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Abstract

Meta-analysis of time-to-event outcomes using the hazard ratio as a treatment effect measure has 

an underlying assumption that hazards are proportional. The between-arm difference in the 

restricted mean survival time is a measure that avoids this assumption and allows the treatment 

effect to vary with time. We describe and evaluate meta-analysis based on the restricted mean 

survival time for dealing with non-proportional hazards and present a diagnostic method for the 

overall proportional hazards assumption. The methods are illustrated with the application to two 

individual participant meta-analyses in cancer. The examples were chosen because they differ in 

disease severity and the patterns of follow-up, in order to understand the potential impacts on the 

hazards and the overall effect estimates. We further investigate the estimation methods for 

restricted mean survival time by a simulation study.
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1 Introduction

In meta-analysis of time-to-event outcomes, we often use the hazard ratio as a measure to 

evaluate the effect of a treatment across randomized controlled trials. Methodological 

developments on extracting the hazard ratios from published survival curves [1–3] and 

comparing two-stage and one-stage meta-analysis of hazard ratios estimated from the widely 

used Cox model [4–6] have improved how we include all the available evidence from trials 

with time-to-event data. However, concerns have been raised regarding non-proportional 

hazards in individual trials [7, 8]. While the trials included in a meta-analysis can be used to 

address similar research questions, they can differ in the length of follow-up, censoring 

pattern and design aspects. Therefore, the assumption of proportional hazards (PH) for 

multiple included trials may be unrealistic [9–12].

*Correspondence to: Yinghui Wei, Center for Mathematical Sciences, School of Computing and Mathematics, University of Plymouth, 
Plymouth, PL4 8AA, U.K. † yinghui.wei@plymouth.ac.uk. 

Europe PMC Funders Group
Author Manuscript
Stat Med. Author manuscript; available in PMC 2017 November 20.

Published in final edited form as:
Stat Med. 2015 September 20; 34(21): 2881–2898. doi:10.1002/sim.6556.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



A graphical display of crossing survival curves may provide incontrovertible evidence of 

departures from the PH assumption. The Kaplan–Meier survival curves for each trial in an 

individual participant data (IPD) meta-analysis in bladder cancer [13, 14] are shown in 

Figure 1 and will be discussed later in this paper. It can be seen for the GUONE trial that the 

curves cross at about 4 and 8 years. In contrast, the curves for trial BA06 seem to be nearly 

parallel in the right panel. This indicates that hazards may not be proportional in some trials.

In the presence of non-proportional hazards, time-dependent hazard ratios [11] and a 

piecewise-constant hazards model [10] can help one to assess how treatment effects may 

change with time. Recently proposed by Siannis et al. [12] and Barrett et al. [9], the ratio of 

a single or a set of percentiles of survival distributions between the treatment and control 

groups is an alternative measure to time-dependent hazard ratios. The percentile ratio was 

estimated from accelerated failure time models or proportional hazards models, and the 

choice between the two depended on the validity of the PH assumption. Combining flexible 

summary measures of this kind is appealing in a meta-analysis, but the summary statistics 

are not usually available. The analysis based on flexible modelling requires IPD, which are 

considered as the gold standard approach in meta-analysis [15]. However, raw time-to-event 

data, if unavailable, can be reconstructed from published survival curves [16] along with 

number of participants at risk in observed intervals. Thus, flexible modelling of time-to-

event outcomes need not be restricted to IPD and it is, in principle, possible for aggregated 

survival data.

The main aim of this paper is to describe and evaluate the use of the restricted mean survival 

time (RMST) in meta-analysis of time-to-event outcomes, through an empirical study with 

applications to two IPD meta-analyses. The RMST [8] incorporates a number of desirable 

properties. It is free of the PH assumption and can provide insights into how treatment 

effects may change with follow-up time. Also, it is a measure of treatment effect on the scale 

of the time to event, and its interpretation is arguably more intuitive than measures on the 

scale of the relative hazard. The RMST is valid under any distribution of the survival time in 

the treatment groups [17]. Here, we focus on two-stage meta-analyses. Comparisons of one 

and two-stage methods [4, 5, 18] suggested that, if the aim was to estimate the main effects, 

the one-stage and two-stage approaches produce similar parameter estimates, in terms of 

estimation bias and coverage probability. Thus, the more complicated one-stage method 

does not seem to outperform the simpler and practically more popular [19] two-stage 

method.

