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Abstract

Genome-wide association studies have identified hundreds of risk loci for autoimmune dis-

ease, yet only a minority (~25%) share genetic effects with changes to gene expression

(eQTLs) in immune cells. RNA-Seq based quantification at whole-gene resolution, where

abundance is estimated by culminating expression of all transcripts or exons of the same

gene, is likely to account for this observed lack of colocalisation as subtle isoform switches

and expression variation in independent exons can be concealed. We performed integrative

cis-eQTL analysis using association statistics from twenty autoimmune diseases (560 inde-

pendent loci) and RNA-Seq data from 373 individuals of the Geuvadis cohort profiled at

gene-, isoform-, exon-, junction-, and intron-level resolution in lymphoblastoid cell lines.

After stringently testing for a shared causal variant using both the Joint Likelihood Mapping

and Regulatory Trait Concordance frameworks, we found that gene-level quantification sig-

nificantly underestimated the number of causal cis-eQTLs. Only 5.0–5.3% of loci were

found to share a causal cis-eQTL at gene-level compared to 12.9–18.4% at exon-level and

9.6–10.5% at junction-level. More than a fifth of autoimmune loci shared an underlying

causal variant in a single cell type by combining all five quantification types; a marked

increase over current estimates of steady-state causal cis-eQTLs. Causal cis-eQTLs

detected at different quantification types localised to discrete epigenetic annotations. We

applied a linear mixed-effects model to distinguish cis-eQTLs modulating all expression ele-

ments of a gene from those where the signal is only evident in a subset of elements. Exon-

level analysis detected disease-associated cis-eQTLs that subtly altered transcription glob-

ally across the target gene. We dissected in detail the genetic associations of systemic

lupus erythematosus and functionally annotated the candidate genes. Many of the known

and novel genes were concealed at gene-level (e.g. IKZF2, TYK2, LYST). Our findings are

provided as a web resource.
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Author summary

It is well acknowledged that non-coding genetic variants contribute to disease susceptibil-

ity through alteration of gene expression levels (known as eQTLs). Identifying the variants

that are causal to both disease risk and changes to expression levels has not been easy and

we believe this is in part due to how expression is quantified using RNA-Sequencing

(RNA-Seq). Whole-gene expression, where abundance is estimated by culminating

expression of all transcripts or exons of the same gene, is conventionally used in eQTL

analysis. This low resolution may conceal subtle isoform switches and expression variation

in independent exons. Using isoform-, exon-, and junction-level quantification can not

only point to the candidate genes involved, but also the specific transcripts implicated. We

make use of existing RNA-Seq expression data profiled at gene-, isoform-, exon-, junc-

tion-, and intron-level, and perform eQTL analysis using association data from twenty

autoimmune diseases. We find exon-, and junction-level thoroughly outperform gene-

level analysis, and by leveraging all five quantification types, we find>20% of autoim-

mune loci share a single genetic effect with gene expression. We highlight that existing

and new eQTL cohorts using RNA-Seq should profile expression at multiple resolutions

to maximise the ability to detect causal eQTLs and candidate genes.

Introduction

The autoimmune diseases are a family of heritable, often debilitating, complex disorders in

which immune dysfunction leads to loss of tolerance to self-antigens and chronic inflamma-

tion [1]. Genome-wide association studies (GWAS) have now detected hundreds of suscepti-

bility loci contributing to risk of autoimmunity [2] yet their biological interpretation still

remains challenging [3]. Mapping single nucleotide polymorphisms (SNPs) that influence

gene expression (eQTLs) can provide meaningful insight into the potential candidate genes

and etiological pathways connected to discrete disease phenotypes [4]. For example, such anal-

yses have implicated dysregulation of autophagy in Crohn’s disease [5], the pathogenic role of

CD4+ effector memory T-cells in rheumatoid arthritis [6], and an overrepresentation of tran-

scription factors in systemic lupus erythematosus [7].

Expression profiling in appropriate cell types and physiological conditions is necessary to

capture the pathologically relevant regulatory changes driving disease risk [8]. Lack of such

expression data is thought to explain the observed disparity of shared genetic architecture

between disease association and gene expression at certain autoimmune loci [9]. A much over-

looked cause of this disconnect however, is not only the use of microarrays to profile gene

expression, but also the resolution to which expression is quantified using RNA-Sequencing

(RNA-Seq) [10]. Expression estimates of whole-genes, individual isoforms and exons, splice-

junctions, and introns are obtainable with RNA-Seq [11–18]. The SNPs that affect these dis-

crete units of expression vary strikingly in their proximity to the target gene, localisation to

specific epigenetic marks, and effect on translated isoforms [18]. For example, in over 57% of

genes with both an eQTL influencing overall gene expression and a transcript ratio QTL

(trQTL) affecting the ratio of each transcript to the gene total, the causal variants for each effect

are independent and reside in distinct regulatory elements of the genome [18].

RNA-Seq based eQTL investigations that solely rely on whole-gene expression estimates

are likely to mask the allelic effects on independent exons and alternatively-spliced isoforms

[16–19]. This is in part due to subtle isoform switches and expression variation in exons that

cannot be captured at gene-level [20]. A large proportion of trait associated variants are
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thought to act via direct effects on pre-mRNA splicing that do not change total mRNA levels

[21]. Recent evidence also suggests that exon-level based strategies are more sensitive than

conventional gene-level approaches, and allow for detection of moderate but systematic

changes in gene expression that are not necessarily derived from alternative-splicing events

[15,22]. Furthermore, gene-level summary counts can be biased in the direction of extreme

exon outliers [22]. Use of isoform-, exon-, and junction-level quantification in eQTL analysis

also support the potential to not only point to the candidate genes involved, but also the spe-

cific transcripts or functional domains affected [10,18]. This of course facilitates the design of

targeted functional studies and better illuminates the causative relationship between regulatory

genetic variation and disease. Lastly, though intron-level quantification is not often used in

conventional eQTL analysis, it can still provide valuable insight into the role of unannotated

exons in reference gene annotations, retained introns, and even intronic enhancers [23,24].

Low-resolution expression profiling with RNA-Seq will impede the subsequent identifica-

tion of causal eQTLs when applying genetic and epigenetic fine-mapping approaches [25]. In

this investigation, we aim to increase our knowledge of the regulatory mechanisms and candi-

date genes of human autoimmune disease through integration of GWAS and RNA-Seq expres-

sion data profiled at gene-, isoform-, exon-, junction-, and intron-level in lymphoblastoid cell

lines (LCLs). This is firstly performed in detail using association data from a GWAS in sys-

temic lupus erythematosus, and is then scaled up to a total of twenty autoimmune diseases.

Our findings are provided as a web resource to interrogate the functional effects of autoim-

mune associated SNPs (www.insidegen.com), and will serve as the basis for targeted follow-up

investigations.

Results

Gene-level expression quantification underestimates the number of

causal cis-eQTLs

Using densely imputed genetic association data from a large European GWAS in systemic

lupus erythematosus (SLE) [7], we performed integrative cis-eQTL analysis with RNA-Seq

expression data profiled at five resolutions: gene-, transcript-, exon-, junction-, and intron-

level. Expression data were derived from 373 healthy European donors of the Geuvadis project

profiled in lymphoblastoid cell lines (LCLs) [18]. See S1 Fig for a summary of how expression

at the five resolutions was quantified. A total of 38 genome-wide significant SLE loci (S1

Table) were put forward for analysis. To test for evidence of a single shared causal variant

between disease and gene expression at each locus, we employed the Joint Likelihood Mapping

(JLIM) framework [9] using summary-level statistics for SLE association and full genotype-

level data for gene expression. Using JLIM, cis-eQTLs were defined if a nominal association

(P<0.01) with at least one SNP existed within 100kb of the SNP most associated with disease

and the transcription start site of the gene was located within +/-500kb of that SNP (as defined

by authors of JLIM). JLIM P-values were corrected for multiple testing by a false discovery rate

(FDR) of 5% per RNA-Seq quantification type (i.e. at exon-level, JLIM P-values were adjusted

for total number of exons tested in cis to the 38 SNPs). Causal associations of the integrative

cis-eQTL SLE GWAS analysis across the five RNA-Seq quantification types are available in S2

Table and the full output (including non-causal associations) are available in S3 Table. The dis-

tribution of JLIM P-values across the five RNA-Seq quantification types are depicted in S2 Fig.

We found the number of causal cis-eQTLs was markedly underrepresented when con-

sidering conventional gene-level quantification (Table 1). Only two of the 38 SLE susceptibility

loci (5.3%) were deemed to be causal cis-eQTLs at gene-level for three candidate genes.

This is a similar proportion observed by Chun et al [9] who found that 16 of the 272 (5.9%)
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autoimmune susceptibility loci tested were cis-eQTLs driven by a shared causal variant in the

Geuvadis RNA-Seq dataset using gene-level quantification (based upon the seven autoimmune

diseases interrogated—not including SLE).

Of note, transcript-level quantification did not increase the number of causal cis-eQTLs

(Table 1). Transcript-level analysis did, however, yield a greater number of candidate genes

(seven individual transcripts derived from a total of four genes). Both junction- and intron-

level quantification increased the number of causal cis-eQTLs to four (10.5% of the 38 total

SLE loci). Using exon-level quantification, we were able to detect seven significant cis-eQTLs

driven by a single shared causal variant (18.4%). Exon-level analysis also produced the greatest

number of candidate gene targets: nine unique genes derived from 24 individual SNP-exon

pairs (Table 1). Therefore, even with the severe multiple testing burden, we firstly conclude

that exon-, junction-, and intron-level analysis detects more causal cis-eQTLs than gene-level.

A fifth of associated SNPs possess shared genetic effects with cis-

eQTLs using RNA-Seq in LCLs

By combining all five types of RNA-Seq quantification (gene, transcript, exon, junction, and

intron) we classified nine of the 38 SLE susceptibility loci (24%) as being driven by the same

causal variant as the cis-eQTL in LCLs (Table 1). This value, derived from interrogating only a

single cell type, is almost equal to the total number of causal autoimmune cis-eQTLs detected

by Chun et al [9] (~25%) across three different cell types (CD4+ T-cells–measured by microar-

ray, CD14+ monocytes–microarray, and LCLs–RNA-Seq gene-level).

We found that when considering the specificity of cis-eQTLs and target genes across the

five RNA-Seq quantification types, both gene- and transcript-level quantification were redun-

dant with respect to exon-level data; i.e. there were no causal cis-eQTLs or target genes

detected at gene- or transcript-level that were not captured by exon-level analysis (S3 Fig).

Both junction- and intron-level quantification captured a single causal cis-eQTL each that was

not captured by exon-level. We conclude that profiling at all resolutions of RNA-Seq is

required to capture the full set of potentially causal cis-eQTLs.

Table 1. Number of cis-eQTLs driven by the same causal variant as the SLE disease association (total number of SLE loci: 38).

Gene Transcript Exon Junction Intron Total

Causal cis-eQTLsa 2 2 7 4 4 9b

% of 38 SLE GWAS loci 5.3 5.3 18.4 10.5 10.5 23.7

% of total causal eQTLs 22.2 22.2 77.8 44.4 44.4 100

Candidate genes 3 4 9 5 5 12

Expression targetsc 2 7 24 18 13 64

The lead SNPs from the Bentham and Morris et al 2015 GWAS in persons of European descent were functionally annotated by cis-eQTL analysis in the

Geuvadis RNA-Seq cohort in lymphoblastoid cell lines using RNA-Seq quantification profiled at five resolutions (gene, transcript, exon, junction, and intron).

Only SNPs reaching genome-wide significance, not conditional peaks, outside of the major histocompatibility complex loci, and with minor allele

frequency > 5% were included leaving 38 SLE lead SNPs in total. All SLE loci were densely imputed to the 1000 Genomes Phase 3 Imputation Panel as

described in methods.

All 38 loci (+/-100kb of each lead SNP) comprised a nominally significant cis-eQTL (P<0.01) for at least one gene within +/-500kb of the lead SNP at each

resolution of RNA-Seq. Evidence of a single shared causal variant at each locus was assessed using the Joint Likelihood Mapping (JLIM) algorithm as

described in methods.
aNumber of loci where the disease association is consistent with a single shared effect for at least one cis-eQTL (P<0.01 and JLIM FDR adjusted P<0.05).
bThe total number of unique causal cis-eQTLs across all RNA-Seq quantification types.
cExpression targets corresponds to the quantification type in hand (i.e. number of exons at exon-level).

https://doi.org/10.1371/journal.pgen.1007071.t001
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Associated SNPs are most likely to colocalize with exon- and junction-

level cis-eQTLs

We compared the detection of cis-eQTLs using a pairwise comparison between the five RNA-

Seq quantification types for matched SNP-gene cis-eQTL pairs (Fig 1). We only considered

matched SNP-gene cis-eQTL association pairs that had a nominal cis-eQTL association P-

value < 0.01 in both quantification types, and to be conservative, when multiple transcripts,

exons, junctions, and introns were annotated with the same gene symbol, we selected the asso-

ciations that minimized the difference in JLIM P-value between matched SNP-gene cis-eQTLs

across RNA-Seq quantification types. There were over 250 matched SNP-gene cis-eQTL pairs

per comparison. We firstly observed that the correlation of both cis-eQTL association P-values

from regression and JLIM P-values across RNA-Seq quantification types reflected the methods

in which expression quantification was obtained (Fig 1A). Both cis-eQTL and JLIM P-values

between matched SNP-gene pairs at gene- and transcript-level were highly correlated as gene-

Fig 1. Pairwise comparison of cis-eQTL and JLIM P-values for matched SNP-gene pairs. This figure is complementary to the data in Table 2 and is

derived from cis-eQTL analysis of the 38 SLE associated SNPs using RNA-Seq and implementation of the JLIM method to assess evidence of a shared

causal variant. (A) We measured the Pearson’s correlation separately of all cis-eQTL and JLIM P-values between matched SNP-gene cis-eQTL pairs across

the five RNA-Seq quantification types. We only considered matched SNP-gene cis-eQTL association pairs that had a nominal cis-eQTL association P-

value < 0.01 in both quantification types, and to be conservative, when multiple transcripts, exons, junctions, and introns were annotated with the same gene

symbol, we selected the associations that minimized the difference in JLIM P-value between matched SNP-gene cis-eQTLs across RNA-Seq quantification

types. Note the weak JLIM P-value correlation of matched transcript-level and junction-level cis-eQTLs suggesting they stem from independent causal

variants. (B) Correlation plots of matches SNP-gene cis-eQTL pairs as described above (red: cis-eQTL P-value; blue: JLIM P-value). Note that JLIM P-values

often aggregate on the axis rather than on the diagonal suggesting independent causal variants across different quantification types. (C) An example of the

sensitivity of exon-level analysis relative to gene-level. The majority of nominally significant JLIM P-values (<0.01) for matched SNP-gene pairs are captured

by exon-level analysis and concealed at gene-level (green box: 9%).

https://doi.org/10.1371/journal.pgen.1007071.g001
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level estimates are obtained from the sum of all transcript-level estimates for the same gene.

