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Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excess B 

and T cell activation, the development of autoantibodies against self-antigens including nuclear 

antigens, and immune complex deposition in target organs which triggers an inflammatory 

response and tissue damage. The genetic and environmental factors that contribute to development 

of SLE have been extensively studied in both humans and mouse models of the disease. One of the 

important genetic contributions to SLE development is an alteration in the expression of the 

transcription factor Ets1, which regulates the functional differentiation of lymphocytes. Here we 

review the genetic, biochemical and immunological studies that have linked low levels of Ets1 to 

aberrant lymphocyte differentiation and to the pathogenesis of SLE.
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INTRODUCTION

Systemic Lupus Erythematosus (SLE) is a potentially fatal chronic and systemic 

autoimmune disease that affects predominantly females in their childbearing years, with 

overall prevalence varying depending on geographic location and ethnicity.1 SLE is 

associated with a loss of immune tolerance to nucleic acid containing antigens, leading to 

inflammation and organ damage. Multiple tissues and organ systems can be affected, 

including the skin, the joints, the kidneys, the cardiovascular system, and the central nervous 

system, leading to significant morbidity and mortality. Treatment for SLE primarily involves 

non-specific immunosuppression, which has undesirable side effects, and only one new 

therapy has been approved for SLE in the last 50 years.2,3 Thus, a more thorough 

understanding of the molecular mechanisms of SLE pathogenesis is important for the 
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development of more targeted therapeutic strategies. Genome-wide association studies have 

revealed genetic alterations in many genes that are associated with susceptibility to SLE, 

highlighting potential disease mechanisms.4,5

One such SLE-associated gene encodes the transcription factor Ets1,6–8 which is primarily 

expressed in lymphocytes9–13 and is present at reduced levels in peripheral blood 

mononuclear cells (PBMCs) from SLE patients.7,14–17 Consistent with an important role for 

Ets1 in limiting autoimmune disease, Ets1-deficient mice accumulate plasma cells, produce 

autoantibodies, and develop several features of lupus-like autoimmune disease.18,19 Here we 

review the interplay of Ets1 with lupus susceptibility and pathogenesis including (1) the 

association of Ets1 genetic variants with lupus and other autoimmune and inflammatory 

diseases, (2) the characterization of autoimmunity in Ets1-deficient mice and the role of Ets1 

in B cell tolerance to self-antigens, (3) the signaling pathways that control Ets1 expression in 

B cells, and (4) functions of Ets1 in B and T cells that likely contribute to the control of 

autoantibody production, including limiting plasma cell differentiation and skewing T cell 

subsets and cytokines.

I. Systemic Lupus Erythematosus: Disease Mechanisms

Alterations in three major immune pathways have been shown to contribute to SLE 

pathogenesis; loss of adaptive immune tolerance, impaired clearance of apoptotic debris, and 

hyperactivation of the innate immune system, particularly with respect to Toll-like receptor 

(TLR) signaling and the type I interferon (IFN) pathway (reviewed in20,4,21). These defects 

synergize to form pro-inflammatory positive feedback loops described briefly below. A 

breach in adaptive immune tolerance results in an elevated frequency of autoreactive B and 

T cells, the activation of which is facilitated by the increased availability of nucleic acid-

containing self-antigens. These antigens are particularly efficient at activating B cells as they 

can engage both the B-cell receptor (BCR) and the endosomal, nucleic-acid sensing TLRs 

such as TLR7 and TLR9. The autoantibodies produced by activated B cells form immune 

complexes which subsequently stimulate cells of the innate immune system via both Fc 

receptors and nucleic acid sensing TLRs to produce type I interferons (IFNs) and other 

proinflammatory cytokines. These cytokines further enhance B cell activation and 

autoantibody production, resulting in a more robust and sustained inflammatory milieu. In 

addition, immune complexes deposit in tissues and promote inflammation and subsequent 

organ damage via both complement and Fc receptor dependent mechanisms. CD4+ T cells 

also are important for the production of autoantibodies and inflammatory responses in lupus 

(reviewed in21–24). In particular, T follicular helper (Tfh) cells and Th17 cells are elevated in 

SLE and can promote the development of autoimmune germinal centers and autoantibodies. 

Th17 cells also contribute to tissue inflammation and damage. While there are conflicting 

data regarding the role of Treg defects in lupus, it has been suggested that a shift in the Th17 

to Treg balance in favor of Th17 cells plays a role in SLE pathogenesis.25 Alterations in both 

Th1 and Th2 cells and cytokines have also been reported in SLE, with both IFNγ (a Th1 

cytokine)26 and autoreactive IgE (induced by Th2 cytokines)21 suggested to contribute to 

disease pathogenesis.
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The central role of autoantibodies in the perpetuation of proinflammatory conditions and the 

damage to tissues in lupus highlights the importance of understanding how control of B cell 

development and differentiation is disrupted in this disease. Defects in both B cell tolerance 

and activation have been observed in SLE patients. A landmark study by Arbuckle et al27 

showed that autoantibodies can be detected in SLE patients prior to clinical presentation, 

suggesting an intrinsic defect in B cell tolerance that contributes to the initiation of disease. 

Indeed, single cell expression cloning of antibodies from new emigrant (recently emerged 

from the bone marrow) and mature naïve B cells revealed that unlike healthy controls, SLE 

patients fail to eliminate autoreactive B cells at this developmental transition.28 Germinal 

center tolerance checkpoints are also breached; in SLE patients, autoreactive B cells are not 

excluded from germinal centers,29 and DNA-reactive B cells can emerge from germinal 

centers as a result of somatic hypermutation.30,31 Studies with mice congenic for various 

combinations of NZM2410-derived lupus susceptibility alleles have also shown that loss of 

adaptive immune tolerance conferred by the Sle1 allele is a critical initiating event in the 

development of autoimmune disease.32

Inappropriate B cell activation and differentiation in SLE patients is reflected by a dramatic 

increase in circulating plasmablasts, particularly during times of high disease activity.33–36 

Repertoire analysis has indicated that these expanded antibody-secreting cells are 

polyclonal, and many are derived from naïve precursors.36 Interestingly, a partial 

plasmablast gene expression signature is observed in B cells from a subset of quiescent 

(inactive) lupus patients, even without a significant difference in peripheral blood B cell 

subsets in this group as measured by flow cytometry.37 Taken together, these observations 

suggest that some patients may have intrinsic changes in B cell signaling and resultant gene 

expression that predispose them to enhanced B cell terminal differentiation.

Genome-wide association studies (GWAS) have identified dozens of genes associated with 

risk of developing SLE, as reviewed extensively elsewhere.4,5,20,21 These genes fall into 

several functional categories, including each of the main pathways linked to SLE 

pathogenesis described above as well as the response of target organs to inflammation. 

Among these SLE risk alleles are numerous genes involved in B cell activation and 

differentiation, including the HLA-DR genes, BANK1, BLK, RASGRP3, PTPN22, IL21R, 

IL10, TLR7, UBE2L3, STAT4, TNFAIP3, FCGR2B, LYN, CSK, PRDM1, and ETS1. Here 

we review the role of one of these genes, the transcription factor Ets1, in B cell tolerance, 

plasma cell differentiation, and autoantibody production in lupus.