In the following section, we define the RMST and review the estimation methods. We then 

review and describe the calculation of the effect size and its variance for use in meta-

analyses. In Section 3, we propose the use of combined p-values to help diagnose the 

presence of non-proportional hazards in the overall treatment effects. In Section 4, we re-

analyse two example data sets to illustrate methods described in Sections 2 and 3. In Section 

5, we perform a simulation study to evaluate three approaches to estimating the RMST. 

Section 6 is a discussion.

Wei et al. Page 2

Stat Med. Author manuscript; available in PMC 2017 November 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



2 Restricted mean survival time

2.1 Definition of restricted mean survival time

Suppose we are interested in the mean, μ say, of a random variable T, which denotes the 

time to an event. Then, the mean (expectation) of the survival time can be shown to be

where S(t) is the survival function for T. The integral is not in general evaluable due to the 

almost universal right-censoring of the time to event. However, the mean survival time up to 

a specific time point, t* say, can be obtained as

(1)

where μ* is the restricted mean survival time [8, 20] at time t*. When the survival time is 

years to death, we may interpret μ* as t* year life expectancy. The measure μ* increases 

monotonically with the t* [8] because Equation (1) gives a non-negative, increasing function 

of t*.

2.2 Estimations of restricted mean survival time

2.2.1 Method 1: Pseudo-values—The RMST for individual participants can be 

estimated by a non-parametric jack-knife method using pseudo-values [20]. Suppose we are 

interested in a parameter, θ. We first estimate θ based on the whole sample with 

observations for each individual i (i = 1, 2, … , n). We then estimate θ again but at this time 

based on a subsample omitting an observation, i say. The pseudo-value θ̂i for observation i is 

the difference between the two estimates of θ, and is formally defined as

(2)

where θ̂ is the estimate based on the whole sample and θ̂−i is the estimate based on the 

sample without the observation i. The pseudo-values estimator for parameter θ is given by

(3)

the average of pseudo-values across all observations. From this equation, we have

indicating E (θ̂pseudo) = θ, if E(θ̂i) = θ. Further, according to the definition of an individual’s 

pseudo-value in (2), we have E(θ̂i) = θ if E(θ̂) = θ. Thus, the use of the unbiased estimator θ̂ 

is crucial for θp̂seudo to be unbiased for θ.
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The pseudo-values for the RMST [8, 20] are given by

where the survival function Ŝ (t) can be substituted by a Kaplan–Meier estimate

(4)

with du denoting the total number of failures from time origin to time u and nu denotes the 

total number of individuals still at risk just prior to time u.

The pseudo-values estimator for the RMST is then given as

As just discussed,  is an unbiased estimator for the RMST when the Kaplan–Meier 

estimate (4) is an unbiased estimator of the survival function. This is the case when the 

censored survival time is, independent of participants’ covariates, within treatment arms. In 

a simulation study, Anderson and Perme [20] have shown that, if censoring depends on a 

categorical covariate on participants’ characteristics, a mixture estimator combining the 

Kaplan–Meier estimates from each category produces less bias results, compared with the 

conventional Kaplan–Meier estimates. However, developing techniques for dealing with 

dependent censoring is beyond the scope of this paper.

Both pseudo-values and Kaplan–Meier estimates are non-parametric. The combination of 

the two provides a non-parametric estimate of the restricted mean survival time. In the 

following section, we describe a parametric method to calculate the RMST.

2.2.2 Method 2: Flexible parametric survival model—In the hazards scaled class 

of flexible parametric survival models, Royston and Parmar [7] proposed to approximate the 

baseline log cumulative hazard function using restricted cubic spline functions. More 

specifically, they proposed to approximate the log of the cumulative baseline hazard H0(t) 
using a function of the log of time

