viable companion therapy to 

antibiotics. Given the rise of antibiotic resistance among pathogens and the potential loss of 

beneficial microbes in Western societies, efforts that support microbiome-mediated 

protection may be an effective approach to achieve resistance to infectious disease in the 

post-antibiotic era.
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Review highlights

• Commensal microbes are critical in promoting host resistance against 

infectious disease.

• Protection by the microbiota from infection can be achieved through direct 

competition with pathogenic microorganisms for space and/or nutrients.

• Priming of immune responses by the microbiota to combat pathogens 

represents a potentially novel approach to control infectious disease.
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Figure 1. The intestinal microbiota promotes three levels of protection against enteric infection
I, Saturation of colonization sites and competition for nutrients by the microbiota limit 

pathogen association with host tissue. II, Commensal microbes prime barrier immunity by 

driving expression of mucin, immunoglobulin A (IgA) and antimicrobial peptides (AMPs) 

that further prevents pathogen contact with host mucosa. III, Finally, the microbiota 

enhances immune responses to invading pathogens. This is achieve by promoting IL-22 

expression by T cells and NKp46+ cells, which increases epithelial resistance against 

infection, as well as priming secretion of IL-1B by intestinal monocytes (MΦ) and dendritic 

cells (DCs), which promotes recruitment of inflammatory cells into the site of infection. In 

conditions in which the microbiota is absent, such as following antibiotic treatment, there is 

reduced competition, barrier resistance and immune defense against pathogen invasion.
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Figure 2. The commensal microbiota primes barrier immunity
Direct stimulation of epithelial Toll-like receptors (TLRs) by commensal MAMPs primes 

expression of RegIIIγ (a). Production of RegIIIγ is essential to limit microbial contact with 

host mucosa. As such, defects in TLR function results in deficient RegIIIγ expression 

resulting in an increased association of commensal microbes with host tissue as well as a 

heighten risk of infection with enteric pathogens (b). Additionally, reduced TLR stimulation 

as a consequence of the depletion of the microbiota is sufficient to reduce RegIIIγ 
expression and render the host susceptible to infection.
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Figure 3. Disruption of host-microbial symbiosis as a risk factor for infectious disease
Exposure to pathogenic microorganisms is often insufficient to cause disease. Rather, 

susceptibility to infectious disease reflects deficient immune resistance to pathogen 

challenge. As such, exogenous and endogenous factors that directly compromise individual 

immune function (including genetic immune defects and chemotherapy) are significant risk 

factors for infection. We extend this model by proposing that the factors that disrupt the 

protective benefits of the commensal microbiota similarly compromise individual immune 

integrity and predispose to infectious disease.
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