II. Human ETS1 genetic variants associated with lupus

The transcription factor Ets1 is highly expressed in human and mouse lymphocytes (B cells, 

T cells and natural killer cells).9–13 The genetic region encoding the human gene ETS1 has 

been implicated as a susceptibility locus in numerous autoimmune and inflammatory 

diseases (Table I). As early as 2000, polymorphisms in the 3′ UTR of the human ETS1 gene 

were associated with particular clinical phenotypes of lupus.38 As described in more detail 

in the sections below, a few years later, Ets1−/− mice were discovered to develop a lupus-like 

autoimmune disease,19 supporting a role for Ets1 in regulating immune tolerance to self-

antigens. More recently, three independent genome-wide association studies in Chinese and 
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Korean populations have identified genetic variants in and around ETS1 gene as increasing 

the lupus risk.6–8 These initial genome-wide association studies were later replicated in 

independent populations of Chinese39 and Malaysian40 origin. As indicated in Table 1, the 

SNPs associated with lupus in these particular studies all map near the 3′ end of the gene, 

either in the final intron, in the 3′UTR or downstream of the gene. Exome sequencing in 

healthy donors and lupus patients has identified a single nucleotide polymorphism (SNP 

rs34846069) in the final exon of the gene that is associated with lupus, although this SNP 

does not change the encoded amino acid (Asp440→Asp).41 This SNP may be in linkage 

disequilibrium with other genetic changes that promote lupus. In addition to lupus, SNPs in 

or near the ETS1 gene have also been identified as susceptibility alleles in many other 

autoimmune and inflammatory diseases (Table 1), including rheumatoid arthritis,42–47 

psoriasis,48–50 multiple sclerosis,51,52 ankylosing spondylitis,15 uveitis,16 allergy,53 atopic 

dermatitis,54 and celiac disease.55,56

The association of ETS1 with lupus in European populations is less well-replicated than it is 

in Asian populations. In 2013, a study showed that one of the SNPs in ETS1 (rs6590330) 

that had been identified in Asian lupus populations was also associated with lupus in people 

of European ancestry, although it did not reach the statistical threshold of genome wide 

significance (p<5×10−8).57 Another study with European lupus patients demonstrated that a 

different SNP in the ETS1 gene (rs7941765, located about 100 kb upstream of the gene) was 

associated with lupus susceptibility.58 A meta-analysis of GWAS studies of Chinese and 

European lupus patients confirmed this association of SNP rs7941765 with lupus 

susceptibility in European populations and the same SNP was also associated weakly with 

lupus in Asian patients.59 Another SNP (rs61432431) located downstream of ETS1 was 

associated with lupus susceptibility in both European and Asian cohorts, but the p value was 

more significant in the Asian cohort.59 Altogether, the data suggest that ETS1 is a lupus 

susceptibility locus in both European and Asian populations, but the causal variants might 

well be different.

Genetic variants (including SNPs) in ETS1 have also been associated with disease 

phenotypes in lupus and other autoimmune diseases. Particular allelic variants of ETS1 have 

been associated with a variety of clinical phenotypes in lupus, including early age of 

diagnosis,39, 60 levels of anti-DNA and antinuclear autoantibodies in the serum,17,39 serum 

IL-17 concentration,61 discoid and malar rash,38,39 photosensitivity,39 arthritis,39 serositis,39 

vasculitis,38 hematologic disorders,39 immunologic disorders,39 and renal involvement.39 In 

rheumatoid arthritis, ETS1 SNPs have also been associated with particular clinical 

phenotypes including DAS28 (rheumatoid arthritis disease activity score 28) level and serum 

C-reactive protein level.45 In addition, SNPs in both ETS1 and the IL21 gene form epistatic 

interactions to cooperatively promote lupus susceptibility.62

Several studies have shown that Ets1 mRNA levels are reduced in PBMCs from autoimmune 

patients, suggesting that the effects of these genetic variants are to decrease Ets1 

expression.7,14–17 Ets1 mRNA is also reduced in regulatory T cells (Tregs) from lupus 

patients and in bulk CD4+ T cells from multiple sclerosis patients.51,63 Indeed, using 

pyrosequencing, mRNA levels of Ets1 were measured in patients carrying one copy of a 

disease-associated allele and one copy of a protective allele in the 3′UTR of Ets1.7 
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Expression from the allele with the disease-associated SNP (rs1128334) was reduced as 

compared to the protective allele.

In order to understand how genetic variants in the human ETS1 locus might influence gene 

transcription, statistical analysis was used to map disease-associated SNPs and identify the 

most likely causal variants.64 One of these SNPs (rs6590330) showed differential binding in 

electrophoretic mobility shift assays when comparing the disease-associated allele to the 

protective allele. Further analysis showed that the disease-associated allele results in 

enhanced binding of the transcription factor Stat1, which is associated with reduced ETS1 
transcription.64 Therefore, interferon signaling, which is prominent in lupus, may decrease 

the levels of Ets1 in patient PBMCs and promote autoimmunity.

One thing that should be kept in mind when evaluating the role of genetic variants in the 

ETS1 locus is the ETS1 is located in a head-to-head orientation with another Ets gene family 

member FLI1. The transcriptional start sites of ETS1 and FLI1 are located about 170 kb 

apart and some of the SNPs listed in Table I are between the ETS1 and FLI1 genes. 

Therefore, at least some of the ETS1 SNPs may affect FLI1 expression in addition to or 

instead of affecting ETS1 expression. In mice, Fli1 has opposite effects as that of Ets1 (i.e., 

over-expression of Fli1 promotes autoimmunity, while loss of Ets1 promotes 

autoimmunity).65–67 Accordingly, any changes to FLI1 expression as a result of SNPs in the 

ETS1/FLI1 locus may affect susceptibility to lupus.

III. Ets1 knockout mice develop autoimmune disease

Analysis of Ets1 knockout mice has demonstrated the critical role of Ets1 in the 

development and continued proper function of the immune system. Ets1 knockout mice 

exhibit a variety of lymphocyte abnormalities, including increased B and T cell activation 

and excessive B cell differentiation to plasma cells (discussed in detail in the section below). 

These immune abnormalities result in an autoimmune phenotype, reminiscent of human 

SLE. The phenotype of Ets1 knockout mice shares some similarities with mice deficient for 

BCR inhibitory signaling components, such as the kinase Lyn or phosphatase SHP1, 

although the autoimmunity is less severe in Ets1-deficient mice than in Lyn-deficient or 

SHP1-deficient mice.19,68–73

The phenotype of Ets1 knockout mice was first described by Bories and Muthusamy, using 

mutant alleles that lacked either the final two exons that encode the Ets DNA binding 

domain or the second and third exons that encode a conserved region known as the Pointed 

domain, respectively.74,75 The first allele is a complete null, while the second allele was also 

originally described as a null allele, but later shown to produce a very small amount of 

internally deleted Ets1 protein.19 However, both alleles result in similar phenotypic 

manifestations, including decreased cellularity of the thymus and lymph nodes, reduced T 

cell populations in the thymus, lymph node and spleen, and markedly increased populations 

of IgM-secreting plasma cells.74,75 These observations were later confirmed and expanded 

upon.