(5)

where γi(i = 0, 1, … , K+1) are regression parameters and νi(i = 1, 2., , ,K0) is the ith spline 

basis function defined in [7]. Here, K0 denotes the number of distinct internal knot, which is 

the joint-point in log time of a pair of adjacent cubic polynomial segments. Their model is 
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sufficiently flexible to incorporate a wide range of continuous baseline distributions and it 

simplifies to a Weibull model when K0 = 0. The RMST in (1) can be rewritten as

Setting ln H0(t) = s(ln t|γ, K0), the log cumulative hazard function can be written as

where x presents the treatment arm indicator. The interaction term s(ln t|δ, K1)x is added to 

account for the non-proportional hazards. The parameters γ = (γ0, γ1, … , γK0 +1) are the 

regression coefficients in the baseline spline function s(ln t|γ, K0), which has K0 knots; and 

δ = (δ1, … , δK1) are the regression coefficients in the interaction spline function s(ln t|δ, 

K1) , which has K1 knots. Because the model is fully parametric, the model parameters can 

be estimated by the maximum likelihood approach.

If the number of knots is increased, the model complexity is also increased. It is found that 

the estimates of RMST are similar when the degrees of freedom (d.f.) for the baseline 

distribution is 3 (2 knots, i.e. K0 = 2) or higher. Throughout this paper, we set 3 d.f. for the 

baseline distribution and 1 d.f. for the time-dependent effect.

2.2.3 Method 3: Integrated difference of survival functions—An alternative 

method to estimate the RMST is to directly integrate the Kaplan–Meier estimate of the 

survival function from time 0 to t* [20]. The integral is calculated by the summation

where Ŝ(tj) is the Kaplan–Meier estimate at time tj(0 ≤ tj ≤ t*) and tj is the time where an 

event occurs.

2.3 Calculations of the difference in restricted mean survival time and its variance

2.3.1 Effect measure 1: Difference in restricted mean survival time—From here 

forward, to distinguish between treatment arms, we add subscripts to let  and  denote 

the RMST at t* for the research and control arms, respectively. We measure the treatment 

effect by the difference between the RMSTs between the two arms of a trial

(6)

The quantity Δ* measures the amount by which the research treatment changes the survival 

time on average up to time t* compared with the control. We refer to this measure as the 

restricted mean difference (rmstD).
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The interpretation of Δ* is straightforward. If the time-scale is in years, the difference in 

RMST can be interpreted as patients in research arm having Δ* more years gain/loss in life 

expectancy from the time origin to t* years, compared with patients on conventional 

treatment.

2.3.2 Effect measure 2: Relative difference in restricted mean survival time—
The relative difference in RMST is given as the rmstD divided by t* [8]

which is also proposed in Zhao et al. [21] as an alternative measure to the hazard ratio. This 

measure allows us to quantify how the difference in RMST changes with t*. Because it is the 

difference in the integrated survival functions between treatment and control arms, it 

measures the mean difference in survival probabilities between the two arms. It expresses 

the size of treatment effect relative to the chosen time t*, reflecting the amount by which the 

research treatment changes the average survival probability up to time t* compared with 

control. In short, we refer to this measure as rmstRD. This measure can be interpreted as a 

percentage. It lies in the interval (0, 1).

In the following, we describe the approaches to calculating the variance of rmstD. Because 

the mean survival probability difference only differs by a constant term 1/t*, its variance 

requires multiplying var(rmstD) by 1/(t*)2.

2.3.3 Variance for difference in restricted mean survival time: flexible 
parametric model. Delta method for variance—We drop the superscript * from this 

point forward for simplicity. For each trial, due to the randomisation, the estimates of the 

RMST in each arm are independent so the variance of Δ ̂ can be calculated by

or

(7)

where  and  are respective variances of the RMST for research and control arms, both 

can be estimated from the flexible parametric survival model using the delta method [17]. 

The delta method is a rapid approach to calculating the variance. As it is based on a first-

order Taylor series expansion, it may be susceptible to approximation errors. In Sections 4 

and 5, we compare the flexible model to methods by Andersen and Perme [20] and Zhao et 
al. [21].

Bootstrap variance estimation. Var(rmstD) can be estimated by a non-parametric bootstrap 

method. We first resample the original data with replacement. This step typically results in a 
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sample that has the same number of observations with potential multiple occurrences of 

observations. We repeat the resampling procedure for a sufficient large number, M say, and 

calculate the difference in RMST for each sample. We then obtain the bootstrap estimation 

as the variance of the difference in RMST over M samples. The number of replicates M is 

said to be sufficiently large for bootstrapping if a larger number of replicates result in similar 

estimates; and the change of the random seed does not introduce discrepancies between the 

estimates. We use 1000 replicates in the application in Section 4.