Exon-level and junction-level associations were also highly correlated due to split-reads being

incorporated into the exon-level estimate. As expected, intron-level cis-eQTL and JLIM P-val-

ues for matched SNP-gene pairs were only weakly correlated against other quantification types

—as reads mapping to introns are not included in the other quantification models. Interest-

ingly, although cis-eQTL association P-values for matched SNP-gene pairs between transcript-

level and junction-level were found to be relatively high (r2 = 0.70), we found the JLIM P-val-

ues for the matched pairs to be comparatively low (r2 = 0.29); suggesting that whilst the statisti-

cal significance of matched cis-eQTLs maybe similar between these quantification types, the

underlying causal variants driving the disease and cis-eQTL association are likely to be

independent.

By plotting the JLIM P-values for matched SNP-gene pairs between different quantification

types, we found many instances of P-values distributed along the axes rather than on the diag-

onal (Fig 1B). Our findings therefore suggest that often, one quantification type is more likely

to explain the observed disease association than the other. When we compared conventional

gene-level cis-eQTL analysis against exon-level results (Fig 1C), we found that of the 296

matched SNP-gene cis-eQTL associations (P<0.01), eleven (4%) shared the same causal vari-

ant at both gene- and exon-level using a nominal JLIM P-value threshold <0.01. Only three of

the 296 matched SNP-gene cis-eQTL associations (1%) were captured by gene-level only—in

contrast to the 26 (9% of total associations) captured uniquely at exon-level. As expected, the

overwhelming majority of cis-eQTL associations (86%) did not possess a single shared causal

variant at either gene- or exon-level. We performed this analysis for all possible combinations

of quantification types (Table 2). In each instance, gene-level analysis detected only the minor-

ity of nominally causal associations for matched SNP-gene association pairs (JLIM P<0.01).

Exon-level and junction-level analysis consistently detected more causal cis-eQTL associations

Table 2. Pairwise comparison of the number of cis-eQTLs with a nominal JLIM P-value < 0.01.

Quantification

type X

Quantification

type Y

Total matched cis-

eQTLs (SNP ~

gene pairs

P < 0.01)

% Shared causal

variant in X and

Y (JLIM P < 0.01)

% Shared causal

variant in X only

(JLIM P < 0.01)

% Shared causal

variant in Y only

(JLIM P < 0.01)

% No shared

causal variant in

X and Y (JLIM

P < 0.01)

Correlation of

JLIM P

(X ~ Y)

Gene Transcript 267 3.00 1.87 5.62 89.51 0.63

Gene Exon 296 3.72 1.01 8.78 86.49 0.57

Gene Junction 229 3.49 1.75 11.79 82.97 0.46

Gene Intron 252 1.59 3.57 5.56 89.29 0.35

Transcript Exon 325 3.08 5.54 9.54 81.85 0.38

Transcript Junction 261 3.07 5.75 12.64 78.54 0.29

Transcript Intron 279 2.15 6.45 5.73 85.66 0.24

Exon Junction 294 6.12 7.82 9.86 76.19 0.44

Exon Intron 314 2.87 10.83 4.78 81.53 0.34

Junction Intron 275 3.27 13.45 5.09 78.18 0.20

This table is complementary to the data in Fig 1. We only considered matched SNP-gene cis-eQTL association pairs that had a nominal cis-eQTL

association P-value < 0.01 in both quantification types, and to be conservative, when multiple transcripts, exons, junctions, and introns were annotated with

the same gene symbol, we selected the associations that minimized the difference in JLIM P-value between matched SNP-gene cis-eQTLs across

RNA-Seq quantification types. The first row for example is a pairwise comparison of matched SNP-gene pairs between gene-level and transcript-level

quantification (of which there are 267 matched pairs). 3% of these are deemed nominally causal (JLIM P < 0.01) at both gene-level and transcript, 1.87% at

gene-level only and 5.62% at transcript-level only. 89.51% of matched SNP-gene pairs between gene- and transcript-level do not possess a nominally

causal cis-eQTL. Pearson’s correlation was performed for matched SNP-gene JLIM P-value pairs. These data show that exon- and junction-level analysis

consistently capture the majority of potentially causal cis-eQTL associations. JLIM: joint likelihood mapping.

https://doi.org/10.1371/journal.pgen.1007071.t002
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than gene-, transcript-, and intron-level. In fact, when combined, exon- and junction-level

analysis explained the most nominally causal associations for all significant SNP-gene cis-
eQTL association pairs (24%).

Leveraging RNA-Seq aids GWAS interpretation and reveals novel

candidate genes

We functionally dissected the 12 candidate genes taken from the nine SLE associated loci that

showed strong evidence of a shared causal variant with a cis-eQTL in LCLs (Table 3). We sys-

tematically annotated these genes using a combination of cell/tissue expression patterns,

mouse models, known molecular phenotypes, molecular interactions, and associations with

other autoimmune diseases (S4 Table). We found the majority of novel SLE candidate genes

detected by RNA-Seq were predominately expressed in immune-related tissues such as whole

blood as well as the spleen and thymus. Based on our annotation and what is already docu-

mented at certain loci, we were sceptical on the pathogenic involvement of three candidate

genes (PHTF1, ARHGAP30, and RABEP1). Although the cis-eQTL effect for these genes is evi-

dently driven by the shared causal variant as the disease association, it is possible that these

effects of expression modulation are merely passengers that are carried on the same functional

haplotype as the true causal gene(s) and do not contribute themselves to the breakdown of

self-tolerance (detailed in S4 Table). We show the regional association plots and the candidate

genes detected from cis-eQTL analysis in S4 Fig.

The causal cis-eQTL rs2736340 for genes BLK and FAM167A was detected at all RNA-Seq

profiling types. It is well established that the risk allele of this SNP reduces proximal promoter

activity of BLK; a member of the Src family kinases that functions in intracellular signalling

and the regulation of B-cell proliferation, differentiation, and tolerance [26]. The allelic

Table 3. Nine SLE loci contain cis-eQTLs driven by the same variant as the disease association.

Gene Transcript Exon Junction Intron

Lead SNP Gene eQTL Pa JLIM P eQTL P JLIM P eQTL P JLIM P eQTL P JLIM P eQTL P JLIM P

rs2476601 PHTF1 - - 2.2 x 10−3 6.2 x 10−1 5.0 x 10−8 1 8.4 x 10−47 1 1.4 x 10−4 1.0 x 10−4

rs1801274 ARHGAP30 2.4 x 10−6 8.1 x 10−1 - - 1.1 x 10−4 2.0 x 10−4 9.4 x 10−3 7.4 x 10−3 1.2 x 10−3 4.8 x 10−1

rs9782955 LYST 5.4 x 10−3 3.90 x 10−1 8.0 x 10−6 9.8 x 10−1 1.6 x 10−3 4.6 x 10−3 1.3 x 10−3 2.0 x 10−4 1.0 x 10−5 5.0 x 10−1

rs3768792 IKZF2 - - 1.5 x 10−3 7.7 x 10−1 1.9 x 10−4 3.0 x 10−4 1.0 x 10−5 9.0 x 10−1 1.1 x 10−5 2.0 x 10−4

rs10028805 BANK1 1.8 x 10−3 3.1 x 10−3 4.9 x 10−3 3.2 x 10−3 1.8 x 10−5 4.0 x 10−4 2.5 x 10−4 2.0 x 10−4 1.8 x 10−4 9.7 x 10−1

rs2736340 BLK 3.2 x 10−26 < 10−4 1.0 x 10−9 < 10−4 1.4 x 10−31 < 10−4 7.6 x 10−28 < 10−4 3.1 x 10−24 < 10−4

FAM167A 2.3 x 10−40 < 10−4 4.4 x 10−45 < 10−4 5.1 x 10−46 < 10−4 1.5 x 10−22 < 10−4 7.4 x 10−15 < 10−4

rs2286672 RABEP1 1.4 x 10−3 5.1 x 10−2 1.3 x 10−4 9.4 x 10−1 7.4 x 10−5 4.0 x 10−4 4.5 x 10−4 7.0 x 10−4 1.3 x 10−4 8.5 x 10−1

rs2304256 TYK2 1.2 x 10−3 7.6 x 10−1 9.9 x 10−6 9.9 x 10−1 2.5 x 10−9 < 10−4 1.3 x 10−4 3.0 x 10−3 2.2 x 10−9 2.0 x 10−4

ATG4D - - 3.8 x 10−3 7.2 x 10−3 6.4 x 10−5 3.8 x 10−3 3.8 x 10−4 2.0 x 10−4 6.6 x 10−5 9.7 x 10−1

rs7444 UBE2L3 5.7 x 10−3 2.0 x 10−1 5.9 x 10−14 < 10−4 9.9 x 10−5 < 10−4 5.1 x 10−5 9.5 x 10−1 1.2 x 10−3 9.0 x 10−1

CCDC116 2.5 x 10−5 5.0 x 10−4 1.4 x 10−6 3.0 x 10−4 4.9 x 10−4 4.0 x 10−4 - - - -

Nine of the 38 SLE loci (24%) were found to be driven by the same causal variant as the disease association across all five RNA-Seq quantification types in

LCLs (cis-eQTL P<0.01 and joint likelihood of shared association FDR<0.05). Bold type indicates associations that show evidence of a shared causal

variant for cis-eQTL and disease.
aMinimum cis-eQTL P-value for any SNP within 100 kb of the lead SNP. Dashes (–) indicate genes that were either not detected or had minimum cis-eQTL

P>0.01 in the RNA-Seq quantification type in hand. JLIM P-values <10−4 indicates the JLIM statistic is more extreme than permutation. JLIM: joint likelihood

mapping. If multiple SNP-unit associations are deemed to be causal (i.e. one SNP shows a causal association to two exons of the same gene, the

association with the smallest JLIM P-value is reported).

https://doi.org/10.1371/journal.pgen.1007071.t003
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consequence of FAM167A expression modulation is unknown. We found multiple instances

of known SLE susceptibility genes that were concealed when using gene-level quantification.

For example, we defined rs7444 as a causal cis-eQTL for UBE2L3 at transcript- and exon-level

—but not at gene-level (Table 3). The risk allele of rs7444 has been associated with increased

expression of UBE3L3 (Ubiquitin conjugating enzyme E2 L3) in ex vivo B-cells and monocytes

and correlates with NF-κB activation along with increased circulating plasmablast and plasma

cell numbers [27]. Similarly, the rs10028805 SNP is a known splicing cis-eQTL for BANK1 (B-

cell scaffold protein with ankyrin repeats 1). We replicated at exon-, and junction-level this

splicing effect which has been proposed to alter the B-cell activation threshold [28]. Again, this

mechanism was not detected using gene-level quantification.

IKZF2 (detected at the exon-level only) is a transcription factor thought to play a key role in

T-reg stabilisation in the presence of inflammatory responses [29]. IKZF2 deficient mice

acquire an auto-inflammatory phenotype in later life similar to rheumatoid arthritis, with

increased numbers of activated CD4+ and CD8+ T-cells, T-follicular helper cells, and germinal

centre B-cells, which culminates in autoantibody production [30]. Of note, other members of

this gene family, IKZF1 and IKZF3, are also associated with SLE and can hetero-dimerize (S4

Table) [7]. We also believe LYST, ATG4D, and TYK2 to also be intriguing candidate genes.

LYST encodes a lysosomal trafficking regulator [31] whilst ATG4D is a cysteine peptidase

involved in autophagy and this locus is associated with multiple sclerosis, psoriasis, and rheu-

matoid arthritis [32]. TYK2 is discussed in greater detail in the following section.

RNA-Seq can resolve the potential causal regulatory mechanism(s)

Interestingly, for the three causal SNP-gene pairs detected at gene-level (rs2736340 –BLK,

rs2736340 –FAM167A, and rs7444 –CCDC116), we found that at exon-level, all expressed

exons possessed causal cis-eQTLs. For example, rs2736340 is a causal cis-eQTL for all thirteen

exons of BLK and for all three exons of FAM167A (S5 Table). These data suggest that gene-

level analysis is capturing associations where all—or the majority of exons—are modulated by

the cis-eQTL.