Marginal zone B cells are lacking in Ets1 knockout mice,19,76 while follicular B cells have 

an activated cell phenotype, with increased surface staining of MHC II, CD23, CD80 and 
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CD86,19 and undergo increased differentiation to IgM- and IgG-secreting plasma cells.74,77 

The dramatic expansion of the plasma cell population in Ets1 knockout mice correlates with 

increased serum levels of secreted immunoglobulin, even in the absence of any overt 

stimulus.18,74,78,79 The titer of circulating IgM in Ets1 deficient mice has been observed to 

be 4–10 times that of wild type counterparts and levels of IgG1 and IgE have also been 

shown to be elevated.18,79 Conversely, these mice have a significant decrease in circulating 

IgG2a, due to the role of Ets1 in positively regulating expression of T-bet, a transcription 

factor integral in class switching to the IgG2a isotype.79

Of particular interest are the antigen specificities of the circulating immunoglobulin. The 

serum of Ets1 knockout mice has high titers of autoantibodies of both IgM and IgG isotypes 

that bind to double-stranded DNA and histones.18,19 Notably, anti-nuclear autoantibodies 

(including those that bind to DNA and histones) are considered hallmarks of human SLE 

and correlate with disease activity and severity in SLE patients.80,81 Antibodies against 

cardiolipin, another autoantigen frequently associated with SLE, are also increased in Ets1 

knockout mice.19 Furthermore, these mice also have high titers of rheumatoid factor 

autoantibodies targeting IgG,19 which are found in about 10% of lupus patients,82 but are 

more commonly associated with rheumatoid arthritis. Ets1-deficient mice also develop 

autoantibodies against myelin basic protein,19 an antigen that is frequently targeted in 

multiple sclerosis,83,84 but is not characteristic of human lupus. The similarities of the 

serological autoantibody compositions of human autoimmune disease patients and Ets1 

knockout mice suggest that the mice are a suitable model for understanding aspects of 

human autoimmune disease pathogenesis.

Enhanced B cell activation in Ets1−/− mice and excessive secretion of antibodies could be a 

defect intrinsic to B cells, but could alternatively be reflective of defects in the T cell 

compartment. Adoptive transfer of Ets1-deficient B cells to wild-type recipients or wild-type 

B cells to Ets1 knockout recipients demonstrated that the activated B cell phenotype is 

heavily influenced by its environment.19 However, mixed bone marrow chimeras generated 

with allotype-labeled wildtype and Ets1 deficient fetal liver cells showed that the Ets1-

deficient B cells give rise to increased numbers of plasma cells as compared with wild-type 

B cells developing in the same host.85 Therefore, there are likely both B cell-intrinsic and B 

cell-extrinsic functions of Ets1 that together promote B cell activation and autoantibody 

secretion. These will be described in detail below.

Mice deficient for Ets1 also display autoimmune-related organ pathology. The spleens are 

often enlarged in these mice compared to wild-type counterparts.18 There are infiltrates of 

lymphocytes in the lung, liver and other tissues and these infiltrates worsen as the mice age 

(19 and unpublished data). In the kidneys, there is extensive deposition of IgG and IgM 

immune complexes,19 reflective of a classic renal pathology associated with SLE. Although 

these immune complexes effectively activate complement and C3 is deposited in the 

glomeruli, Ets1−/− mice display weak proteinuria, suggesting that kidney function is largely 

preserved.19 Despite the weak proteinuria, Ets1−/− mice have a shortened lifespan (median 

18 months) in comparison with wild-type littermates (median 28 months) (unpublished 

data), presumably due to organ damage caused by autoimmune disease. Overall, the 

autoimmune disease that develops in Ets1−/− mice shares many features with human lupus 
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(activated B cells and T cells, increased numbers of plasma cells and high titers of 

autoantibodies, deposition of immune complexes in the kidney, infiltration of lymphocytes 

into target organs and a shortened lifespan). As described above, reductions in Ets1 levels 

are found in human lupus leukocytes and are associated with disease pathogenesis. Below 

we review studies of Ets1 function in B and T cells with an emphasis on their relationship to 

autoimmune disease development and progression.

IV. Ets1 maintains B cell quiescence and preserves peripheral tolerance

Ets1 levels are high in quiescent mouse B cells, but are downregulated upon antigen 

stimulation at both the mRNA and protein levels prior to differentiation.85 In mice lacking 

Ets1, B cells are hyper-activated as shown by increased expression of activation markers,19 

increased isotype-switching to IgG1 and IgE18,79 and increased propensity to terminally 

differentiate into plasma cells secreting IgM and IgG.19,74,77,78 These observations suggest 

that Ets1 may play a role in retaining B cells in a resting state.

The in vitro behavior of Ets1-deficient B cells reflects the more activated phenotype 

observed in vivo. Even when left unstimulated, B cells isolated from Ets1 knockouts 

undergo a low level of differentiation into plasma cells.19 Purified Ets1−/− B cells also 

undergo increased differentiation to plasma cells when cultured with TLR ligands such as 

oligonucleotides containing unmethylated CpG sequences (TLR9 ligand)19 or bacterial 

lipopolysaccharide (TLR4 ligand).85 This suggests that Ets1 may be particularly important 

in regulating TLR responses. Nguyen et al. also noted a significant increase in the secretion 

of IgM and IgG2b by Ets1−/− B cells in response to LPS, consistent with increased IgM and 

IgG-secreting plasma cells in these cultures.79 The enhanced in vitro differentiation and Ig 

secretion of Ets1−/− B cells can be suppressed by enforced expression of Ets1 via a retroviral 

construct.74,77,85,86 Taken together, it is clear that Ets1 expression is a critical block to 

plasma cell differentiation and it has B cell-intrinsic roles in regulating this process.

Appropriately maintaining the resting state of B cells is crucial, particularly for the 

autoreactive B cells that escape central tolerance checkpoints to persist in the periphery. 