2.3.4 Variance of difference in restricted mean survival time: pseudo-values 
method—When using the pseudo-values method, we first estimate the pseudo-values of 

RMST for each individual (Equation 2). To estimate the between-arm difference in RMST 

using the pseudo-values method, we then fit a generalized linear model (GLM) with 

individuals’ pseudo-values as the response and treatment arms as a predictor [20]. According 

to Andersen and Perme [20], the link function in GLM is an identity or a log-link function, 

and regression coefficients are estimated by solving a generalized estimating equation. The 

variance of the coefficients is estimated by a sandwich estimator. It is also known as a robust 

estimator [22], which has two appealing properties, which are as follows: first, it makes no 

distributional assumptions about the response and second, it is robust to the misspecification 

of link functions. As an alternative option to estimate the variance, the bootstrap method is 

computationally intensive. It takes a longer time to complete the estimation procedure, 

which switches between re-sampling of pseudo-values and variance estimation. For 

efficiency, with the pseudo-values method, we used only the sandwich estimator of 

var(rmstD).

2.3.5 Variance of difference in restricted mean survivial time: integrated 
difference in survival functions—Zhao et al. [20] used a perturbation-resampling 

method to calculate the variance of the relative difference in restricted mean survival time 

(rmstRD). A large number, M, of random samples are drawn according to Equation (3) in 

[21]. Based on the M samples, we can compute the variance of the rmstRD. Multiplying 

var(rmstRD) by (t*)2 gives the variance of rmstD.

2.4 Implementation

Flexible parametric survival models and pseudo-values method are both available in STATA 

(Stata Corp, College Station, TX, USA). For the flexible model, we use stpm2 [23,24] with 

treatment arm as a covariate; we then use the post-estimation command predict rmst to 

estimate the RMST at a given t* and its variance for each treatment arm. For the pseudo-

values method, we use stpmean [25] to estimate the RMST and the treatment arm as a 

predictor, with robust estimation for the variance. The integrated survival function difference 

is implemented in R (R Foundation for Statistical Computing, Vienna, Austria) as the 

function FUN.IRD [20]. We use the inverse variance weighting method to combine the 

effect measures from individual studies. Note that the stpm2, stpmean and FUN.IRD are 

tools to analyse individual trials.
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3 Testing the proportional hazards assumption across multiple trials

3.1 Testing the proportional hazards assumption for individual trials

Departure from the proportional hazards assumption may be assessed informally by 

inspecting the Kaplan–Meier curves. In some cases, crossing curves may be the evidence for 

non-proportional hazards. However, in some other cases, the survival curves may not 

necessarily cross each other when hazards are not proportional. In fact, the log of cumulative 

hazard functions (equivalent to log of minus log survival probability) of two arms rather than 

the survival curves (survival probability) are parallel if the hazard ratio is constant. In 

addition, two curves crossing late in follow-up, where the data are sparse, may provide 

misleading evidence of non-proportional hazards. We consider statistical tests of the PH 

assumption at the trial level.

Grambsch and Therneau’s (G-T) approach to diagnosing non-proportionality [26] is based 

on testing whether or not the scaled-Schoenfeld residuals [27] for the regression coefficient 

of the predictor are independent of time. If the residuals are time-dependent, this provides 

evidence of non-proportional hazards. Recently, Royston and Parmar [8] used a likelihood 

ratio test to compare survival models with and without a time-dependent covariate. If the 

likelihood ratio test result suggests that a model with a time-dependent treatment effect fits 

the data better than the model with a constant treatment effect, it suggests that hazards are 

not proportional. The two approaches are comparable in that both are based on testing the 

statistical significance of possibly time-dependent effects.