We found that within the SLE associated loci that showed evidence of a shared causal vari-

ant with a cis-eQTL (Table 3), there were many instances in which the proposed causal cis-
eQTL modulated expression of only a single expression element. This enabled us to resolve the

potential regulatory effect of the causal cis-eQTL to a particular transcript, exon, junction, or

intron (S5 Table). We were able to resolve to a single expression element in nine of the twelve

candidate SNP-gene pairs. For example, rs9782955 is a causal cis-eQTL for LYST at junction-

level for only a single junction (chr1:235915471–235916344; cis-eQTL P = 1.3x10-03; JLIM

P = 2.0x10-04). We provide depicted examples of this isolation analysis for candidate genes

IKZF2 (S5 Fig), UBE2L3 (S6 Fig), and LYST (S7 Fig).

We provide a worked example of resolving the causal mechanism(s) using RNA-Seq for the

novel association rs2304256 with TYK2 (Fig 2). The top panel of Fig 2A shows the genetic asso-

ciation to SLE at the 19p13.2 susceptibility locus tagged by lead SNP rs2304256 (P = 1.54x10-

12). Multiple tightly correlated SNPs span the gene body and the 30 region of TYK2 –which

encodes Tyrosine Kinase 2—thought to be involved in the initiation of type I IFN signalling

[33]. In the panel below, we plot the gene-level association of all SNPs in cis to TYK2 and

show no significant association of rs3204256 with TYK2 expression (P = 0.18). At exon-, and

intron-level, we were able to classify rs2304256 as a causal cis-eQTL for a single exon (chr19:

10475527–10475724; cis-eQTL P = 2.58x10-09; JLIM P<10−04) and a single intron (chr19:

10473333–10475290; P = 2.20x10-08; JLIM P = 2x10-04) of TYK2 respectively as shown in the

bottom two panels of Fig 2A. We show the exon and intron labelling of TYK2 in further detail
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in S8 Fig. We found strong correlation of association P-values of the SLE GWAS and the P-val-

ues of TYK2 cis-eQTLs against at exon-level and intron-level, but not at gene-level (Fig 2B).

The risk allele rs2304256 [C] was found to be associated with decreased expression of the

TYK2 exon and increased expression of the TYK2 intron (Fig 2C). By plotting the cis-eQTL P-

values alongside the JLIM P-values for all exons and introns of TYK2 against rs2304256 (Fig

2D), we clearly show that only a single exon and a single intron of TYK2 colocalize with the

SLE association signal–marked by an asterisk (note that rs2304256 is a strong cis-eQTL for

many introns of TYK2 but only shares a causal variant with one intron). We show the genomic

location of the affected exon and intron of TYK2 in Fig 2E (exon 8 and the intron between

exons 9 and 10). Intron 9–10 of TYK2 is clearly expressed in LCLs according to transcription

levels assayed by RNA-Seq on LCLs (GM12878) from ENCODE (Fig 2E).

Fig 2. Isolation of potential causal molecular mechanism in TYK2 by SLE cis-eQTL rs2304256. (A) SLE GWAS association plot and cis-eQTL

association plot around the 19p13.2 susceptibility locus tagged by rs2304256. The top panel shows the association plot with SLE that spans the gene body

and 30 region of TYK2 (Tyrosine Kinase 2). The haplotype block composed of highly correlated SNPs is highlighted in the red block. The second panel shows

the cis-eQTL association plot at gene-level of all proximal SNPs to TYK2 (no significant association with rs2304256 is detected). The third panel shows the

same regional association but at exon-level for the most associated exon of TYK2 with rs2304256 –the bottom panel is at intron-level for TYK2 (both are

highly associated). (B) Correlation of SLE GWAS P-value and cis-eQTL association P-value for all SNPs in cis to TYK2. We show at gene-level the most

associated SLE SNPs are not cis-eQTLs (top panel). The middle and bottom panels show the same correlation at exon-level and intron-level and reveal the

most associated SNPs to SLE are also the most associated cis-eQTLs to TYK2. (C) The direction of effect of cis-eQTL rs2304256 with TYK2 at gene-level

(top), exon-level (middle), and intron-level (bottom panel). The risk allele is rs2304256 [C]. (D) The top panel shows cis-eQTL association and JLIM P-values

for all exons of TYK2 against rs2304256. Exon 8 (marked by an asterisk) is defined as having a causal association with rs2304256. The bottom panel shows

the intron-level cis-eQTL of TYK2 against rs2304256. Note many introns are cis-eQTLs but are not causal with rs2304256. Exons and introns are numbered

consecutively from start to end of gene if they are expressed (note some are not and therefore not included). (E) The genomic location of the single exon and

single intron of TYK2 that are modulated by rs2304256 are highlighted (rs2304256 is marked by an asterisk in red). The bottom two panels show the

transcription levels assayed by RNA-Seq on LCLs assayed by ENCODE. Note intron 9–10 of TYK2 is clearly expressed. The alignability of 75-mers by GEM

is also shown to show the mapability of reads around rs2304256.

https://doi.org/10.1371/journal.pgen.1007071.g002
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Interestingly, rs2304256 (marked by an asterisk in Fig 2E) is a missense variant (V362F)

within exon 8 of TYK2. The PolyPhen prediction of this substitution is predicted to be benign

and, to the best of our knowledge, no investigation has isolated the functional effect of this par-

ticular amino acid change. We do not believe the cis-eQTL at exon 8 to be a result of variation

at rs3204256 and mapping biases, as the alignability of 75mers by GEM from ENCODE is pre-

dicted to be robust around exon 8 (Fig 2E). In fact, rs3204256 [C] is the reference allele yet is

associated with decreased expression of exon 8.

In conclusion, we have found an interesting and novel mechanism that would have been

concealed by gene-level analysis that involves the risk allele of a missense SNP associated with

decreased expression of a single exon of TYK2 but increased expression of the neighbouring

intron. Whether the cis-eQTL effect and missense variation act in a combinatorial manner and

whether the intron is truly retained or if it is derived from an unannotated transcript of TYK2
is an interesting line of investigation.

Detection of cis-eQTLs and candidate-genes of autoimmune disease

using RNA-Seq

We re-performed our integrative cis-eQTL analysis with the Geuvadis RNA-Seq dataset in

LCLs using association data from twenty autoimmune diseases. This was to firstly reiterate the

importance of leveraging RNA-Seq in GWAS interpretation and to secondly demonstrate that

our findings in SLE persisted across other immunological traits. As the raw genetic association

data were not available for all twenty diseases, we were unable to implement the JLIM pipeline

which requires densely typed or imputed GWAS summary-level statistics. We therefore opted

to use the Regulatory Trait Concordance (RTC) method, which requires full genotype-level

data for the expression trait, but only the marker identifier for the lead SNP of the disease asso-

ciation trait (see methods for a description of the RTC method). We stringently controlled our

integrative cis-eQTL analysis for multiple testing to limit potential false positive findings of

overlapping association signals. To do this, we applied a Bonferroni correction to nominal cis-
eQTL P-values separately per disease and per RNA-Seq quantification type. We rigorously

defined causal cis-eQTLs, as associations with PBF < 0.05 and RTC� 0.95. An overview of the

analysis pipeline is depicted in S9 Fig and S10 Fig. Using an r2 cut-off of 0.8 and a 100kb limit,

we pruned the 752 associated SNPs from the twenty human autoimmune diseases from the

Immunobase resource (S6 Table) to obtain 560 independent susceptibility loci.

Our findings confirmed our previous results from the SLE investigation, and again support

the gene-level study using the JLIM package. As before, we found that only 5% (28 of the 560

loci) of autoimmune susceptibility loci were deemed to share causal variants with cis-eQTLs

using either gene- or transcript-level analysis (Fig 3A). Exon-level analysis more than doubled

the yield to 13% (72 of the 560 loci) with junction-, and intron-level analysis also outperform-

ing gene-level (10% and 8% respectively). When combining all RNA-Seq quantification types,

we could define 20% of autoimmune associated loci (110 of the 560 loci) as being candidate

causal cis-eQTLs—which corroborates our previous estimate in SLE using JLIM (24%).

By separating causal cis-eQTL associations out by quantification type, we found over half

(65%) were detected at exon-level, and considerable overlap of cis-eQTL associations existed

between both types (Fig 3B). Unlike in our SLE analysis, gene- and isoform-level analysis did

capture a small fraction of causal cis-eQTLs that were not captured at exon-level. Our data

therefore suggest that although exon- and junction-level, and to a lesser extent intron-level

analysis, capture most candidate-causal cis-eQTLs. It is necessary to prolife gene-expression at

all quantification types to avoid misinterpretation of the functional impact of disease associ-

ated SNPs.
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We mapped the causal cis-eQTLs detected by all RNA-Seq quantification types back to the

diseases to which they are associated (Fig 3C). Interestingly, we observed the diseases that fell

below the 20% average comprised autoimmune disorders related to the gut: celiac disease

(7%), inflammatory bowel disease (14%), Crohn’s disease (16%), and ulcerative colitis (18%).

We attribute this observation as a result of the cellular expression specificity of associated

genes in colonic tissue and in T-cells [34]. Correspondingly, we observed an above-average fre-

quency of causal cis-eQTLs detected in SLE (22%) and primary biliary cirrhosis (37%); diseases

in which the pathogenic role of B-lymphocytes and autoantibody production is well docu-

mented [34]. Note that there are 60 SLE GWAS associations in this analysis as these originate

Fig 3. Breakdown of autoimmune associated causal cis-eQTLs using RNA-Seq. (A) Percentage and number of causal cis-eQTL associations detected

per RNA-Seq quantification type, following LD pruning of associated SNPs from twenty autoimmune diseases to 560 independent susceptibly loci. The top

chart shows the number of causal cis-eQTLs when combining all RNA-Seq profiling types together (20%). (B) Sharing of causal cis-eQTL associations per

quantification type (110 detected in total). Percentage of causal cis-eQTLs captured are shown as a percentage of the 110 total. (C) Total causal cis-eQTLs

per disease across all five levels of RNA-Seq quantification, using the 20 diseases of the ImmunoBase resource. In orange are disease-associated SNPs that

show no shared association with expression across any quantification type. In blue are the disease-associated SNPs that are also causal cis-eQTLs. (D)

Causal cis-eQTLs and candidate genes per disease broken down by quantification type.

https://doi.org/10.1371/journal.pgen.1007071.g003
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from three independent GWA studies (S6 Table). We further broke down our results per dis-

ease by RNA-Seq quantification type (Fig 3D) and in all cases, the greatest frequency of causal

cis-eQTLs and candidate genes were captured by exon- and junction-level analyses.

Web resource for functional interpretation of association studies of

autoimmune disease

We provide the results from our analysis as a web resource (found at www.insidegen.com) for

researchers to lookup causal cis-eQTLs and candidate genes from the twenty autoimmune dis-

eases detected across the five RNA-Seq quantification types. The data are sub-settable and

exportable by SNP ID, gene, RNA-Seq resolution, genomic position, and association to specific

autoimmune diseases. See methods for a walkthrough of how to access results.

Exon-level quantification detects systematic and heterogeneous effects

on gene expression

By implementing a mixed model test of heterogeneity that accounts for the dependency struc-

ture arising from within-individual and within-gene expression correlations, we attempted to

distinguish causal cis-eQTLs at transcript-, exon-, junction-, and intron-level that fitted either

a systematic gene-model (characterized by a similar effect on expression across all elements

within a gene) or a heterogeneous gene-model (where the cis-eQTL signal is only evident in a

subset of expression elements). The full results of this analysis are found in S7 Table.

We found that across each RNA-Seq profiling type, the majority of causal cis-eQTLs exhib-

ited heterogeneous effects on gene expression; indicative of alternative isoform usage (Fig 4A).

Junction-level causal cis-eQTLs had the greatest proportion of heterogeneous associations (49 of

65 causal cis-eQTLs were heterogeneous—75%). Both systematic and heterogeneous causal cis-
eQTLs were then stratified by whether or not they were also causal at gene-level. As expected,

we observed that causal cis-eQTLs that were also detected at gene-level (Fig 4B) showed a greater

proportion of systematic effects on gene expression than associations not detected at gene-level

(Fig 4C). In both cases however, the heterogeneous model was more apposite. Interestingly, we

found that the greatest frequency of systematic associations, which were not captured at gene-

level, were observed at exon-level (42 of 76: 55%). This implies that exon-level analysis captures

a near equal proportion of both systematic and heterogeneous effects that are not detected by

gene-level analysis. We show four examples of systematic and heterogeneous causal cis-eQTLs

stratified by their detection at gene-level quantification in Fig 5.

Causal cis-eQTLs localise to discrete chromatin regulatory elements

A previous investigation has suggested that causal variants of gene-level and transcript-level

cis-eQTLs reside in discrete functional elements of the genome [18]. We therefore investigated

whether this notion held true across the five RNA-Seq quantification types tested in this study.

To accomplish this, we selected the causal cis-eQTLs from the twenty autoimmune diseases

interrogated, and per quantification type, tested for enrichment of these SNPs across various

chromatin regulatory elements taken from the Roadmap Epigenomics Project in LCLs (using

both the Roadmap chromatin state model and the positions of histone modifications). We

implemented the permutation-based GoShifter algorithm to test for enrichment of causal cis-
eQTLs and tightly correlated variants (r2>0.8) in genomic functional annotations in LCLs (see

methods) [25]. Results of this analysis are depicted in Fig 6. We found the 28 gene-level cis-
eQTLs were enriched in two chromatin marks: strong enhancers (P = 0.036) and H3K27ac

occupancy sites–a marker of active enhancers (P = 0.002). Transcript-level cis-eQTLs were also
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enriched in H3K27ac occupancy sites (P = 0.039) but were not enriched in any other marks.