Using BCR transgenic mice, we have demonstrated that peripheral B cell tolerance is 

compromised in the absence of Ets1, while central B cell tolerance mediated by clonal 

deletion is intact. In transgenic mice (Ets1 wild-type) that express a hen egg lysozyme 

(HEL)-specific BCR and membrane-bound HEL antigen, immature B cells undergo clonal 

deletion in the bone marrow in response to strong BCR crosslinking.87,88 B cells from 

Ets1−/− transgenic mice carrying the same HEL-specific BCR and membrane-bound HEL 

antigen also undergo clonal deletion.89 On the other hand, when mice carrying the HEL-

specific BCR are crossed to mice carrying a soluble HEL transgene, B cells are not deleted, 

but rather move to the periphery and become anergic in response to constant antigen 

binding.90–92 In this transgenic background, Ets1−/− B cells develop certain properties of 

anergic B cells in that they express the expected surface marker phenotype and display 

expected defects in BCR signaling.89 However, these mice have elevated levels of HEL-

specific antibody in circulation and increased number of Ig-secreting cells in their spleens89, 

indicating that despite the apparent anergic state of the B cell population, there is still a 

breach in self-tolerance and differentiation of B cells to antibody-secreting plasma cells.
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Some B cells that recognize their ligands only with low affinity do not become anergic and 

instead mature similar to normal non-self-reactive B cells, a process termed clonal 

ignorance.93,94 Using BCR transgenic strains, we have also shown that clonal ignorance is 

compromised in Ets1-deficient B cells. Transgenic expression of a rheumatoid factor BCR 

(AM14) that has low affinity for its ligand (IgG2a of the “a” allotype) results in clonal 

ignorance in a wild-type background expressing autoantigen.93 However, when the same 

AM14 BCR transgene is crossed onto an Ets1-deficient background, the B cells are not 

tolerized, but rather become activated and differentiate into plasma cells.89 This evidence 

bolsters the idea that Ets1 prevents inappropriate B cell activation and differentiation. In its 

absence, peripheral tolerance is breached, and B cells spontaneously undergo terminal 

differentiation to Ig-secreting cells, accounting for the expanded plasma cell population and 

elevation in circulating autoantibodies in Ets1 knockout mice.

V. Mechanisms by which Ets1 limits plasma cell differentiation

The accumulation of autoantibodies and plasma cells in the absence of Ets1 suggests that it 

has an important function in limiting B cell terminal differentiation under normal 

circumstances. Indeed, Ets1 is expressed in resting B cells where it has several activities that 

could contribute to such a role. Despite the importance of Ets1 in B cell biology, relatively 

few target genes of Ets1 in B cells are known. To address this, we recently performed 

chromatin immunoprecipitation-sequencing (ChIP-seq) for Ets1 in primary mouse B cells 

and correlated it with gene expression changes found in Ets1−/− B cells as compared to wild-

type B cells.95 Ets1 binds to ~10,000 sites in the B cell genome (representing ~9,000 target 

genes), including the promoters of many genes involved in B cell differentiation, function 

and activation.

Pax-5, a key B cell identity factor (Figure 1), is among the genes harboring Ets1 binding 

sites (in both its promoter and the intron 5 B cell-specific enhancer). We had previously 

shown that Ets1 can transactivate the Pax5 promoter in transient transfection assays.86 

Furthermore, retroviral transduction of Ets1 into primary B cells cultured with the TLR9 

ligand CpG DNA was able to maintain Pax5 expression, whereas it would normally be 

downregulated during the differentiation process triggered by TLR signaling.77,86 Conserved 

arginine residues (R391 and R394) in the Ets domain of Ets1 are required for both Ets1 

DNA binding and its ability to upregulate Pax5.77 Therefore, Ets1 might be an important 

transcription factor regulating Pax5 expression in B cells. However, RNA-sequencing shows 

that Pax5 mRNA is not decreased in Ets1−/− B cells.95 Together, these observations suggest 

a model in which Ets1 has the capability of stimulating Pax5 expression, but is not uniquely 

required for this process, at least in resting B cells. Even under conditions where Ets1 does 

not directly regulate Pax5 expression, it may stimulate the ability of Pax5 to function as a 

transcriptional regulator. ChIP-seq data for Ets1 and Pax5 show ~45% of the target sites of 

each factor are also bound by the other transcription factor. Ets1 and Pax5 are known to co-

regulate the CD79a (mb-1) gene, which encodes Igα by forming a cooperative DNA binding 

complex.96 Ets1 and Pax-5 may interact similarly at the regulatory regions of other B cell-

specific target genes to control their expression.
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RNA-sequencing assays show that only about 500 genes are expressed differentially in B 

cells the absence of Ets1.95 Of these genes with altered expression, approximately half have 

a nearby Ets1 binding motif, indicating that they may be direct targets of Ets1. About two 

dozen of the potential direct Ets1 targets are genes that have been implicated in autoimmune 

disease susceptibility by genome-wide association studies, including Stat4 and Ptpn22.95 To 

determine whether Stat4 and Ptpn22 contribute to the role of Ets1 in regulating development 

of plasma cells, we restored their expression in Ets1−/− B cells using retroviral constructs.95 

Unexpectedly, both Stat4 and Ptpn22 promoted the development of plasma cells, while Ets1 

blocked this process. This indicates that Stat4 and Ptpn22 are not key target genes of Ets1 

that modulate plasma cell formation. However, Ets1-dependent regulation of Stat4 and 

Ptpn22 might influence other aspects of B cell responses.

Another gene whose expression is altered in the absence of Ets1 is the Prdm1 gene which 

encodes Blimp1, a key transcription factor involved in promoting the plasma cell fate 

(Figure 1). Blimp1 is over-expressed by ~2-fold in sorted follicular B cells from Ets1−/− 

mice95 and is also over-expressed in Th1 cells that were cultured from Ets1−/− CD4+ T cell 

precursors.97 Furthermore, Ets1 binds to potential regulatory sequences localized in and near 

the Prdm1 gene.95,97 Because Blimp1 is crucial for B cell differentiation to plasma cells, it 

would be reasonable to think that over-expression of Blimp1 in Ets1−/− B cells could drive 

plasma cell formation. However, crossing Ets1 knockout mice to mice heterozygous for a 

null allele of Blimp1 (which reduces Blimp1 levels in B cells to those found in wild-type B 

cells) does not reverse the excess production of plasma cells caused by loss of Ets1.95 This 

observation indicates that the excess plasma cell phenotype of Ets1 knockout mice cannot be 

simply explained by over-expression of Blimp1 in the B cells.

We have found that Ets1 also functions to regulate B cell differentiation in a non-DNA-

dependent fashion. In addition to regulating the Prdm1 gene, Ets1 also binds to and inhibits 

the function of the product of this gene, Blimp1.77,86 This is dependent on a direct protein/

protein interaction between Ets1 and Blimp1, which prevents Blimp1 from binding to its 

DNA target sequences and thereby inhibits its activity.77,86 Normally during plasma cell 

formation, Ets1 is downregulated, allowing Blimp1 to function properly and promote the 

plasma cell phenotype. This downregulation of Ets1 is important, since retrovirally-driven 

forced expression of Ets1 leads to a block in plasma cell generation in response to TLR 

stimulation.77,85,86 We have mapped the domains of Ets1 required for interaction with 

Blimp1 and found that optimal interaction of Ets1 with Blimp1 requires a large fraction of 

the Ets1 protein, including the Ets DNA binding domain, the N terminus, the acidic 

transactivation domain, and the Pointed domain,77,86 suggesting the overall 3-dimensional 

structure of the Ets1 protein may be important for this process. Mutants of Ets1 that fail to 

interact with Blimp1 are also ineffective in blocking plasma cell formation in the retroviral 

assay.77,86

In summary then, we suggest a model in which Ets1-dependent control of Blimp1 activity 

via a protein/protein interaction is the most important influence in regulating plasma cell 

formation (Figure 1). Ets1-dependent regulation of a cohort of target genes such as Stat4 and 

Ptpn22 might influence other aspects of B cell activation and functional competence and the 
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combined activities of these factors are important for Ets1’s role in preventing autoimmune 

disease.