3.2 Testing the proportional hazards assumption in multiple trials

When testing non-proportional hazards in individual trials, we might obtain heterogeneous 

results, with evidence of non-proportional hazards in some and not others. However, these 

tests tend to have low power and thus, it is not immediately obvious whether an overall 

proportional hazards assumption is appropriate. When the hazard ratio is used as the overall 

effect measure, the implicit assumption is that the hazards are proportional in each trial. The 

overall effect measures require the assumption of proportional hazards to be imposed on all 

trials. This makes an overall non-proportional hazards test compelling. For this purpose, we 

combine p-values from individual trials using Fisher’s method [28]. The test statistic is given 

by

with n denoting the total number of trials and pi the p-value from the non-proportionality test 

for trial i. The statistic χ2 follows a Chi-squared distribution with 2n d.f. under the global 

null hypothesis that the hazards are proportional on all trials, with a one-sided alternative 

that in at least one study the hazards are not proportional. At a 5% significant level, the 

critical value is  taken from the upper tail of a Chi-square distribution. A test result, 

if statistically significant, suggests that the hazards are not proportional on all trials.
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4 Examples

In this section, we apply the methods described in Sections 2 and 3 to two IPD meta-

analyses originally performed by the Medical Research Council Clinical Trials Unit on 

behalf of collaborative groups. The examples were chosen because they present different 

levels of disease severity and different patterns of follow-up between and within meta-

analyses, in order to understand the potential impacts of non-proportional hazards in the 

analyses.

4.1 Example 1. Locally advanced bladder cancer data

The advanced bladder cancer (ABC) meta-analysis [13] examined the effects of neo-

adjuvant chemotherapy on patients with locally advanced bladder cancer. Patients in the 

treatment group were treated with chemotherapy prior to local treatment, while patients in 

the control group were treated with local therapy only. Data on 2603 patients from nine trials 

are available for this analysis. The primary endpoint was overall survival. We were unable to 

use the data from one trial [29], therefore we performed the analysis on the remaining nine 

trials, which produced similar results. Using the hazard ratio and log-rank test approaches, 

there was evidence of a difference in treatment effect with combination chemotherapy (HR: 

0.89 with 95% CI: 0.81, 0.99), which translated into a 4.3% (with 95% CI: 3.5%–8.2%) 

improvement in 5-year survival. There was no clear evidence of an effect of single agent 

chemotherapy (HR: 1.15 with 95%CI: 0.90–1.47) [13, 14].

According to the G-T test [26], there is no evidence of non-PH in the treatment effect for six 

trials, while there is evidence in three trials (Nordic 1, GUONE and DEVECA) from the 

combination chemotherapy subgroup. By performing a likelihood ratio test to compare the 

flexible parametric models with and without time-dependent coefficients for treatment arms, 

we obtained results similar to those from the non-PH tests. The combined p-values in Table I 

suggest that the PH assumption is appropriate in the single agent subgroup (p = 0.59 from G-

T test and p = 0.56 from a likelihood ratio test based on the flexible parametric survival 

model) but not appropriate in the combination chemotherapy subgroup (p = 0.001 from the 

G-T test and p = 0.001 from the likelihood test). This results in a combined p-value of 0.006 

or 0.004 (G-T test or likelihood ratio test) across all trials.

For the RMST analysis, we selected t* = 5 years. Firstly, all trials have follow-up longer 

than 5 years, but beyond this time point, there are limited numbers of participants at risk and 

therefore analysis may not be reliable. Secondly, the original meta-analysis reported an 

improvement in survival at 5 years, a time point of clinical interest. Table I shows the fixed-

effect meta-analysis results for the difference in RMST. Following the recommendations in 

[8], in the flexible parametric model, we used 3 d.f. for the baseline distribution and 1 d.f. 

for a time-dependent coefficient to account for the possible non-PH. For the trials of single-

agent platinum chemotherapy, the RMST is estimated as 2.62 years (95% CI: 2.35 to 2.88) 

with neo-adjuvant chemotherapy and 2.79 years (95% CI: 2.52 to 3.06) for control groups. 

For the trials using combination chemotherapy, the 5-year RMST is estimated as 3.34 (95% 

CI: 3.23 to 3.45) years and 3.05 (95% CI: 2.94 to 3.16) years for treatment and control 

groups, respectively. Based on the flexible parametric model and formula (7) for standard 

errors, the combined difference in RMST are estimated as −0.17 (95% CI: −0.56 to 0.21) 
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years and 0.28 (95% CI: 0.13 to 0.44) years for the two subgroups, respectively. There is no 

evidence that the single-agent based chemotherapy can extend the RMST at 5 years 

compared with a local treatment alone. In contrast, for trials using combination 

chemotherapy, the statistical significance in the difference in RMST at 5 years suggests a 

prolongation of 3 month in life expectancy during the first 5 years for patients with 

combination chemotherapy compared with patients with local treatment only.