The 72 exon-level cis-eQTLs were additionally enriched in active promoters (P = 0.017). Inter-

estingly, the 54 causal cis-eQTLs detected at junction-level were found to be enriched in weak

enhancers only (P = 0.002); whilst the 43 intron-level cis-eQTLs were enriched in chromatin

Fig 4. Number of causal cis-eQTLs with systematic or heterogeneous effects. (A) Using a modified test of heterogeneity that accounts for

the dependency structure arising from within-individual and within-gene expression correlations, we distinguished causal cis-eQTLs that fitted

either a systematic gene-model (orange) or a heterogeneous gene-model (blue) per quantification type. The full results of this analysis are

found in S7 Table. Numbers represent the total number of SNP-gene associations per quantification type. (B) Causal cis-eQTLs that are also

causal cis-eQTLs at gene-level. (C) Causal cis-eQTLs that are not causal cis-eQTLs at gene-level.

https://doi.org/10.1371/journal.pgen.1007071.g004
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states predicted to be involved in transcriptional elongation (P = 0.001; 83% of intron-level cis-
eQTLs). Disease relevant cis-eQTLs detected at different expression phenotypes using RNA--

Seq clearly localise to largely discrete functional elements of the genome.

We quantified the number of causal cis-eQTLs and tightly correlated variants (r2>0.8) per

quantification type that were predicted to be alter splice site consensus sequences of the target

genes (assessed by Sequence Ontology for the hg19 GENCODE v12 reference annotation). We

found only two of the 28 (7%) gene-level cis-eQTLs disrupted consensus splice-sites for their

target genes compared to the 14% and 13% detected at exon- and junction-level respectively

(Fig 6C). Our data suggest that although exon- and junction- level analysis leads to the greatest

frequency of causal cis-eQTLs, the majority at this resolution cannot be explained directly by

variation in annotated splice site consensus sequences (splice region/donor/acceptor/ variants).

Confirmation that autoimmune causal cis-eQTLs reach genome-wide

level of significance

We extended our investigation and performed genome-wide cis-eQTL analysis for all SNPs

against gene-, transcript-, exon-, junction-, and intron-level quantifications. As with our

Fig 5. Examples of causal cis-eQTLs with systematic or heterogeneous effects on expression. This figure shows exon-level analysis using a modified

test of heterogeneity to distinguish systematic causal cis-eQTLs and heterogeneous cis-eQTLs. It then stratifies these results based on whether the

association is detected at gene-level or not. Each panel shows the gene-level association with cis-eQTL association P-value and RTC score (RTC > = 0.95 is

deemed causal, highlighted in green), the exon-level association for each exon of the gene against the cis-eQTL, the heterogeneous model output from the

likelihood ratio test with χ2 statistic, degrees of freedom (DF), and model P-value (highlighted in red is heterogeneous, green is systematic), and finally the

collapsed gene model underneath with labelled exons. N.B box-plots in a darker shade are those that are deemed to be causal associations (PBF < 0.05 &

RTC > = 0.95). (A) Systematic cis-eQTL detected at gene-level (B) systematic cis-eQTL not detected at gene-level (C) heterogeneous cis-eQTL detected at

gene-level (D) heterogeneous cis-eQTL not detected at gene-level.

https://doi.org/10.1371/journal.pgen.1007071.g005
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integrative analysis of autoimmune risk loci, we found the greatest number of genome-wide

significant cis-eQTLs and target genes (at a genome-wide FDR threshold of 5%) were detected

at exon-level, followed by junction- and intron-level; with gene- and transcript-level being

thoroughly outperformed (S8 Table and S11 Fig). We confirmed that all of the causal cis-eQTL

associations detected in our integrative analysis with autoimmune risk loci reached genome-

wide significance—owing to the stringent Bonferroni multiple testing correction adopted (S9

Table).

Discussion

Elucidation of the functional consequences of non-coding genetic variation in human disease

is a major objective of medical genomics [35]. Integrative studies that map disease-associated

eQTLs in relevant cell types and physiological conditions are proving essential in progression

towards this goal through identification of causal SNPs, candidate-genes, and illumination of

Fig 6. Functional annotation of causal autoimmune cis-eQTLs. (A) We took the causal autoimmune cis-eQTLs detected for each RNA-Seq quantification

type and performed enrichment testing for chromatin state segmentation and histone marks in LCLs taken from the NIH Roadmap Epigenomics Project. We

used the GoShifter algorithm to do this (see methods); which takes all SNPs in strong LD (r2>0.8) with the causal cis-eQTLs and calculates the proportion of

SNPs overlapping chromatin marks, the positions of the marks are then shuffled whilst retaining the SNP positions, and the fraction of overlap recalculated

over 1,000 permutations. A permutation P-value is then generated–which is annotated in each box (P<0.05 deemed significant). The heat colour is

representative of the permutation P-value. Significant enrichment tests are highlighted in bold. The total number of causal cis-eQTLs per quantification type

are annotated at the bottom of the heatmap. (B) The percentage of causal cis-eQTLs in chromatin regulatory marks per quantification type. An asterisk shows

that this level of enrichment is deemed to be significant as shown in panel A. (C) The percentage of causal cis-eQTLs in chromatin regulatory marks per

quantification type that are or are highly correlated (r2>0.8) with SNPs that alter splice site consensus sequences of the target genes (assessed by Sequence

Ontology for the hg19 GENCODE v12 reference annotation).

https://doi.org/10.1371/journal.pgen.1007071.g006
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molecular mechanisms [36]. In autoimmune disease, where there is considerable overlap of

immunopathology, integrative eQTL investigations have been able to connect discrete aetiolo-

gical pathways, cell types, and epigenetic modifications, to particular clinical manifestations

[2,34,36,37]. Emerging evidence however has suggested that only a minority (~25%) of auto-

immune associated SNPs share casual variants with basal-level cis-eQTLs in primary immune

cell-types [9].

Genetic variation can influence expression at every stage of the gene regulatory cascade—

from chromatin dynamics, to RNA folding, stability, and splicing, and protein translation

[21]. It is now well documented that SNPs affecting these units of expression vary strikingly in

their genomic positions and localisation to specific epigenetic marks [18]. The eQTLs that

affect pre-transcriptional regulation—affecting all isoforms of a gene—differ in the proximity

to the target gene and effect on translated isoforms than their co-transcriptional trQTL (tran-

script ratio QTL) counterparts. Where the effect size of eQTLs generally increases in relation

to transcription start site proximity, trQTLs are distributed across the transcript body and gen-

erally localise to intronic binding sites of splicing factors [18,21]. In over 57% of genes with

both an eQTL influencing overall gene expression and an trQTL affecting the ratio of each

transcript to the gene total, the causal variants for each effect are independent and reside in

distinct regulatory elements of the genome [18]. In fact, three primary molecular mechanisms

are thought to link common genetic variants to complex traits. A large proportion of trait asso-

ciated SNPs act via direct effects on pre-mRNA splicing that do not change total mRNA levels

[21]. Common variants also act via alteration of pre-mRNA splicing indirectly through effects

on chromatin dynamics and accessibility. Such chromatin accessibility QTLs are however

more likely to alter total mRNA levels than splicing ratios. Lastly, it is thought that only a

minority of trait associated variants have direct effects on total gene expression that cannot be

explained by changes in chromatin. As RNA-Seq becomes the convention for genome-wide

transcriptomics, it is essential to maximise its ability to resolve and quantify discrete transcrip-

tomic features so to expose the genetic variants that contribute to changes in expression and

isoform usage. The reasoning for our investigation therefore was to delineate the limits of

microarray and RNA-Seq based eQTL cohorts in the functional annotation of autoimmune

disease association signals.

To map autoimmune disease associated cis-eQTLs, we interrogated RNA-Seq expression

data profiled at gene-, isoform, exon-, junction-, and intron-level, and tested for a shared

genetic effect at each significant association. As we had densely imputed summary statistics

from our SLE GWAS, we opted to use the Joint Likelihood Mapping (JLIM) framework [9] to

test for a shared causal variant between the disease and cis-eQTL signals. This framework has

been rigorously benchmarked against other colocalisation procedures. Summary statistics

were not available for the remaining autoimmune diseases and therefore we implemented the

Regulatory Trait Concordance (RTC) method for these diseases and set a stringent multiple

testing threshold to define causal cis-eQTLs. We found the estimates of causal cis-eQTLs were

near identical between the two methods used (Table 1 and Fig 3A). Exon- and junction-level

quantification led to the greatest frequency of causal cis-eQTLs and candidate genes (exon-

level: 13–18%, junction-level: 10–11%). We conclusively found that associated variants were in

fact more likely to colocalize with exon- and junction-level cis-eQTLs when applying a nomi-

nal JLIM P-value threshold of<0.01 (Fig 1B and Table 2). Gene-level analysis was thoroughly

outperformed in all cases (5%). Our findings that gene-level analysis explain only 5% of causal

cis-eQTLs corroborate the findings from Chun et al [9] who composed and used the JLIM

framework to annotate variants associated with seven autoimmune diseases (multiple sclerosis,

IBD, Crohn’s disease, ulcerative colitis, T1D, rheumatoid arthritis, and celiac disease). They

found that only 16 of the 272 autoimmune associated loci (6%) shared causal variants with cis-
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eQTLs using gene-level RNA-Seq (with the same Geuvadis European cohort in LCLs as used

herein). In our investigation, we argue that it is necessary to profile expression at all possible

resolutions to diminish the likelihood of overlooking potentially causal cis-eQTLs. In fact, by

combining our results across all resolutions, we found that 20–24% of autoimmune loci were

candidate-causal cis-eQTLs for at least one target gene. Our study therefore increases the num-

ber of autoimmune loci with shared genetic effects with cis-eQTLs in a single cell type by over

four-fold. Interestingly, using microarray data from CD4+ T-cells Chun et al classified 37 of

the 272 autoimmune loci (14%) as causal cis-eQTLs [9]—strengthening the hypothesis that

autoimmune loci (especially those associated with inflammatory diseases of the gut) are

enriched in CD4+ T-cell subsets and the cells themselves are likely to be pathogenic [25,34].

Microarray data are known to underestimate the number of true causal cis-eQTLs [10]. If we

assume that by leveraging RNA-Seq we can increase the number of steady-state causal cis-
eQTLs four-fold, we hypothesise that as many as ~54% of autoimmune loci may share causal

cis-eQTLs with gene expression at multiple resolutions in CD4+ T-cell populations. A large

RNA-Seq based eQTL cohort profiled across multiple CD4+ T-cell subsets will therefore be of

great use when annotating autoimmune-related traits. Immune activation conditions further

increase the number of causal cis-eQTLs detected in autoimmune disease [38]. We reason that

although using relevant cell types and context-specific conditions will undoubtedly increase

our understanding of how associated variants alter cell physiology and ultimately contribute to

disease risk; it is clearly shown herein that we are only picking the low hanging fruit in current

eQTL analyses. We argue it necessary to reanalyse existing RNA-Seq based eQTL cohorts at

multiple resolutions and ensure new datasets are similarly dissected. Despite the severe multi-

ple testing burden, we also argue that expression profiling at multiple resolutions using RNA-

Seq may be advantageous even when looking for trans-eQTL effects. As trans-eQTLs are gen-

erally more cell-type specific and have a weaker effect size, we decided not to perform such

analyses using the Geuvadis LCL data. Large RNA-Seq based eQTL cohorts in whole-blood

will be more suitable for such analysis [19].

As well as biological reasons for using multiple expression phenotypes for integrative eQTL

analysis, there are also technical factors to consider. Gene-level expression estimates can gener-

ally be obtained in two ways–union-exon based approaches [14,17] and transcript-based

approaches [11,12]. In the former, all overlapping exons of the same gene are merged into

union exons, and intersecting exon and junction reads (including split-reads) are counted to

these pseudo-gene boundaries. Using this counting-based approach, it is also possible to quan-

tify meta-exons and junctions easily and with high confidence by preparing the reference

annotation appropriately [13,15,39]. Introns can be quantified in a similar manner by invert-

ing the reference annotation between exons and introns [18]. Of note, we found intron-level

quantification generated more candidate-causal cis-eQTLs than gene-level (Fig 3A). As the

library was synthesised from poly-A selection, these associations are unlikely due to differences

in pre-mRNA abundance. Rather, they are likely derived from either true retained introns in

the mature RNA or from coding exons that are not documented in the reference annotation

used. Transcript-based approaches make use of statistical models and expectation maximiza-

tion algorithms to distribute reads among gene isoforms—resulting in isoform expression esti-

mates [11,12]. These estimates can then be summed to obtain the entire expression estimate of

the gene. Greater biological insight is gained from isoform-level analysis; however, disambigu-

ation of specific transcripts is not trivial due to substantial sequence commonality of exons

and junctions. In fact, we found only 5% of autoimmune loci shared a causal variant at tran-

script-level.