VI. Positive and negative signaling events control expression of Ets1 in B cells

Consistent with its critical role in maintaining B cell tolerance and preventing autoimmunity, 

Ets1 expression in B cells is under tight control. In the absence of strong activating signals, 

Ets1 expression is maintained in B cells by inhibitory signaling pathways.85 A series of 

immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing cell surface inhibitory 

receptors serve to keep B cell activation in check. These include FcγRIIb, PIR-B, CD72, 

CD22, and SiglecG. Phosphorylation of ITIM motifs in these receptors by the tyrosine 

kinase Lyn results in the recruitment and activation of the inhibitory phosphatases SHIP and 

SHP-1 (reviewed in98,99). To varying degrees, mice deficient in any of these inhibitory 

signaling molecules accumulate plasma cells, produce autoantibodies and develop lupus-like 

autoimmune disease; in many cases these effects have been shown to occur in a B cell-

intrinsic manner. Loss of Lyn, SHP-1, or SHIP has a more profound effect than deficiency of 

individual receptors, suggesting that the receptors may be partially redundant for 

maintaining B cell tolerance.70,72,100–105

B cells from Lyn−/− mice demonstrate a dramatic reduction in the expression of both Ets1 

mRNA and protein.85 This occurs prior to the accumulation of autoantibodies and the 

development of autoimmune disease manifestations85 and is independent of the 

inflammatory cytokine IL-6,106 strongly suggesting that a Lyn-dependent signaling pathway 

directly controls Ets1 expression in B cells. Indeed, a similar loss of Ets1 expression was 

observed in B cells with mutations in SHP-1, while SHIP-deficient B cells had only a mild 

decrease in Ets1.85 Loss of either CD22 or SiglecG resulted in a reduction of Ets1 levels in 

B cells, which was more profound in CD22 and SiglecG double knockouts.85 In contrast, 

individual loss of PIR-B, CD72, or FcγRIIB had no effect on Ets1 expression.85 Thus, an 

inhibitory pathway involving Lyn, SHP-1, CD22 and SiglecG normally maintains Ets1 levels 

in B cells (Figure 2).

Upon antigen stimulation of B cells, positive signaling pathways prevail over Ets1-

maintaining inhibitory signals and Ets1 mRNA and protein expression are downregulated.85 

A combination of gain- and loss-of-function approaches and the use of small molecule 

inhibitors of BCR signaling components in both primary murine B cells and mouse B cell 

lines has revealed that BCR-induced Ets1 downregulation is mediated by PI3K, Btk, IKK2, 

and JNK, but not Akt, p38 or MEK (Figure 2).85 Treatment of B cells with the TLR ligands 

LPS (TLR4) or CpG DNA (TLR9) also downregulates Ets1 expression, and low level TLR9 

signaling cooperates with low level BCR signaling to downregulate Ets1.85 Intriguingly, 

nucleic acid containing antigens, a common target of autoantibodies in lupus, can activate B 

cells via both the BCR and endosomal nucleic acid sensing TLRs,107–109 with dual signaling 

by the BCR and TLR7 being particularly efficient at driving plasma cell differentiation.110 

Nucleic acid-specific B cells may thus be particularly efficient at downregulating Ets1 and 

differentiating into autoantibody-secreting plasma cells even in response to low levels of 

antigen. In contrast, stimuli that mimic T cell help (anti-CD40, IL-4, IL-21), promote B cell 

survival (BAFF), or would be encountered in an inflammatory environment (IL-6) have no 
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effect on Ets1 levels.85 The inability of T cell-derived signals to downregulate Ets1 may 

prevent the inappropriate differentiation of bystander B cells activated in a non-cognate 

manner.

As described above, transduction of TLR-stimulated primary murine B cells with a 

retrovirus expressing Ets1 prevents differentiation into plasma cells and secretion of 

antibody.77,86 Similarly, enforced Ets1 expression ameliorates the enhanced terminal 

differentiation of Lyn-deficient or SHP-1-deficient B cells that occurs in response to TLR 

engagement.85 Thus, Ets1 downregulation is likely required for plasma cell differentiation 

during normal humoral immune responses, and inappropriate loss of Ets1 expression likely 

contributes to the unrestrained accumulation of autoreactive antibody-secreting cells that 

occurs in mice with impaired inhibitory signaling via the Lyn/SHP-1 pathway. The 

development of systems to prevent Ets1 downregulation in vivo at various times during 

immunization protocols or during the development of autoimmune disease is ongoing and 

will formally test this hypothesis.

Other types of genetic approaches have confirmed that a strict balance of the Btk-dependent 

activating signals and Lyn-mediated inhibitory signals that converge on Ets1 is required to 

maintain normal steady-state plasma cell numbers. First, mice heterozygous for both Lyn 

and Ets1 have increased IgM autoantibodies compared to Lyn+/− or Ets1+/− mice alone, 

although they do not develop full blown autoimmune disease.106 This indicates that Lyn and 

Ets1 do indeed work together in a common signaling pathway to limit B cell differentiation 

and that partial disruption of this pathway is sufficient for an initial break in B cell tolerance. 

Second, the excessive downregulation of Ets1 in the absence of inhibitory signals depends 

on Btk. Lyn−/−Btklo mice, which express a reduced level of Btk, demonstrate normal levels 

of Ets1 in their B cells85 and do not accumulate plasma cells or autoantibodies.111,112 

Finally, Btk signaling to Ets1 also controls steady-state plasma cell numbers when Lyn-

dependent inhibitory signaling pathways are intact. Btk−/− mice demonstrate reduced splenic 

IgM-secreting cells and low serum IgM levels; this defect is normalized in the absence of 

Ets1.106 These observations suggest that manipulations that shift the balance between Ets1-

downregulating activating signals and Ets1-maintaining inhibitory signals may be useful 

therapeutic approaches to promote or dampen antibody responses as desired.

VII. Ets1 functions in CD4+ T cells

In addition to its roles in B cells, Ets1 also regulates the function of T cells. Of particular 

interest is the function of Ets1 in the CD4+ T cell subset, as these cells are important in 

lupus pathogenesis and function in part by regulating the responses of autoreactive B cells. 

Ets1 is highly expressed in human and mouse T cells including CD4+ T cells.9,113–116 Loss 

of Ets1 in mice results in a variety of aberrations in CD4 T cell differentiation, as we have 

described in previous reviews.117,118 Here we briefly describe the major known alterations 

in the CD4 lineage and discuss how they may be relevant in lupus pathogenesis (summarized 

in Figure 3).