We perform a sensitivity analysis with t* = 10 years, to assess the effect of this choice on 

effect estimates and whether the conclusion based on 5-year RMST analysis is robust. 

Figure 2 provides the forest plots for the difference in the RMST for 5 and 10 years 

separately. The combined difference in 10-year RMST is −0.53 (95% CI: 1.29–0.24) years 

for the single-agent group of trials and 0.52 (95% CI: 0.19–0.85) years for the combination-

agent group of trials. The magnitude of difference in RMST in both groups is bigger than 

that in 5-year RMST. For trials with follow-up of less than 10 years, the flexible parametric 

model extrapolates the survival function where t* exceeds the maximum follow-up. 

However, the pseudo-values method cannot extrapolate beyond the end of follow-up. If we 

exclude these trials (UK Wallace, Noridic 1 Malmstrom and Nordic 2 Sengelov) for a 

sensitivity check, the combined difference in RMST at 10 years is −0.63 (95% CI: −1.66–

0.40) years and 0.59 (95% CI: 0.22–0.97) years for the single-agent and combination-agent 

subgroups of trials, respectively. This is in good agreement with analysis based on all trials, 

whereas the confidence intervals become wider due to fewer trials being included. The 

RMST analysis results are similar between the pseudo-values method and the flexible 

parametric model.

4.2 Example 1: Change of overall treatment effect over time (locally advanced bladder 
cancer data)

We now study the change of treatment effects over time by analysing the quantities rmstD 

and rmstRD. For the ABC data, both the pooled rmstD and rmstRD change with t* (Figure 

3). For trials with single agent chemotherapy, the rmstD decreases monotonically as the t* 

increases. This again contrasts with the other trials, with the magnitude of rmstD increases 

over time. As expected, the precision of the rmstD decreases as t* increases, due to fewer 

trials having long follow-up and within-trial attrition over time. There is a turning point in 

the bottom right of Figure 3, where it shows that the rmstRD is around 2% at the first year, 

then increases to near 6% at 4 years, after which it reduces slightly. In the right panel plots, 

the 95% CI from time origin to 10 years excludes the non-effect zero-line, confirming the 

benefits of using local treatment plus combination chemotherapy compared with local 

treatment alone. In contrast, the 95% CI in the left panel plots include the non-effect zero-

line, suggesting that there is no evidence to support the benefits of local treatment plus 

single-agent chemotherapy compared with local treatment alone.

4.3 Example 2: Non-small cell lung cancer data

The trials in the non-small cell lung cancer (NSCLC) IPD meta-analysis [37] compared 

chemotherapy given after surgery and with surgery alone for treating patients with operable 

NSCLC. Data on a subset of 2416 patients from 13 trial comparisons of chemotherapy in 

non-Asian patients were available for this analysis. We are unable to obtain data for four trial 
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comparisons [38–40], thus we analyse the data based on the 13 trial comparisons. The data 

are taken from three subgroups, which are as follows: (1) platinum in combination with 

vinca alkaloid/etoposide; (2) platinum in combination with vinorelbine; and (3) other 

platinum regimens. Previous analyses showed that there was no treatment by covariates 

interaction, and the conclusions in [37] were based on the overall effects across these 

subgroups. In the following, we will mainly present the overall results.

Based on the available data, Table II shows the pooled hazard ratios are 0.91 (95% CI: 0.81, 

1.03) with no evidence of improvement by using chemotherapy. One trial (IPCR Chinba, 

ANITA1, BLT3) from each subgroup shows statistical significance in the G-T test, while the 

test is statistically significant for only one trial (ANITA1) using the likelihood ratio test. The 

global test suggests non-proportional hazards are evident only in one subgroup of trials 

(platinum in combination with vinorelbine), which include the trial ANITA1. The combined 

p-value across all trials is 0.03 or 0.04 (G-T test or likelihood ratio test), suggesting there is 

some degrees of departure from proportional hazards across the trials.