The different approaches used to estimate expression can also lead to significant differences

in the reported counts. Union-based approaches, whilst computationally less expensive, can
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underestimate expression levels relative to transcript-based, and this difference becomes more

pronounced when the number of isoforms of a gene increases, and when expression is primar-

ily derived from shorter isoforms [20]. The Geuvadis study implemented a transcript-based

approach to obtain whole-gene expression estimates. Clearly therefore, a gold standard of ref-

erence annotation and eQTL mapping using RNA-Seq is essential for comparative analysis

across datasets. Our findings support recent evidence that suggests exon-level based strategies

are more sensitive and specific than conventional gene-level approaches [22]. Subtle isoform

variation and expression of less abundant isoforms are likely to be masked by gene-level analy-

sis. Exon-level allows for detection of moderate but systematic changes in gene expression that

are not captured at gene-level, and also, gene-level summary counts can be shifted in the direc-

tion of extreme exon outliers [22]. It is therefore important to note that a positive exon-level

eQTL association does not necessarily mean a differential exon-usage or splicing mechanism

is involved; rather a systematic expression effect across the whole gene may exist that is only

captured by the increased sensitivity. By implementing a mixed model test of heterogeneity

that accounts for the dependency structure arising from within-individual and within-gene

expression correlations we found that causal cis-eQTLs captured by exon-level analysis that

are not detected at gene-level, are derived from both systematic and heterogeneous effects on

gene expression in almost equal proportions (Fig 4). Additionally, by combining exon-level

with other RNA-Seq quantification types, inferences can be made on the particular isoforms

and functional domains affected by the eQTL which can later aid biological interpretation and

targeted follow-up investigations [10]. We clearly show this from our analysis of SLE candidate

genes IKZF2 (S5 Fig), UBE2L3 (S6 Fig), LYST (S7 Fig) and TYK2 (Fig 2). For TYK2we reveal a

novel mechanism whereby the associated variant rs2304256 [C] leads to decreased expression

of a single exon and increased expression of a neighbouring intron (Fig 2). By isolating partic-

ular exons, junctions, and introns, one can design more refined follow-up investigations to

study the functional impact of non-coding disease associated variants. We show how our find-

ings can be leveraged to comprehensively examine GWAS results of autoimmune diseases. We

found nine of the 38 SLE susceptibility loci were causal cis-eQTLs (Table 3) for 12 candidate

genes which we later functionally annotated in detail (S4 Table).

Taken together, we have provided a deeper mechanistic understanding of the genetic regu-

lation of gene expression in autoimmune disease by profiling the transcriptome at multiple

resolutions using RNA-Seq. Similar analyses leveraging RNA-Seq in new and existing datasets

using relevant cell types and context-specific conditions (such as response eQTLs as shown in

[38]) will undoubtedly increase our understanding of how associated variants alter cell physi-

ology and ultimately contribute to disease risk.

Materials and methods

RNA-Sequencing expression data in lymphoblastoid cell lines

RNA-Sequencing (RNA-Seq) expression data from 373 lymphoblastoid cell lines (LCLs)

derived from four European sub-populations (Utah Residents with Northern and Western

European Ancestry, British in England and Scotland, Finnish in Finland, and Toscani in Italia)

of the Geuvadis project [18] were obtained from the EBI ArrayExpress website under acces-

sion: E-GEUV-1. The 89 individuals of the Geuvadis project from the Yoruba in Ibadan, Nige-

ria were excluded from this analysis. All individuals were included as part of the 1000Genomes

Project. Expression was profiled using RNA-Seq at five quantification types: gene-, transcript-,

exon-, junction-, and intron-level (the files downloaded and used in this analysis have the suf-

fix: ‘QuantCount.45N.50FN.samplename.resk10.txt.gz’). Full methods of expression quantifi-

cation can be found in the original publication and on the Geuvadis wiki page: http://

Mapping eQTLs in autoimmune disease using RNA-Seq

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007071 October 23, 2017 18 / 31

http://geuvadiswiki.crg.es/
https://doi.org/10.1371/journal.pgen.1007071


geuvadiswiki.crg.es/)). We have also provided a breakdown of the quantification methods in

S1 Fig. Expression data downloaded represent quantifications that are corrected for sequenc-

ing depth and gene/exon etc length (RPKM). Only expression elements quantified in >50% of

individuals were kept and Probabilistic Estimation of Expression Residuals (PEER) had been

used to remove technical variation [40]. We transformed all expression data to a standard nor-

mal distribution.

In summary, transcripts, splice-junctions, and introns were quantified using Flux Capacitor

against the GENCODE v12 basic reference annotation [16]. Reads belonging to single tran-

scripts were predicted by deconvolution per observations of paired-reads mapping across all

exonic segments of a locus. Gene-level expression was calculated as the sum of all transcripts

per gene. Annotated splice junctions were quantified using split read information, counting

the number of reads supporting a given junction. Intronic regions that are not retained in any

mature annotated transcript, and reported mapped reads in different bins across the intron to

distinguish reads stemming from retained introns from those produced by not yet annotated

exons. Meta-exons were quantified by merging all overlapping exonic portions of a gene into

non-redundant units and counting reads within these bins. Reads were excluded when the

read pairs map to two different genes.

SLE associated SNPs

SNPs genetically associated to systemic lupus erythematosus (SLE) were taken from the Ben-
tham and Morris et al 2015 GWAS in persons of European descent [7]. The study comprised a

primary GWAS, with validation through meta-analysis and replication study in an external

cohort (7,219 cases, 15,991 controls in total). Independently associated susceptibility loci

taken forward for this investigation were those that passed either genome-wide significance

(P<5x10-08) in the primary GWAS or meta-analysis and/or those that reached significance in

the replication study (q<0.01). We defined the lead SNP at each locus as either being the SNP

with the lowest P-value post meta-analysis or the SNP with the greatest evidence of a missense

effect as defined by a Bayes Factor (see original publication). We omitted non-autosomal asso-

ciations and those within the Major Histocompatibility Complex (MHC), and SNPs with a

minor allele frequency (MAF) < 0.05. In total, 38 independently associated SLE associated

GWAS SNPs were taken forward for investigation (S1 Table). Each susceptibility locus had

previously been imputed to the level of 1000 Genomes Phase3 using a combination of pre-

phasing by the SHAPEIT algorithm and imputation by IMPUTE (see original publication for

full details) [7].

Cis-eQTL analysis and Joint Likelihood Mapping (JLIM) of SLE

associated SNPs

Primary trait summary statistics file. A JLIM index file for each of the 38 SLE associated SNPs

was firstly generated by taking the position of each SNP (hg19) and a creating a 100kb interval

in both directions. Summary-level association statistics were obtained form the Bentham and
Morris et al 2015 European SLE GWAS (imputed to 1000Genomes Phase 3). We downloaded

summary-level association data (chromosome, position, SNP, P-value) for all directly typed or

imputed SNPs with an IMPUTE info score�0.7 within each of the 38 intervals. The two-sided

P-value was transformed into a Z-statistic as described by JLIM.

Reference LD file. Genotype files in VCF format for all 373 European individuals of the

Geuvadis RNA-Seq project were obtained from the EBI ArrayExpress under accession:

E-GEUV-1. The 41 individuals genotyped on the Omni 2.5M SNP array had been previously

imputed to the Phase 1 v3 release as described [18]; the remaining had been sequenced as part
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of the 1000 Genomes Phase1 v3 release (low-coverage whole genome and high-coverage

exome sequencing data). Using VCFtools, we created PLINK binary ped/map files for each of

the 38 intervals and kept only biallelic SNPs with a MAF >0.05, imputation call-rates� 0.7,

Hardy–Weinberg equilibrium P-value>1x10−04 and SNPs with no missing genotypes, we also

only included SNPs that we had primary trait association summary statistics for. These are

referred to as the secondary trait genotype files. We then used the JLIM Perl script fetch.refld0.

EUR.pl to generate the 38 reference LD files from the 373 individuals (the script had been

edited to include the extra 95 Finnish individuals).

Cis-eQTL analysis. We created a separate PLINK phenotype file (sample ID, normalized

expression residual) for each individual gene, transcript, exon, junction, and intron in cis
(within +/-500kb) to the 38 lead SLE GWAS SNPs. We only included protein-coding,

lincRNA, and antisense genes in our analysis as classified by Ensembl BioMart. Using the

chromosome 20 genotype VCF file of the 373 European individuals (E-GEUV-1), we con-

ducted principle component analysis (PCA) and generated an identity-by-state matrix using

the Bioconductor package SNPRelate (S9 Fig) [41]. Based on these results, we decided to

include the first three principle components and the binary imputation status (as 41 individu-

als had been genotyped on the Omni 2.5M SNP array were imputed to the Phase 1 v3 release)

of the European individuals (derived from Phase1 and Phase2 1000Genomes releases) in the

cis-eQTL analysis so to minimize biases derived from population structure and imputation

status.

We used PLINK to perform cis-eQTL analysis using the ‘—linear’ function, including the

above covariates, for each expression unit (phenotype file) in cis to the 38 loci (secondary trait

genotype files). We performed 10,000 permutations per regression and saved the output of

each permutation procedure. In cis to the 38 SLE SNPs were: 439 genes, 1,448 transcripts (orig-

inating from 456 genes), 3,045 exons (400 genes), 2,886 junctions (332 genes), and 1,855

introns (443 genes).

Joint likelihood mapping (JLIM) and multiple testing correction. Per RNA-Seq quantifica-

tion type, a JLIM configuration file was created using the jlim_gencfg.sh script and JLIM then

run using run_jlim.sh–setting the r2 resolution limit to 0.8. We merged the configuration files

and output files to create the final results table which included the primary and secondary trait

association P-value, the JLIM statistic, and the JLIM P-value by permutation. Multiple testing

was corrected for on the JLIM P-values per RNA-Seq quantification type using a false discov-

ery rate (FDR) as applied by the authors of JLIM. A JLIM P-value<10−04 means that the JLIM

statistic is more extreme than the permutation (10,000). We classified causal cis-eQTLs as SLE

associated variants that share a single causal variant with a cis-eQTL based on the following: if

there existed a nominal cis-eQTL (P<0.01) with at least one SNP within 100kb of the SNP

most associated with disease, the transcription start site of the expression target was located

within +/-500kb of that SNP, and the FDR adjusted JLIM P-value of the association passed the

5% threshold. Candidate genes modulated by the causal cis-eQTL.

Functional annotation of SLE associated genes from cis-eQTL analysis

Using publically available resources, we systematically annotated the twelve SLE associated

genes that were classified as being modulated by causal cis-eQTLs. The expression profiles at

RNA-level across multiple cell and tissue types were interrogated in GTEx [42] and the

Human Protein Atlas [43]—with the top three cell/tissue types documented per gene. We

noted using Online Mendelian Inheritance in Man [44] any gene-phenotype relationships by

caused by allelic variants and any immune-related phenotypes of animal models. Protein-pro-

tein interactions of candidate genes were taken from the BioPlex v2.0 interaction network
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(conducted in HEK293T cells) [45]. Using the ImmunoBase resource (https://www.

immunobase.org/), we looked up each gene and noted if the gene had been prioritized as the

‘candidate gene’ within the susceptibility locus per publication. Finally, we counted the num-

ber publications from PubMed found using the keywords ‘gene name AND SLE’.

Associated SNPs from twenty autoimmune diseases

Autoimmune associated SNPs were taken from the ImmunoBase resource (www.immuno

base.org). This resource comprises summary case-control association statistics from twenty

diseases: twelve originally targeted by the ImmunoChip consortium (ankylosing spondylitis,

autoimmune thyroid disease, celiac disease, Crohn’s disease, juvenile idiopathic arthritis, mul-

tiple sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, systemic lupus erythe-

matosus, type 1 diabetes, ulcerative colitis), and eight others (alopecia areata, inflammatory

bowel disease, IgE and allergic sensitization, narcolepsy, primary sclerosing cholangitis, Sjog-

ren syndrome, systemic scleroderma, vitiligo).

The curated studies and their corresponding references used in this analysis are presented

in S6 Table. For each disease, we took the lead SNPs which were defined as a genome-wide sig-

nificant SNP with the lowest reported P-value in a locus. Associations on the X-chromosome

and within the MHC and SNPs with minor allele frequency< 5% were omitted from analysis,

leaving 752 associated SNPs. We pruned these loci using the ‘—indep-pairwise’ function of

PLINK 1.9 with a window size of 100kb and an r2 threshold of 0.8, to create an independent

subset of 560 loci.

Integrative cis-eQTL analysis of twenty autoimmune diseases with

RNA-Seq

An overview of the integration pipeline using the twenty autoimmune diseases against the

Geuvadis RNA-Seq cohort in 373 European LCLs is depicted in S10 Fig. Genotype data of the

373 individuals were transformed and quality controlled as previously described in the above

methods sections (biallelic SNPs kept with a MAF >0.05, imputation call-rates� 0.7, Hardy–

Weinberg equilibrium P-value>1x10−04).

We opted to use the Regulatory Trait Concordance (RTC) method to assess the likelihood of a

shared causal variant between the disease association and the cis-eQTL signal [46]. This method

requires full genotype-level data for the expression trait but only the marker identifier for the lead

SNP of the disease association trait. SNPs within the 560 associated loci for the expression trait

were firstly classified according to their position in relation to recombination hotspots (based on

genome-wide estimates of hotspot intervals) [47]. Normalized gene expression residuals (PEER

factor normalized RPKM) for each quantification type were transformed to standard normal and

the first three principle components used as covariates in the cis-eQTL model as well as the binary

imputation status (as previously described above). All cis-eQTL association testing was performed

using a liner regression model in R. Cis-eQTL mapping was performed for the lead SNP and all

SNPs within the hotspot recombination interval against protein-coding, lincRNA, and antisense

expression elements (genes, transcripts, exons etc.) within +/-500kb of the lead SNP. In cis to the

560 loci were: 7,633 genes, 27,257 transcripts (originating from 7,310 genes), 52,651 exons (5,435

genes), 48,627 junctions (4,237 genes), 34,946 introns (6,233 genes).