A. Th1 Cells—Ets1 was first implicated in the regulating the differentiation of and 

cytokine production by Th1 and Th2 subsets of CD4+ T cells 114. CD4+ T cells isolated 
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from Ets1−/− mice and cultured in vitro under conditions that promote Th1 differentiation 

showed greatly reduced production of IFNγ.114 IFNγ promotes lupus development and 

pathogenesis in multiple mouse models of the disease.119–130 IFNγ levels are increased in 

human patients with lupus and are correlated with more severe disease.131–136 Furthermore, 

a SNP in the IFNγ gene has been shown to be associated with lupus susceptibility.137 

Clearly Ets1-deficiency leads to a loss of self-tolerance in mice regardless of reduced IFNγ 
production by Th1 cells. Perhaps, as described below, the overall balance of T cell cytokines 

remains sufficiently inflammatory despite a reduction in Th1 responses in the absence of 

Ets1. Alternatively, cells other than Th1 cells may be an important source of IFNγ in the 

context of reduced or absent Ets1 expression. However, the fact that Ets1−/− CD4+ T cells 

produce reduced amounts of IFNγ may result in less tissue damage in Ets1−/− mice. Ets1−/− 

mice develop high titers of autoantibodies with immune complexes deposit in the 

kidney,18,19 but proteinuria in this strain is weak.19 This might be due to reduced IFNγ-

mediated kidney damage, since IFNγ is required for nephritis and impaired kidney function 

in NZB/W and MRL/lpr lupus-prone mice.119,129,138

B. Th2 Cells—Ets1−/− CD4+ T cells also produce less IL-4 when cultured under Th2 

conditions.114 Further analysis indicated that secretion of the Th2 cytokines IL-5 and IL-13 

was also reduced in Ets1−/− CD4+ T cells.139 The IL-4, IL-5 and IL-13 genes are clustered 

in the genome and are coordinately regulated.140,141 Ets1 binds to several sites within this 

Th2 locus to stimulate expression of the Th2 cytokines.139 Although IL-4, IL-5 and IL-13 

were all reduced in Ets1−/− CD4+ cells cultured under Th2 conditions, contradictory results 

were obtained when assessing IL-4, IL-5 and IL-13 levels in freshly-isolated CD4+ T cells 

from the spleens of Ets1−/− mice, where each of these cytokines was over-produced rather 

than reduced in levels.18

IL-4 and IL-5 are implicated in promoting B cell responses such as isotype switching and 

plasma cell formation. IL-4 contributes to disease pathogenesis in NZB/W, MRL/lpr and 

NZM2410 lupus-prone mice,127,142–144 but is not required for lupus in the BXSB mouse 

strain.145 Recently, IL-4 was shown to also promote autoimmunity in Lyn-deficient mice.146 

IL-4 is elevated in some human SLE patients147,148 and SNPs in the IL-4 locus are 

associated with increased susceptibility to lupus.149,150 In keeping with increased levels of 

Th2 cytokines in vivo in Ets1−/− mice, B cells from these animals show increased isotype-

switching to IgG1 and IgE and increased numbers of plasma cells (18,77 and unpublished 

data). Although it is not yet clear whether the IgG1 or IgE produced by Ets1−/− mice is 

pathogenic, it is interesting to note that pathogenic IgE autoantibodies have recently been 

described in Lyn knockout mice that share many similar phenotypic features with Ets1 

knockout mice (see above).146 IgE autoantibodies are also found in another mouse model of 

lupus, Fcgr2b−/−Yaa mice,151 and recently IgE autoantibodies have been detected in human 

SLE patients and are associated with more severe disease.152

C. IL-10—Ets1−/− CD4+ T cells cultured under either Th1 or Th2 conditions over-produce 

IL-10.114,153 IL-10 suppresses autoimmune symptoms in MRL/lpr and Sle1.2.3 lupus-prone 

mice.154,155 However, in NZB/W mice, anti-IL-10 antibody therapy results in reduced rather 

than increased disease symptoms.156 IL-10 stimulates human B cell proliferation and 
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antibody secretion157,158 and is elevated in human patients with SLE.159–163 SNPs in the 

human IL-10 gene promoter are associated with lupus susceptibility.164,165 The over-

production of IL-10 in Ets1-deficient mice might contribute to their autoimmune phenotype.

D. Th17 Cells—IL-17 has been extensively implicated as a pathogenic factor in multiple 

autoimmune diseases.166,167 Ets1-deficient CD4+ T cells cultured under Th17-skewing 

conditions or without polarizing cytokines produce increased levels of IL-17.115,168 IL-17 

mRNA levels are elevated in freshly-isolated lung tissue from Ets1−/− mice, consistent with 

an elevation of Th17 cells in vivo as well.115 Viral-driven over-expression of Ets1 can also 

block development of IL-17 secreting cells from naïve wild-type precursors.115 The 

presence of two lupus-associated SNPs in the human ETS1 locus (rs10893872 or 

rs1128334) has been shown to correlate with the serum level of IL-17.61 This is consistent 

with the fact that SNP rs1128334 has been shown to decrease Ets1 mRNA levels.7 In Th17 

cells, the microRNA miR155 targets Ets1 and the absence of miR155 leads to increased Ets1 

protein in Th17 cells.169 High levels of Ets1 in Th17 cells lacking miR155 inhibits their 

function, because knocking down Ets1 in these cells leads to improved expression of typical 

Th17 transcripts such as IL-17A, IL-22 and IL23R.169

Serum levels of IL-17 are elevated in several autoimmune prone mouse strains170–172 and 

IL-17 plays important roles in the pathogenesis of lupus in BXD2 and Fcgr2b−/− mice172,173 

and in pristane-induced lupus.174 Furthermore, IL-17 deficient mice are resistant to the 

induction of lupus nephritis caused by the injection of DNA from concanavalin A-activated 

lymphocytes.170 However, IL-17 is not required for lupus nephritis in MRL/lpr or 

NZB/NZW mice.175 IL-17 is also elevated in the serum of human lupus patients.176–180 

Some studies have shown a correlation between serum IL-17 levels and disease activity as 

measured by the Systemic Lupus Erythematosus disease activity index (SLEDAI),176,178 but 

other studies have failed to find this association.179,180 It is likely that increased IL-17 in 

Ets1−/− mice plays a role in the autoimmune disease pathogenesis.