The NSCLC trials have variable lengths of follow-up, from less than 5 years (two 

comparisons) to longer than 10 years (three comparisons), making the selection of cut-point 

not straightforward. We advocate that the analysis be dominated by the observed data rather 

than estimates based on extrapolation, although technically extrapolation can be achieved by 

using the flexible parametric survival model. Also, an absolute difference in survival 

probability was reported at 5 years in the original meta-analysis, from which our analysis 

follows. Thus, we consider 5 years as a reasonable t* in the RMST analysis. Using the 

flexible model, we estimated the RMST for treatment and control groups as 3.62 (95% CI: 

3.5–3.72) years and 3.51 (95% CI: 3.41–3.61) years, respectively. As shown in Figure 4, we 

obtained the overall rmstD as 0.07 (95% CI: −0.07, 0.21) year. The gain in RMST is less 

than 1 month, and the effect is not statistically significant, suggesting there is no evidence to 

support a benefit of adding chemotherapy after surgery. Using the pseudo-values method, we 

were unable to include trials with follow-up less than 5 years for an RMST analysis with t* 

⩾ 5 years. Nevertheless, where available, the estimated rmstD for individual trials is similar 

across the estimation methods.

Figure 5 shows how the difference in RMST changes over time for each subgroup of trials. 

In two subgroups (left and right panels in Figure 5), we observed a monotonically increasing 

trend in both the pooled difference in RMST and pooled mean difference in survival 

probabilities; in contrast, for the remaining subgroup, the difference decreases below zero in 

the earlier follow-up and increases above zero in the later follow-up. However, the 95% 

confidence regions always cover the non-effect line, indicating that throughout the 5 years 

follow-up, there is no evidence to support the benefits of surgery with chemotherapy 

compared with surgery alone.

5 A simulation study

5.1 Design

To further the comparison of the estimation methods for RMST, we conducted a simulation 

study. Previous work has compared the flexible parametric survival model and the pseudo-
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values method for estimating the RMST based on several real data sets [7]. In addition, Zhao 

et al. [21] have evaluated the statistical properties of their method (Integrated Difference of 

Survival Functions) using survival data simulated from a two-parameter Weibull model. 

Within each arm, we simulate time to the event of interest and time to censoring, both from 

Weibull distributions [52], with parameters specified in the web appendix. We then generate 

the event indicator for each participant. The event indicator is set to be 1 if the event of 

interest occurs earlier than censoring; otherwise, it is set to be 0. For each participant, the 

survival time is recorded as the smaller value of the time to event and time to censoring. The 

comparison of the three estimation methods has not been studied before. Here, we conduct a 

simulation study to compare three methods in terms of the bias, mean square error and 

coverage probability of the 95% confidence interval.

In the simulation study, we include several scenarios by varying the parameters in the 

Weibull survival distribution (Scenarios 1–4, Web Supporting Information). We consider the 

possible impact of censoring on the estimation by including higher level of censoring in 

Scenarios 5–8 (Web Supporting Information). The influence of sample size is examined by 

including two sizes (250 and 500 observations) within each scenario. We simulate 1000 

survival data for each scenario and carry out the estimation for each simulated data. We also 

compare the methods for variable t* by reporting the results at 3, 5 and 10 years of follow-

up. As the effect measure rmstRD only differs with rmstD by a constant factor of t*, the 

statistical properties of the two are the same. We therefore present simulation results for one 

effect measure, rmstRD. Within each scenario, we report average bias, mean square error 

and coverage probability of rmstD over 1000 simulated data sets.

5.2 Results

Summary statistics from the simulation are given in Tables A.1-8 (Web Supporting 

Information). The two non-parametric methods (pseudo-values and integrated difference of 

survival functions) produce nearly identical results in terms of bias and mean square errors. 

This may be because both methods use a Kaplan–Meier estimate for the survival function, 

although the resampling techniques are different. This leads to similar but not identical 

coverage probabilities. Among the three methods, the coverage probabilities are close to 

their nominal values. There is no clear indication of whether one method is better than the 

other in terms of the coverage. However, in the flexible parametric survival model, mean 

square errors are smaller than the other two methods. This may be because the flexible 

parametric model is able to correctly specify the survival function when the survival time 

follows a Weibull distribution. The non-parametric methods do not assume any parametric 

distribution, so the mean square errors are inflated. We acknowledge that the survival time 

does not always follow a Weibull distribution and that the mean square errors of the rmstD 

from the flexible parametric method are not always smaller compared with that from the 

non-parametric methods. In scenarios 6 and 8 (see Table A.6 and Table A.8 of our Web 

Supporting Information), some simulated data sets have maximum follow-up of less than 10 

years, due to a higher level of censoring and higher event probability in these two scenarios. 