For each cis-eQTL association, the residuals from the linear-regression of the best cis-
asQTL (lowest association P-value within the hotspot interval) were extracted. Linear regres-

sion was then performed using all SNPs within the defined hotspot interval against these resid-

uals. The RTC score was then calculated as (NSNPs—RankGWAS SNP / NSNPs). Where NSNPs is the

total number of SNPs in the recombination hotspot interval, and RankGWAS SNP is the rank of
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the GWAS SNP association P-value against all other SNPs in the interval from the liner associ-

ation against the residuals of the best cis-eQTL.

We rigorously adjusted for multiple testing of cis-eQTL P-values using a Bonferroni correc-

tion per quantification type (corrected for number of genes, isoforms, exons, junctions, and

introns tested) and per disease–as we wanted to keep our analysis as close to the authors of

JLIM who themselves also adjusted per cell type and per disease. We stringently defined causal

cis-eQTLs as associations with expression PBF < 0.05 and an RTC score� 0.95. Candidate

genes are modulated by the cis-eQTL.

Mixed-effects model test of heterogeneity

Expression of gene elements (for example exons) within a gene are naturally correlated, as are

expression data from the same individual. We therefore applied a linear mixed-effects model

approach within each RNA-Seq quantification type to test for heterogeneity in cis-eQTL signal

strength of causal associations. We firstly fitted a systematic gene-model containing a SNP

allele dosage main effect (encoded 0, 1, 2) and two random effects terms indexing each individ-

ual (1|Sample) and each expression element found within the same gene (1|Target). We then

fitted a heterogeneous gene-model containing the same terms plus a set of fixed-effect SNP

dosage � expression element interaction terms. Both models were fitted via restricted maxi-

mum likelihood (REML = FALSE) using the lmer() function of the lme4 R package. A likeli-

hood ratio test was used to determine significance (anova). P-values were corrected for

multiple testing using a Bonferroni correction, correcting for all tests (n = 230) across all quan-

tification types. PBF < 0.05 was deemed significant for the heterogeneous model.

Functional enrichment of causal cis-eQTLs in chromatin regulatory

elements

To test for enrichment of causal cis-eQTL associations in chromatin regulatory elements we

implemented the Genomic Annotation Shifter (GoShifter) package [25]. Chromatin regulatory

elements were divided into two categories: chromatin state segmentation and histone marks.

The genomic coordinates of the fifteen predicted chromatin state segmentations (active pro-

moter, strong enhancer, insulator etc.) for LCLs (in the GM12878 cell-line) were downloaded

from the UCSC Table browser (track name: wgEncodeBroadHmmGm12878HMM). Histone

marks and DNase hypersensitivity sites were obtained from the NIH Roadmap Epigenomics

Project for LCLs (GM12878) in NarrowPeak format. Sites were filtered for genome-wide sig-

nificance using an FDR threshold of 0.01 and peak widths harmonised to 200bp in length cen-

tred on the peak summit (as used in the GoShifter publication).

We obtained all SNPs in strong LD (r2> 0.8) with the causal cis-eQTLs by using the getLD.

sh script from GoShifter (interrogating the 1000Genomes Project for Phase3 Europeans). Per

quantification type, we then calculated the proportion of loci in which at least one SNP in LD

overlapped a chromatin regulatory element (conducted one at a time per chromatin mark).

The coordinates of the chromatin marks were then randomly shifted, whilst retaining the posi-

tions of the SNPs, and frequency of overlap re-calculated. This was carried out over 1,000 per-

mutations to draw the null distribution. The P-value was calculated as the proportion of

iterations for which the number of overlapping loci was equal to or greater than that for the

tested SNPs (P< 0.05 used as significance threshold).

Genome-wide cis-eQTL analysis

Genome-wide cis-eQTL analysis was performed using the normalized expression residuals for

each quantification type, four population principle components, and quality controlled SNP
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genotype data of the 373 European individuals as already described. Cis-eQTL association

analysis was performed using the MatrixeQTL R package fitting the linear-model function for

all SNPs within +/-500kb of protein-coding expression targets [48]. The total number of SNPs,

genes, targets, and SNP-gene targets tested are documented in S8 Table and S11 Fig. The issue

of multiple testing was addressed by calculating a False Discovery Rate for each SNP-target

pair per quantification type and thresholding associations below 5%.

Data visualisation and online resource

R version 3.3.1 and ggplot2 was used to create heatmaps, box-plots, and correlation plots.

Genes were plotted in UCSC Genome Browser [49] and regional association plots in Locus-

Zoom [50]. To access the online results table, visit www.insidegen.com and follow the link

‘Lupus’ then ‘data for scientists’. The table is found under title ‘Expression data associated with

different autoimmune diseases’.

Supporting information

S1 Table. SLE GWAS in persons of European Descent (38 loci taken forward for cis-eQTL

analysis). Associations taken from the Bentham & Morris et al 2015 SLE GWAS in persons of

European descent (4,036 cases and 6,969 controls). See original publication for full details.

Only non-MHC, MAF > 5%, non-conditional associations were kept for eQTL analysis (leav-

ing these 38 loci in total).

(PDF)

S2 Table. SLE associated cis-eQTL associations deemed to be causal as defined by the JLIM

pipeline. The lead SNPs from the Bentham and Morris et al 2015 GWAS in persons of Euro-

pean descent were functionally annotated by cis-eQTL analysis in the Geuvadis RNA-Seq

cohort in lymphoblastoid cell lines using RNA-Seq quantification profiled at five resolutions

(gene, transcript, exon, junction, and intron). Only SNPs reaching genome-wide significance,

not conditional peaks, outside of the major histocompatibility complex loci, and with minor

allele frequency > 5% were included leaving 38 SLE lead SNPs in total. All SLE loci were

densely imputed to the 1000 Genomes Phase 3 Imputation Panel as described in methods. All

38 loci (+/-100kb of each lead SNP) comprised a nominally significant cis-eQTL (P<0.01) for

at least one gene within +/-500kb of the lead SNP at each resolution of RNA-Seq. Evidence of a

single shared causal variant at each locus was assessed using the Joint Likelihood Mapping

(JLIM) algorithm as described in methods. Causal cis-eQTLs are defined where the disease

association is consistent with a single shared effect for at least one cis-eQTL (P<0.01 and JLIM

FDR adjusted P<0.05). Level: RNA-Seq quantification type, Target: The expression target–

defined by chromosome and genomic coordinate (hg19). IndexRs: the rs ID of the SLE GWAS

SNP, idxP: The P-value of SLE association derived from the GWAS, idx2bp: the SLE associa-

tion P-value of the most associated SNP within +/-100kb of the lead SNP (may be different

due to the reporting of the most likely causal SNP from the original GWAS, idx2P: the P-value

of the most associated SNP, minP2: The cis-eQTL P-value of the most associated SNP with the

expression target, STAT: The JLIM statistic, p: The JLIM P-value, FDR: The false discovery

rate adjusted P-value.

(PDF)

S3 Table. All SLE associated cis-eQTL associations by the JLIM pipeline–causal and non-

causal associations. SLE associated cis-eQTL associations deemed to be causal as defined by

the JLIM pipeline (this is the output from JLIM). The lead SNPs from the Bentham and Morris

et al 2015 GWAS in persons of European descent were functionally annotated by cis-eQTL
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analysis in the Geuvadis RNA-Seq cohort in lymphoblastoid cell lines using RNA-Seq quantifi-

cation profiled at five resolutions (gene, transcript, exon, junction, and intron). Only SNPs

reaching genome-wide significance, not conditional peaks, outside of the major histocompati-

bility complex loci, and with minor allele frequency > 5% were included leaving 38 SLE lead

SNPs in total. All SLE loci were densely imputed to the 1000 Genomes Phase 3 Imputation

Panel as described in methods. All 38 loci (+/-100kb of each lead SNP) comprised a nominally

significant cis-eQTL (P<0.01) for at least one gene within +/-500kb of the lead SNP at each

resolution of RNA-Seq. Evidence of a single shared causal variant at each locus was assessed

using the Joint Likelihood Mapping (JLIM) algorithm as described in methods. Causal cis-

eQTLs are defined where the disease association is consistent with a single shared effect for at

least one cis-eQTL (P<0.01 and JLIM FDR adjusted P<0.05).

(XLSX)

S4 Table. Functional annotation of SLE candidate genes detected by cis-eQTL analysis using

RNA-Seq. Using publically available resources, we systematically annotated the twelve SLE associ-

ated genes that were classified as being modulated by causal cis-eQTLs. The expression profiles at

RNA-level across multiple cell and tissue types were interrogated in GTEx and the Human Pro-

tein Atlas—with the top three cell/tissue types documented per gene. We noted using Online

Mendelian Inheritance in Man any gene-phenotype relationships by caused by allelic variants and

any immune-related phenotypes of animal models. Protein-protein interactions of candidate

genes were taken from the BioPlex v2.0 interaction network. Using the ImmunoBase resource, we

looked up each gene and noted if the gene had been prioritized as the ‘candidate gene’ within the

susceptibility locus per disease. Finally, we counted the number publications from PubMed found

using the keywords ‘gene name AND SLE’. We have highlighted in bold and underlined the can-

didate genes that we are sceptical about due to the lack of functional support and the known func-

tional consequences at these loci. Although the cis-eQTLs for these genes are classified as

statistically having the same underlying causal variant as the disease association–our functional

genomic data do not robustly support these genes as likely to be involved in pathogenesis. It is

possible that these effects are secondary to the pathogenic effect i.e. carried as a passenger on the

same functional haplotype but do not contribute to autoimmunity.

(PDF)

S5 Table. Number of expression elements that are deemed to have a causal association

with the SLE risk SNP. This table shows how may expression elements (i.e. number of exons,

junctions, introns etc.) that are deemed to have a causal cis-eQTL association with the SLE

associated SNP (taken from Table 3). A dashed line indicates that no causal association exists

at that particular quantification type. For example, rs3768792 is a causal cis-eQTL for IKZF2 at

both exon- and intron-level. Out of the five exons of IKZF2 that are included in the cis-eQTL

analysis (some may have been dropped form analysis due to low expression etc.), only one

shows a causal cis-eQTL association with rs3768792. The same is true for one of the fifteen

introns of IKZF2. For BANK1, we were able to resolve to two exons.

(PDF)

S6 Table. Curated studies of the ImmunoBase Resource. Associations refers to the number

of unique susceptibility loci identified per disease across studies of the same disease. Studies

consist of Genome-wide Association Studies (GWAS), Immunochip studies, and meta-analy-

ses/replication. Date refers to date of publication.

(PDF)

S7 Table. Results of linear mixed-model to test for heterogeneity in cis-eQTL signal across

different RNA-Seq profiling types. Results of mixed-model approach to test for heterogeneity

Mapping eQTLs in autoimmune disease using RNA-Seq

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007071 October 23, 2017 24 / 31

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007071.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007071.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007071.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007071.s007
https://doi.org/10.1371/journal.pgen.1007071


in cis-eQTL signal across different RNA-Seq profiling types. Associations are classified as hav-

ing a causal cis-eQTL at gene-level or not and are broken down by RNA-Seq profiling type.

The number of causal targets refers to the number of transcripts, exons, junctions, or introns

are deemed to be causal at the corresponding profiling type. Chiseq is the Chi-squared statistic

following a likelihood ratio test between the systematic model and the model of heterogeneity.

Systematic model: SNP allele dosage main effect and two random effects terms indexing each

individual in the data set and each target in the gene. Heterogeneous model: containing the

same terms plus a set of fixed-effect SNP dosage × target ID interaction terms. DF: degrees of

freedom. P-value: P-value of likelihood ratio test for heterogeneous model. All P-values were

corrected by Bonferroni multiple testing correction. Associations with PBF < 0.05 were

deemed to fit the heterogeneous model. Table is sorted by P-value.

(XLSX)

S8 Table. Summary results of genome-wide cis-eQTL analysis. The results of this table are

depicted in S11 Fig. A genome-wide cis-eQTL analysis was performed as described in methods

for all common SNPs (MAF > 5%) against gene quantifications profiled at gene-, transcript-,

exon-, junction-, and intron-level. ‘TOTAL’ refers to the total number of elements tested in a

genome-wide setting. The number of SNPs is different per quantification type as the analysis is

run in cis, meaning only expression elements within +/-500kb of each SNP are considered;

therefore, if there is no expression element within this distance, the SNP is not included in the

analysis. ‘Genes’ refers to the number of distinct (unique) genes tested against, and ‘targets’

refers to the number of individual genes, transcripts, exons, junctions, and introns tested

against measured using the corresponding profiling type. ‘SIGNIFICANT’ refers to the num-

ber of SNPs, genes etc. that pass a genome-wide false discovery rate (FDR) multiple testing

threshold of 5%. ‘PERCENTAGE SIGNIFICANT’ refers to the percentage of SNPs, genes etc.

that are significant as a percentage of the total tested.

(PDF)

S9 Table. Candidate causal cis-eQTLs of autoimmune loci with genome-wide FDR q-value.

All candidate causal cis-eQTLs detected in the GWAS-eQTL integration passed a genome-

wide significance FDR threshold of 5%.

(XLSX)

S1 Fig. Overview of the five quantification types used to estimate gene expression using

RNA-Seq. The following text (�) has been lifted from the supplementary material from Lappa-

lainen et al 2013 regarding how expression using RNA-Seq was estimated across the five

RNA-Seq quantification types (gene-, transcript-, exon-, junction-, and intron-level; S1A Fig).