E. Treg Cells—In addition to the defects described above, CD4+ T cells from Ets1−/− mice 

have also been shown to develop less efficiently into regulatory T cells, with a reduced 

percentage of CD4+CD25+FoxP3+ cells in the spleens, reduced levels of FoxP3 within 

those cells and reduced functional capacity in suppressing inflammation.18 The defect in 

Treg production from Ets1-deficient progenitors is cell-intrinsic and in vitro culture of Ets1-

deficient naïve CD4+ T cells under Treg skewing conditions results in reduced Treg 

production.18 Finally, transferring wild-type Tregs into Ets1−/− mice reduces splenomegaly 

and reverses certain aberrations in B cells.18 Ets1 binds to FoxP3 gene regulatory 

sequences.18,181,182

In MRL/lpr and NZB/W lupus-prone mouse models there are reduced numbers and/or 

functionality of Tregs.183–187 In human lupus, the contribution of Tregs is confusing with 

some studies reporting reduced numbers or impaired function,188–191 but others finding no 

abnormalities192,193 or even increased numbers.194 Effector T cells in lupus patients may 

also be resistant to Treg-mediated suppression.193,195 The levels of Ets1 and FoxP3 are 

correlated in T cells isolated from lupus patients and patients with Hashimoto’s thyroiditis, 

with low Ets1 and low FoxP3 in patient samples as compared to normal controls.63,196
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F. IL-2—IL-2 is produced mainly by T cells and functions to support T cell activation and 

also the survival of regulatory T cells. IL-2 also suppresses the development of inflammatory 

Th17 cells.197 Ets1−/− CD4+ T cells make less IL-2 when cultured under Th1 conditions.114 

There is also reduced IL-2 production when the cells are cultured under Th2 conditions, but 

this is less obvious since CD4+ T cells make relatively lower amounts of IL-2 when cultured 

in Th2 promoting conditions.114 Reduced production of IL-2 by Ets1−/− T cells was shown 

to be due to a role for Ets1 in recruiting the transcription factor NFAT to the IL-2 

promoter.97 On the other hand, elevated levels of Blimp1 in Ets1−/− CD4+ T cells do not 

appear to contribute to reduced IL-2 production, since reducing T-cell expressed Blimp1 by 

crossing Ets1−/− mice to mice with a CD4-specific deletion of the Prdm1 gene does not 

reverse the IL-2 defect.97 As described above, CD4+ T cells from Ets1 knockout mice 

develop more robustly into Th17 cells when cultured under appropriate conditions.115 This 

is in part due to reduced IL-2 production in the Ets1 knockout background and in part due to 

resistance of Ets1−/− CD4+ T cells to the effects of IL-2.115

Mice carrying the lpr mutation of Fas on a B6 background develop lupus and deletion of 

IL-2 from this strain results in reduced lupus development,198 despite the fact that IL-2 is 

required to support Treg survival. This is likely due to the role for IL-2 in promoting T cell 

activation and proliferation, which are reduced in these mice. While this study indicates that 

some IL-2 is required for lupus, the amount of IL-2 that T cells produce can determine 

whether or not those T cells are pathogenic. Similar to T cells from Ets1−/− mice, lupus 

patients’ T cells make less IL-2 than healthy controls.199,200 A recent early phase and short 

term trial of low dose IL-2 therapy in SLE patients showed a normalization of Th17 and T 

follicular helper (Tfh) cell to Treg ratios (fewer Th17 and Tfh and more Tregs post 

treatment) and the Tregs were more functional.201 This suggests that low levels of T-cell 

derived IL-2 in SLE contribute to a potentially pathogenic skewing of T cell subsets in a 

similar way that Ets1 deficiency does in mice.

Thus, multiple T cell defects in Ets1−/− mice have the potential to contribute to autoantibody 

production and autoimmune pathology. A comparison of B-cell and T-cell specific Ets1 

knockout mice would be informative in delineating the relative importance of B-cell vs. T-

cell intrinsic functions of Ets1 in the development of autoimmune disease.

VIII. Concluding remarks and future directions

As reviewed above, several lines of evidence suggest that Ets1 plays an important role in 

limiting autoantibody production in SLE patients. Polymorphisms in the Ets1 gene have 

been repeatedly identified as being associated with SLE and other autoimmune diseases, and 

Ets1 levels are reduced in PBMCs and Tregs from SLE patients. Mice deficient in Ets1 

develop lupus-like autoimmunity, characterized by excessive plasma cell accumulation, 

autoantibody production against lupus associated auto-antigens, immune complex deposition 

in the kidneys, and infiltration of lymphocytes into several tissues. This is likely due, at least 

in part, to a critical role for Ets1 in maintaining B cell tolerance and preventing plasma cell 

differentiation by regulating the expression of a cohort of genes involved in B cell immune 

responses and inhibiting Blimp1 function in a B cell-intrinsic manner. Consistent with these 
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roles of Ets1 in limiting autoimmunity, its expression is under tight control by the balance of 

activating and inhibitory signaling in B cells.

Despite the substantial evidence linking Ets1 to autoantibody production in mice and the 

association of Ets1 polymorphisms with SLE, little is known about Ets1 expression or 

function in B cells from SLE patients. Intriguingly, polymorphisms and signaling defects 

that affect inhibitory signaling in B cells are associated with SLE in humans, suggesting that 

control of Ets1 expression by these pathways might be altered in lupus patients (Figure 2). 

For example, Lyn expression is reduced and its subcellular localization is altered in B cells 

from a subset of SLE patients,202,203 and polymorphisms in LYN are associated with 

SLE.204 An SLE-associated polymorphism in CSK, a negative regulator of Lyn, results in 

reduced Lyn activity and increased B cell activation.205 Expression of mRNA from the 

PTPN6 gene, which encodes SHP-1, is decreased in some SLE B cells.206 Additional 

changes in lupus B cells that do not directly affect known Ets1-maintaining inhibitory 

pathways85 may also contribute to control of Ets1 expression (Figure 2). For example, 

reduced expression of PTEN, an inhibitor of PI3K signaling, has also been observed in SLE 

B cells,207 and PI3K mediates BCR-induced downregulation of Ets1.85 While events 

downstream of IKK2 that downregulate Ets1 have not been defined, it is likely that these 

include NFκB.85 Intriguingly, SLE associated polymorphisms in UBE2L3 result in elevated 

NFκB activity in B cells and an increase in plasmablasts and plasma cells.208 Thus, even in 

the absence of ETS1 risk alleles, Ets1 expression may be reduced in SLE B cells by other 

polymorphisms or defects, increasing the propensity of autoreactive B cells to differentiate 

and produce potentially pathogenic autoantibodies. The elevated autoantibodies in 

compound heterozygotes of Lyn and Ets1106 suggest that polymorphisms in more than one 

component of Ets1-regulating pathways may result in enhanced B cell defects in SLE. A 

subset of SLE patients have a particularly striking plasma cell phenotype;34,37 these 

individuals may be more likely to have disruptions in Ets1 or its regulators. Therapeutic 

strategies that promote signaling through Ets1-maintaining inhibitory pathways, or block 

signaling through Ets1-downregulating activating pathways, may reduce pathogenic 

autoantibodies in SLE patients.

Ets1 may also act in T cells to promote autoantibody production or contribute to the 

pathogenesis of SLE, perhaps by limiting IL-2 expression, promoting Th2 or Th17 

differentiation, and/or inhibiting Treg differentiation. Numerous ITIM-containing inhibitory 

receptors exist on T cells, including CTLA-4 and PD-1, and can recruit SHP-1 to restrain T 

cell activation.209, 210 The T cell receptor (TCR) signaling pathway also involves molecules 

similar to that found in the BCR pathway, including Lck and Fyn (homologs of the Lyn 

tyrosine kinase) and Itk and Tek (homologs of Btk).211,212 In fact, TCR signaling is already 

known to downregulate Ets1 in T cells.9 These similarities suggest that corresponding 

pathways in T cells may regulate Ets1 levels in a fashion similar to that found in B cells. 

