Skip to main content
. Author manuscript; available in PMC: 2017 Nov 20.
Published in final edited form as: Technol Health Care. 2017;25(3):425–433. doi: 10.3233/THC-161279

Table 2.

Accuracy measures of different machine learning algorithms in predicting ‘use’ and ‘non-use’ of remote monitoring systems

TP Rate (tp) FP Rate (fp) Precision Recall F-Measure AUC
‘Use’(Decision Tree) 85.7% 11.1% 85.7% 85.7% 85.7% 0.76
‘Non-Use’(Decision Tree) 88.9% 14.3% 88.9% 88.9% 88.9% 0.76
Overall (Decision Tree) 87.5% 12.9% 87.5% 87.5% 87.5% 0.76
‘Use’(k-NN) 100% 11% 87.5% 100% 93.3% 0.92
‘Non-Use’(k-NN) 88.9% 0% 100% 88.9% 94.1% 0.92
Overall (k-NN) 93.8% 0.05% 94.5% 93.8% 93.8% 0.92
‘Use’(MLP) 100% 22% 77.8% 100% 87.5% 0.84
‘Non-Use’(MLP) 77.8% 0% 100% 77.8% 87.5% 0.84
Overall (MLP) 87.5% 0.10% 90.3% 87.5% 87.5% 0.84

TP = true positive; FP = false positive; AUC = area under curve