Further information is available on the Geuvadis wiki page: http://geuvadiswiki.crg.es/index.

php/Main_Page and on the Flux Capacitor webpage for the Geuvadis Project: http://sammeth.

net/confluence/display/FLUX/Geuvadis+Quantifications. In this work, normalised RNA-Seq

expression data of 373 lymphoblastoid cell lines from four European sub-populations (CEU,

GBR, FIN, TSI) of the 1000Genomes Project (Geuvadis) were obtained from EBI ArrayExpress

(E-GEUV-1). Quantification was performed at gene-, transcript-, exon-, junction-, and

intron-level as described below. Quantifications were corrected for sequencing depth and gene

length (RPKM). Only expression elements quantified in > 50% of individuals were kept and

Probabilistic Estimation of Expression Residuals (PEER) was used to remove technical varia-

tion and expression residuals transformed to a standard normal distribution. (�) Quantifica-

tions of transcripts and splice junctions by the Flux Capacitor approach are based on the

annotation-mapped genomic mappings considering transcript structures of the GENCODE

transcriptome annotation: mappings of read pairs that were completely included within the
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annotated exon boundaries and paired in the expected orientation have been considered. Reads

belonging to single transcripts were predicted by deconvolution according to observations of

paired reads mapping across all exonic segments of a locus. Gene quantifications were calcu-

lated as the sum of all transcript RPKMs per gene. Annotated splice junctions were quantified

using split read information, counting the number of reads supporting a given junction. Exon

quantifications were calculated for protein-coding and lincRNA transcripts. All overlapping

exons of a gene were merged into metaGexons with identifier of type ENSG000001.1_exon.

start.pos_exon.end.pos. Read counts over these elements were calculated without using infor-

mation of read pairing, except for excluding reads where the pairs map to two different genes.

We counted a read in an exon if either its start or end coordinate overlapped an exon. For split

reads, we counted the exon overlap of each split fragment, and added counts per read as 1/

(number of overlapping exons per gene). The following is modified from the Flux Capacitor

webpage. In S1B Fig, the red box marks the all-intronic intersection of the two displayed

introns. Read coverage of this region is expressed by the fraction of the intron that is covered by

reads 10-bin resolution as a default). Intron parts outside of the red box are not considered for

quantifying this feature, under the hypothesis that reads falling there could be assigned to the

superimposed alternative exon boundaries. So, the coverage value reported for an intron is the

fraction of the red box covered by reads (default resolution 0.1).

(TIF)

S2 Fig. Distribution of joint likelihood P-values across RNA-Seq quantification types with

38 SLE GWAS loci.

(TIF)

S3 Fig. Specificity of cis-eQTLs and candidate genes identified by joint likelihood mapping

using SLE GWAS across the five RNA-Seq quantification types.

(TIF)

S4 Fig. Regional association plots (+/-250kb) of SLE GWAS in Europeans. Showing the

nine loci that are causal cis-eQTLs and candidate genes from JLIM analysis. The full results of

this analysis are in Table 3 of the manuscript and the summary results from the GWAS as pro-

vided in S1 Table. Candidate genes are highlighted in red.

(TIF)

S5 Fig. SLE associated SNP rs3768792 is a causal cis-eQTL for IKZF2 for a single exon and

a single intron. Full results of the causal cis-eQTL associations are found in S2 Table. This fig-

ure shows how cis-eQTL analysis can be used to resolve to a single expression element targeted

by a disease associated SNP. (A) The genomic coordinates and isoform structure of SLE candi-

date gene IKZF2 detected by cis-eQTL analysis using RNA-Seq at exon-level and intron-level.

The transcription start site of IKZF2 is on the right-hand side. In the red box is the single exon

and single intron modulated by causal cis-eQTL rs3768792 –these are shown in the black

boxes. (B) A zoomed in view of the red box showing the exon, coordinates: chr2: 213886368–

213886444 and intron, coordinates: chr2: 213881768–213886189. The track above shows the

transcription levels assayed by RNA-Seq in LCLs (GM12878 cell line) from the ENCODE proj-

ect–the affected intron is clearly transcribed. (C) The SLE risk allele rs3768792 [A] leads to

increased expression of both the depicted exon and the intron of IKZF2. The cis-eQTL associa-

tion P-value and JLIM P-value are shown.

(TIF)

S6 Fig. SLE associated SNP rs7444 is a causal cis-eQTL for UBE2L3 for a single transcript

and a single exon. Full results of the causal cis-eQTL associations are found in S2 Table. This
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figure shows how cis-eQTL analysis can be used to resolve to a single expression element tar-

geted by a disease associated SNP. (A) The genomic coordinates and isoform structure of SLE

candidate gene UBE2L3 detected by cis-eQTL analysis using RNA-Seq at exon-level and tran-

script-level. The transcription start site of UBE2L3 is on the left-hand side. The track above

shows the transcription levels assayed by RNA-Seq in LCLs (GM12878 cell line) from the

ENCODE project. The SLE risk allele rs7444 [T] leads to increased expression of both the

depicted transcript (ENST00000458578) and the exon of UBE2L3. The cis-eQTL association

P-value and JLIM P-value are shown.

(TIF)

S7 Fig. SLE associated SNP rs9872955 is a causal cis-eQTL for LYST for a single junction.

Full results of the causal cis-eQTL associations are found in S2 Table. This figure shows how

cis-eQTL analysis can be used to resolve to a single expression element targeted by a disease

associated SNP. Top panel—the genomic coordinates and isoform structure of SLE candidate

gene LYST detected by cis-eQTL analysis using RNA-Seq at junction-level. The transcription

start site of LYST is on the right-hand side. The track above shows the transcription levels

assayed by RNA-Seq in LCLs (GM12878 cell line) from the ENCODE project. The SLE risk

allele rs9872955 [C] leads to decreased expression of the depicted junction (chr1: 235915471–

235916344). The cis-eQTL association P-value and JLIM P-value are shown.

(TIF)

S8 Fig. Exon and intron numbers for TYK2. The transcription start site is on the right of the

diagram. This corresponds to Fig 2.

(TIF)

S9 Fig. Processing of genotype data and principle component analysis. Genotype data in

VCF format of 1000Genomes individuals were downloaded from E-GEUV1 (ArrayExpress).

Insertion-deletion sites were removed, and bi-allelic SNPs kept only. SNPs with HWE <

0.0001 were removed and the VCF converted to 0,1,2 format using PLINK. Principle compo-

nent analysis was performed on genotype data using the R package SNPRelate on chromosome

20. The first 3 components were included in the eQTL regression model as well as the binary

imputation status (see methods).

(TIF)

S10 Fig. Overview of integrative cis-eQTL analysis pipeline using 20 autoimmune diseases.

The 752-autoimmune disease associated SNPs per disease are documented in S1 Table and

were LD pruned to 560 independent loci (see methods). Genotypes of 1000Genomes individu-

als were quality controlled and subset to regions of recombination hotspots. If the lead GWAS

SNP was found between a recombination hotspot, then all SNPs were between the recombina-

tion hotspot intervals were used in the Regulatory Trait Concordance (RTC) analysis. If the

lead GWAS SNP was found within a recombination hotspot itself, then all SNPs before or after

the summit (including the between summit SNPs) were used in the RTC (upper-interval and

lower-interval hotspot respectively). Normalized RNA-Seq expression data at gene-, isoform-,

exon-, junction-, and intron-level were obtained for the 1000Genomes individuals of the Geu-

vadis cohort in lymphoblastoid cell lines. Disease associated SNPs with statistically significant

association with gene expression (PBF < 0.05) and an RTC score > 0.95 were defined as causal

cis-eQTLs.

(TIF)

S11 Fig. Summary of genome-wide cis-eQTL analysis at multiple profiling types. This fig-

ure corresponds to the data presented in S8 Table. A target is a single gene, transcript, exon,
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junction, or intron, quantified using the corresponding profiling type. SNPs, genes, targets,

and SNP-gene pairs are only counted once (distinct) if multiple SNP-gene pairs exist.

(TIF)

Acknowledgments

We thank Dr David L Morris for helpful discussions throughout this work. Philip Tombleson

is employed by the Biomedical Research Centre, we thank him for his assistance with data

management.

The GEUVADIS 1000 Genomes RNA-Seq data was downloaded from the EBI ArrayEx-

press Portal (accession E-GEUV-1).

Author Contributions

Conceptualization: Deborah S. Cunninghame Graham, Timothy J. Vyse.

Data curation: Christopher A. Odhams.

Formal analysis: Christopher A. Odhams.

Funding acquisition: Deborah S. Cunninghame Graham, Timothy J. Vyse.

Investigation: Christopher A. Odhams, Deborah S. Cunninghame Graham, Timothy J. Vyse.

Methodology: Christopher A. Odhams.

Project administration: Timothy J. Vyse.

Software: Christopher A. Odhams.

Supervision: Deborah S. Cunninghame Graham, Timothy J. Vyse.

Validation: Deborah S. Cunninghame Graham, Timothy J. Vyse.

Visualization: Christopher A. Odhams.

Writing – original draft: Christopher A. Odhams.

Writing – review & editing: Deborah S. Cunninghame Graham, Timothy J. Vyse.

References
1. Fever FM. NIH Progress in Autoimmune Diseases Research. in National Institute of Health Publication.

2005; 17–7576.

2. Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex

relationships among immune-mediated diseases. Nat Rev Genet. Nature Publishing Group; 2013; 14:

661–73. https://doi.org/10.1038/nrg3502 PMID: 23917628

3. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and

functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad

Sci U S A. 2009; 106: 9362–9367. https://doi.org/10.1073/pnas.0903103106 PMID: 19474294

4. Westra H-J, Franke L. From genome to function by studying eQTLs. Biochim Biophys Acta. Elsevier B.

V.; 2014; 1842: 1896–1902. https://doi.org/10.1016/j.bbadis.2014.04.024 PMID: 24798236

5. Klionsky DJ. Crohn’s disease, autophagy, and the Paneth cell. N Engl J Med. 2009; 360: 1785–1786.

https://doi.org/10.1056/NEJMcibr0810347 PMID: 19369659

6. Hu X, Kim H, Raj T, Brennan PJ, Trynka G, Teslovich N, et al. Regulation of Gene Expression in Auto-

immune Disease Loci and the Genetic Basis of Proliferation in CD4+ Effector Memory T Cells. PLoS

Genet. 2014; 10. https://doi.org/10.1371/journal.pgen.1004404 PMID: 24968232

7. Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P, Behrens TW, et al.

Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in

the pathogenesis of systemic lupus erythematosus. Nat Genet. Nature Publishing Group; 2015; 47:

1457–1464. https://doi.org/10.1038/ng.3434 PMID: 26502338

Mapping eQTLs in autoimmune disease using RNA-Seq

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007071 October 23, 2017 28 / 31

https://doi.org/10.1038/nrg3502
http://www.ncbi.nlm.nih.gov/pubmed/23917628
https://doi.org/10.1073/pnas.0903103106
http://www.ncbi.nlm.nih.gov/pubmed/19474294
https://doi.org/10.1016/j.bbadis.2014.04.024
http://www.ncbi.nlm.nih.gov/pubmed/24798236
https://doi.org/10.1056/NEJMcibr0810347
http://www.ncbi.nlm.nih.gov/pubmed/19369659
https://doi.org/10.1371/journal.pgen.1004404
http://www.ncbi.nlm.nih.gov/pubmed/24968232
https://doi.org/10.1038/ng.3434
http://www.ncbi.nlm.nih.gov/pubmed/26502338
https://doi.org/10.1371/journal.pgen.1007071


8. Fairfax BP, Knight JC. Genetics of gene expression in immunity to infection. Curr Opin Immunol. Else-

vier Ltd; 2014; 30: 63–71. https://doi.org/10.1016/j.coi.2014.07.001 PMID: 25078545

9. Chun S, Casparino A, Patsopoulos NA, Croteau-chonka DC, Raby BA, Jager PL De, et al. Limited sta-

tistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three

major immune-cell types. NatGenet. 2017; https://doi.org/10.1038/ng.3795 PMID: 28218759

10. Odhams CA, Cortini A, Chen L, Roberts AL, Viñuela A, Buil A, et al. Mapping eQTLs with RNA-seq

reveals novel susceptibility genes, non-coding RNAs and alternative-splicing events in systemic lupus

erythematosus. Hum Mol Genet. 2017; 26: ddw417. https://doi.org/10.1093/hmg/ddw417 PMID:

28062664

11. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expres-

sion analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7: 562–78. https://

doi.org/10.1038/nprot.2012.016 PMID: 22383036

12. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a refer-

ence genome. BMC Bioinformatics. 2011; 12: 323. https://doi.org/10.1186/1471-2105-12-323 PMID:

21816040

13. Schuierer S, Roma G. The exon quantification pipeline (EQP): a comprehensive approach to the quanti-

fication of gene, exon and junction expression from RNA-seq data. Nucleic Acids Res. 2016; gkw538.

https://doi.org/10.1093/nar/gkw538 PMID: 27302131

14. Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing

data. Bioinformatics. 2015; 31: 166–169. https://doi.org/10.1093/bioinformatics/btu638 PMID:

25260700

15. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq-npre20126837-2.

pdf. Genome Res. 2012; 12: 1088–9051. https://doi.org/10.1101/gr.133744.111

16. Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, et al. Transcriptome

genetics using second generation sequencing in a Caucasian population. Nature. Nature Publishing