This would imply that positive signaling via the TCR and Itk/Tek would function to 

downregulate Ets1 in T cells, while inhibitory signaling via ITIM-containing receptors 

would maintain Ets1. In fact, aberrations in TCR signaling are found in SLE patients.213 

Normal levels of Ets1 may be needed to maintain normal T cell functional differentiation. 

Further study will be required to better define the pathways in T cells that maintain Ets1 

under unstimulated conditions and lead to its downregulation upon stimulation.
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FIGURE 1. Transcriptional pathways by which Ets1 regulates B cell differentiation to plasma 
cells
Ets1 functions to stimulate and/or maintain the expression of the transcription factor Pax5, 

which is crucial for regulating B cell identity genes. Pax5 and Ets1 may also cooperate to 

regulate B cell genes. Ets1 also represses both the expression and the function of the 

transcription factor Blimp1, which is necessary to promote the plasma cell fate. Ets1 may 

also promote the expression of additional target genes that regulate other aspects of B cell 

function, like formation of germinal centers, isotype-switching and memory B cell 

formation.
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FIGURE 2. Signaling pathways controlling Ets1 expression in B cells
Signaling molecules outlined in solid lines are known to downregulate Ets1 expression, 

while those outlined in dotted lines have been shown to maintain Ets1 levels in B cells. 

Signaling molecules in italics have not been shown to control Ets1 levels, but are relevant to 

SLE and are likely to feed into pathways known to modulate Ets1 expression. * 

Polymorphisms in the gene encoding this molecule are associated with SLE. ** Expression 

is reduced in a subset of SLE B cells.
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FIGURE 3. T cell aberrations in Ets1-deficient mice
Schematic of T cell differentiation with major subsets that have been implicated in lupus 

shown. Alterations in T cell subsets in Ets1-deficient mice are indicated in italics. Naïve 

autoreactive T cells interact with antigen-presenting dendritic cells and subsequently 

differentiate into various T cell subsets, depending on the cytokine environment in which 

they become activated. T cells can differentiate into T follicular helper (TFH) cells, T helper 

17 (Th17) cells, T helper 2 (Th2), T helper 1 (Th1) or regulatory T cells (Treg). Tregs 

function to inhibit the other T cell subsets and limit autoimmune disease. Tregs are reduced 

in Ets1-deficient mice. The other T cell subsets produce various cytokines (as shown in the 

figure) and can interact with B cells to promote proliferation, germinal center formation, 

isotype-switching, affinity maturation and plasma cell formation. Ets1-deficiency results in 

skewing towards Th17 and Th2 cytokines and away from Th1 cytokines, while the effect on 

TFH cells is unknown. Depending on the type of T cells that interact in vivo with B cells, 

differences in B cell outcomes are possible. B cells from Ets1 knockout mice are also hyper-

responsive and have an intrinsic propensity to differentiate into plasma cells.
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Table I

Autoimmune or inflammatory disease-associated polymorphisms in or near the ETS1 gene

Polymorphisms in or near 
ETS1

Autoimmune or Inflammatory 
Disease Reference(s) Location1

CA repeat polymorphisms Lupus Sullivan et al., 2000 3′ UTR

rs6590330 Lupus Han et al., 2009; He et al., 2010; Yang 
et al., 2010; Zhong et al., 2011; Leng et 
al., 2013; Wang et al., 2013; Lu et al., 
2015

Downstream of gene

rs10893872 Lupus, Uveitis Yang et al., 2010; Zhang et al., 2013; 
Wei et al., 2014

Downstream of gene

rs4937333 Lupus, Ankylosing spondylitis Yang et al., 2010, Zhong et al., 2011; 
Shan et al., 2014

3′ UTR

rs7932088 Lupus Yang et al., 2010 Downstream of gene

rs12223943 Lupus Yang et al., 2010 Proximal promoter

rs6590343 Rheumatoid arthritis Freudenberg et al, 2011 Upstream of the gene

rs61907765 Celiac disease Trynka et al., 2011 5′ UTR

rs4937362 Rheumatoid arthritis Okada et al, 2012 Upstream of the gene

rs11221332 Rheumatoid arthritis; Celiac 
disease

Chatzikyriakidou 2012; Dubois et al., 
2010

Intron I

rs3802826 Psoriasis Tsoi et al., 2012 Upstream of gene

rs34846069 Lupus Davis et al, 2013 Final exon (does not 
change amino acid 
sequence)

rs970924 Allergy Hinds et al., 2013 Downstream of gene

rs1128334 Lupus, Ankylosing spondylitis Zhang et al., 2013, Lessard et al., 2015; 
Shan et al., 2014

3′ UTR

rs76404385 Lupus Molineros et al., 2014 Intron VII

rs4936059 Rheumatoid arthritis Kim et al., 2014 Upstream of the gene

rs1128334 Ankylosing spondylitis Shan et al., 2014 3′ UTR

rs73013527 Rheumatoid arthritis Okada et al, 2014; Chen et al., 2015 Upstream of the gene

rs12576573 Lupus Lessard et al., 2015 Downstream of gene

rs7941765 Lupus Bentham et al., 2015; Morris et al., 
2016

Upstream of gene

rs3809006 Multiple sclerosis Lill et al., 2015 Upstream of gene

rs4520607 Psoriasis Stuart et al., 2015 Upstream of gene

rs6590334 Psoriasis Yin et al., 2015 Upstream of gene

rs7933433 Psoriasis Yin et al., 2015 Downstream of gene

rs4936044 Psoriasis Yin et al., 2015 Downstream of gene

rs55974252 Psoriasis Yin et al., 2015 Downstream of gene

rs573624 Psoriasis Yin et al., 2015 Downstream of gene

rs7127307 Atopic dermatitis Paternoster et al., 2015 Downstream of gene

rs61432431 Lupus Morris et al., 2016 Downstream of gene

1
Introns are labeled from the first (I) to the last (VII) intron of the major isoform of Ets1

Crit Rev Immunol. Author manuscript; available in PMC 2017 November 20.


	Abstract
	INTRODUCTION
	I. Systemic Lupus Erythematosus: Disease Mechanisms
	II. Human ETS1 genetic variants associated with lupus
	III. Ets1 knockout mice develop autoimmune disease
	IV. Ets1 maintains B cell quiescence and preserves peripheral tolerance
	V. Mechanisms by which Ets1 limits plasma cell differentiation
	VI. Positive and negative signaling events control expression of Ets1 in B cells
	VII. Ets1 functions in CD4+ T cells
	A. Th1 Cells
	B. Th2 Cells
	C. IL-10
	D. Th17 Cells
	E. Treg Cells
	F. IL-2

	VIII. Concluding remarks and future directions

	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	Table I