Group; 2010; 464: 773–777. https://doi.org/10.1038/nature08903 PMID: 20220756

17. Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for assigning sequence

reads to genomic features. Bioinformatics. 2014; 30: 923–930. https://doi.org/10.1093/bioinformatics/

btt656 PMID: 24227677

18. Lappalainen T, Sammeth M, Friedländer MR, ‘t Hoen P a C, Monlong J, Rivas M a, et al. Transcriptome

and genome sequencing uncovers functional variation in humans. Nature. 2013; 501: 506–11. https://

doi.org/10.1038/nature12531 PMID: 24037378

19. Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, et al. Characterizing the genetic

basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 2014; 24:

14–24. https://doi.org/10.1101/gr.155192.113 PMID: 24092820

20. Zhao S, Xi L, Zhang B. Union exon based approach for RNA-seq gene quantification: To be or not to

be? PLoS One. 2015; 10: e0141910. https://doi.org/10.1371/journal.pone.0141910 PMID: 26559532

21. Li YI, Geijn B Van De, Raj A, Knowles D a, Petti A a, Golan D, et al. RNA splicing is a primary link

between genetic variation and disease. Science. 2016; 352. https://doi.org/10.1126/science.aad9417

PMID: 27126046

22. Laiho A, Elo LL. A note on an exon-based strategy to identify differentially expressed genes in RNA-seq

experiments. PLoS One. 2014; 9: 1–12. https://doi.org/10.1371/journal.pone.0115964 PMID:

25541961

23. Gaidatzis D, Burger L, Florescu M, Stadler MB. Analysis of intronic and exonic reads in RNA-seq data

characterizes transcriptional and post-transcriptional regulation. Nat Biotech. Nature Publishing Group;

2015; 33: 722–729. https://doi.org/10.1038/nbt.3269 PMID: 26098447

24. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian tran-

scriptomes by RNA-Seq. Nat Methods. 2008; 5: 621–628. https://doi.org/10.1038/nmeth.1226 PMID:

18516045

25. Trynka G, Westra HJ, Slowikowski K, Hu X, Xu H, Stranger BE, et al. Disentangling the Effects of Colo-

calizing Genomic Annotations to Functionally Prioritize Non-coding Variants within Complex-Trait Loci.

Am J Hum Genet. The Authors; 2015; 97: 139–152. https://doi.org/10.1016/j.ajhg.2015.05.016 PMID:

26140449

26. Guthridge JM, Lu R, Sun H, Sun C, Wiley GB, Dominguez N, et al. Two functional lupus-associated

BLK promoter variants control cell-type- and developmental-stage-specific transcription. Am J Hum

Genet. 2014; 94: 586–598. https://doi.org/10.1016/j.ajhg.2014.03.008 PMID: 24702955

27. Lewis MJ, Vyse S, Shields AM, Boeltz S, Gordon PA, Spector TD, et al. UBE2L3 polymorphism ampli-

fies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple

Mapping eQTLs in autoimmune disease using RNA-Seq

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007071 October 23, 2017 29 / 31

https://doi.org/10.1016/j.coi.2014.07.001
http://www.ncbi.nlm.nih.gov/pubmed/25078545
https://doi.org/10.1038/ng.3795
http://www.ncbi.nlm.nih.gov/pubmed/28218759
https://doi.org/10.1093/hmg/ddw417
http://www.ncbi.nlm.nih.gov/pubmed/28062664
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1038/nprot.2012.016
http://www.ncbi.nlm.nih.gov/pubmed/22383036
https://doi.org/10.1186/1471-2105-12-323
http://www.ncbi.nlm.nih.gov/pubmed/21816040
https://doi.org/10.1093/nar/gkw538
http://www.ncbi.nlm.nih.gov/pubmed/27302131
https://doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700
https://doi.org/10.1101/gr.133744.111
https://doi.org/10.1038/nature08903
http://www.ncbi.nlm.nih.gov/pubmed/20220756
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
http://www.ncbi.nlm.nih.gov/pubmed/24227677
https://doi.org/10.1038/nature12531
https://doi.org/10.1038/nature12531
http://www.ncbi.nlm.nih.gov/pubmed/24037378
https://doi.org/10.1101/gr.155192.113
http://www.ncbi.nlm.nih.gov/pubmed/24092820
https://doi.org/10.1371/journal.pone.0141910
http://www.ncbi.nlm.nih.gov/pubmed/26559532
https://doi.org/10.1126/science.aad9417
http://www.ncbi.nlm.nih.gov/pubmed/27126046
https://doi.org/10.1371/journal.pone.0115964
http://www.ncbi.nlm.nih.gov/pubmed/25541961
https://doi.org/10.1038/nbt.3269
http://www.ncbi.nlm.nih.gov/pubmed/26098447
https://doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
https://doi.org/10.1016/j.ajhg.2015.05.016
http://www.ncbi.nlm.nih.gov/pubmed/26140449
https://doi.org/10.1016/j.ajhg.2014.03.008
http://www.ncbi.nlm.nih.gov/pubmed/24702955
https://doi.org/10.1371/journal.pgen.1007071


autoimmune diseases. Am J Hum Genet. The Authors; 2015; 96: 221–234. https://doi.org/10.1016/j.

ajhg.2014.12.024 PMID: 25640675

28. Kozyrev S V, Abelson A-K, Wojcik J, Zaghlool A, Linga Reddy MVP, Sanchez E, et al. Functional vari-

ants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet. 2008; 40:

211–216. https://doi.org/10.1038/ng.79 PMID: 18204447

29. Getnet D, Grosso JF, Goldberg M V., Harris TJ, Yen HR, Bruno TC, et al. A role for the transcription fac-

tor Helios in human CD4+CD25+ regulatory T cells. Mol Immunol. Elsevier Ltd; 2010; 47: 1595–1600.

https://doi.org/10.1016/j.molimm.2010.02.001 PMID: 20226531

30. Kim H, Barnitz RA, Kreslavsky T, Brown FD, Moffett H, Lemieux ME, et al. Stable inhibitory activity of

regulatory T cells requires the transcription factor Helios. Science. 2015; 350: 334–339. https://doi.org/

10.1126/science.aad0616 PMID: 26472910

31. Sepulveda FE, Burgess A, Heiligenstein X, Goudin N, Ménager MM, Romao M, et al. LYST Controls

the Biogenesis of the Endosomal Compartment Required for Secretory Lysosome Function. Traffic.

2015; 16: 191–203. https://doi.org/10.1111/tra.12244 PMID: 25425525

32. Li M, Hou Y, Wang J, Chen X, Shao ZM, Yin XM. Kinetics comparisons of mammalian Atg4 homologues

indicate selective preferences toward diverse Atg8 substrates. J Biol Chem. 2011; 286: 7327–7338.

https://doi.org/10.1074/jbc.M110.199059 PMID: 21177865

33. Prchal-Murphy M, Semper C, Lassnig C, Wallner B, Gausterer C, Teppner-Klymiuk I, et al. TYK2 kinase

activity is required for functional type I interferon responses in Vivo. PLoS One. 2012; 7: 1–12. https://

doi.org/10.1371/journal.pone.0039141 PMID: 22723949

34. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and epigenetic fine

mapping of causal autoimmune disease variants. Nature. Nature Publishing Group; 2015; 518: 337–

343. https://doi.org/10.1038/nature13835 PMID: 25363779

35. Lappalainen T. Functional genomics bridges the gap between quantitative genetics and molecular biol-

ogy. Genome Res. 2015; 25: 1427–1431. https://doi.org/10.1101/gr.190983.115 PMID: 26430152

36. Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet.

Nature Publishing Group; 2015; 16: 197–212. https://doi.org/10.1038/nrg3891 PMID: 25707927

37. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, et al. Chromatin marks identify critical cell

types for fine mapping complex trait variants. Nat Genet. Nature Publishing Group; 2013; 45: 124–30.

https://doi.org/10.1038/ng.2504 PMID: 23263488

38. Kim-Hellmuth S, Bechheim M, Puetz B, Mohammadi P, Nedelec Y, Giangreco N, et al. Genetic regula-

tory effects modified by immune activation contribute to autoimmune disease associations. Nat Com-

mun. Springer US; 2017; 8: 116376. https://doi.org/10.1101/116376

39. Ongen H, Dermitzakis ET. Alternative Splicing QTLs in European and African Populations. Am J Hum

Genet. The Authors; 2015; 97: 567–575. https://doi.org/10.1016/j.ajhg.2015.09.004 PMID: 26430802

40. Stegle O, Parts L, Durbin R, Winn J. A bayesian framework to account for complex non-genetic factors

in gene expression levels greatly increases power in eQTL studies. PLoS Comput Biol. 2010; 6: 1–11.

https://doi.org/10.1371/journal.pcbi.1000770 PMID: 20463871

41. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset

for relatedness and principal component analysis of SNP data. Bioinformatics. 2012; 28: 3326–3328.

https://doi.org/10.1093/bioinformatics/bts606 PMID: 23060615

42. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013; 45: 580–

585. https://doi.org/10.1038/ng.2653 PMID: 23715323

43. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-

based map of the human proteome. Science. 2015; 347: 1260419. https://doi.org/10.1126/science.

1260419 PMID: 25613900

44. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man

(OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005; 33: 514–

517. https://doi.org/10.1093/nar/gki033 PMID: 15608251

45. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, et al. The BioPlex Network: A Systematic

Exploration of the Human Interactome. Cell. 2015; 162: 425–440. https://doi.org/10.1016/j.cell.2015.06.

043 PMID: 26186194

46. Nica AC, Montgomery SB, Dimas AS, Stranger BE, Beazley C, Barroso I, et al. Candidate causal regu-

latory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet.

2010; 6: e1000895. https://doi.org/10.1371/journal.pgen.1000895 PMID: 20369022

47. McVean GA. The fine-scale structure of recombination rate variation in the human genome. Science

(80-). 2004; 304: 581. Available: http://dx.doi.org/10.1126/science.1092500

48. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;

28: 1353–1358. https://doi.org/10.1093/bioinformatics/bts163 PMID: 22492648

Mapping eQTLs in autoimmune disease using RNA-Seq

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007071 October 23, 2017 30 / 31

https://doi.org/10.1016/j.ajhg.2014.12.024
https://doi.org/10.1016/j.ajhg.2014.12.024
http://www.ncbi.nlm.nih.gov/pubmed/25640675
https://doi.org/10.1038/ng.79
http://www.ncbi.nlm.nih.gov/pubmed/18204447
https://doi.org/10.1016/j.molimm.2010.02.001
http://www.ncbi.nlm.nih.gov/pubmed/20226531
https://doi.org/10.1126/science.aad0616
https://doi.org/10.1126/science.aad0616
http://www.ncbi.nlm.nih.gov/pubmed/26472910
https://doi.org/10.1111/tra.12244
http://www.ncbi.nlm.nih.gov/pubmed/25425525
https://doi.org/10.1074/jbc.M110.199059
http://www.ncbi.nlm.nih.gov/pubmed/21177865
https://doi.org/10.1371/journal.pone.0039141
https://doi.org/10.1371/journal.pone.0039141
http://www.ncbi.nlm.nih.gov/pubmed/22723949
https://doi.org/10.1038/nature13835
http://www.ncbi.nlm.nih.gov/pubmed/25363779
https://doi.org/10.1101/gr.190983.115
http://www.ncbi.nlm.nih.gov/pubmed/26430152
https://doi.org/10.1038/nrg3891
http://www.ncbi.nlm.nih.gov/pubmed/25707927
https://doi.org/10.1038/ng.2504
http://www.ncbi.nlm.nih.gov/pubmed/23263488
https://doi.org/10.1101/116376
https://doi.org/10.1016/j.ajhg.2015.09.004
http://www.ncbi.nlm.nih.gov/pubmed/26430802
https://doi.org/10.1371/journal.pcbi.1000770
http://www.ncbi.nlm.nih.gov/pubmed/20463871
https://doi.org/10.1093/bioinformatics/bts606
http://www.ncbi.nlm.nih.gov/pubmed/23060615
https://doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
https://doi.org/10.1126/science.1260419
https://doi.org/10.1126/science.1260419
http://www.ncbi.nlm.nih.gov/pubmed/25613900
https://doi.org/10.1093/nar/gki033
http://www.ncbi.nlm.nih.gov/pubmed/15608251
https://doi.org/10.1016/j.cell.2015.06.043
https://doi.org/10.1016/j.cell.2015.06.043
http://www.ncbi.nlm.nih.gov/pubmed/26186194
https://doi.org/10.1371/journal.pgen.1000895
http://www.ncbi.nlm.nih.gov/pubmed/20369022
https://doi.org/10.1126/science.1092500
https://doi.org/10.1093/bioinformatics/bts163
http://www.ncbi.nlm.nih.gov/pubmed/22492648
https://doi.org/10.1371/journal.pgen.1007071


49. Kent WJ, Sugnet CW, Furey TS, Roskin KM. The Human Genome Browser at UCSC W. J Med Chem.

2002; 19: 1228–31. https://doi.org/10.1101/gr.229102

50. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: Regional visual-

ization of genome-wide association scan results. Bioinformatics. 2010; 26: 2336–2337. https://doi.org/

10.1093/bioinformatics/btq419 PMID: 20634204

Mapping eQTLs in autoimmune disease using RNA-Seq

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007071 October 23, 2017 31 / 31

https://doi.org/10.1101/gr.229102
https://doi.org/10.1093/bioinformatics/btq419
https://doi.org/10.1093/bioinformatics/btq419
http://www.ncbi.nlm.nih.gov/pubmed/20634204
https://doi.org/10.1371/journal.pgen.1007071