Both the flexible parametric survival model and the integrated difference of survival 

functions (IDS) method can extrapolate the RMST to 10 years, while the pseudo-values 

method do not provide estimates in such situations. The difference in the summary statistics 
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for 10 years rmstD is apparent in Scenarios 6 and 8. First, the bias and the mean square 

errors are no longer identical between the two non-parametric methods. This is because 

results of the flexible model and IDS are based on all simulated data sets while the results 

from the pseudo-values method is based on a subset where the maximum follow-up is longer 

than 10 years. Second, extrapolation appears to have little influence, as across the three 

methods the coverage probabilities are still quite close to the nominal value. Again, the 

flexible parametric survival model shows a small reduction in the mean square error 

although some of the results are based on extrapolation in these two scenarios.

6 Discussion

Meta-analysis of time-to-event outcomes often use the hazard ratio as the treatment effect 

measure. However, the PH assumption may not hold for all the included trials. A combined 

p-value from the non-PH tests for the treatment effects from each individual trial can be used 

to test the PH assumption for the overall effect in a meta-analysis. The RMST is an 

appealing effect measure in meta-analysis, because it does not require the PH assumption.

We have described and extended the use of RMST to meta-analysis. The difference from the 

other measures in previous studies [9–12] is that we allow the evaluation of treatment effects 

to rely on the difference in time to event, for ease of interpretation and to ensure that the 

implementation is straightforward using both parametric and non-parametric methods. The 

IPD have enabled us to illustrate the use of RMST in meta-analysis with a comparison with 

the conventional hazard ratio approach.

From the two example analyses, the conclusions from RMST analysis are similar to meta-

analysis of hazard ratios. This is similar to other work where alternative measures were used 

to cope with non-proportional hazards [9, 12]. Although the p-values for treatment effect 

estimates are similar between analyses using hazard ratio and difference in RMST, as a time-

dependent outcome measure, the difference in RMST can provide graphical displays to 

illustrate how the effect may change over time. Further, we find the interpretation of the 

difference in RMST easier because it is directly related to survival time instead of (relative) 

hazards. In addition, meta-analyses of RCTs are often used in cost effectiveness studies (e.g. 

NICE), where it often requires the possibility to extrapolate survival curves beyond the 

observed time and the calculation of a mean survival time for economic evaluations. The 

flexible parametric model with the use of RMST as the outcome measure will provide both 

calculations.

Most of the trials in the two example data sets provide no evidence of non-proportional 

hazards, and the degrees of departures from non-proportional hazards do not seem to be very 

large, suggested in part by the combined p-values (0.02 for ABC meta-analysis and 0.03 for 

NSCLC meta-analysis). Furthermore, the trials with non-proportional hazards contribute 

only 26% (trials Nordic 1, DEVACA and GUONE) and 17% (trial Anita1) of the weight in 

the ABC and NSCLC meta-analyses, respectively. Thus, the analysis results are dominated 

by trials in which the PH assumption is not violated. However, in a contrasting situation 

where the meta-analysis is dominated by trials with greater degrees of non-PH or trials with 

greater weight in the analysis have non-PH, we are uncertain about how reliable and 
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informative a meta-analysis based on the hazard ratio would be. This may be more of 

concern in the future, especially as extreme non-proportional hazards have been observed in 

some large trials (ICON7 [53], IPASS [54]). Thus, we consider the difference in RMST as a 

safer measure because it is free of the PH assumption. Otherwise, a meta-analysis with time-

to-event outcomes should be accompanied with a sensitivity analysis using RMST analysis, 

where possible.

We have fitted the 3 d.f./1 d.f. flexible parametric survival model to both arms of the trial 

data simultaneously. An alternative would be to fit the 3 d.f. flexible model to each arm 

separately and obtain a separate estimate of the RMST. Results from separate analyses were 

given in Figures A.1-A.4 of the Web Supporting Information. The estimated differences in 

RMST were similar between the separate and simultaneous analyses, using the flexible 

parametric model. This is expected because the two arms in a randomized trial can be 

assumed independent.

A further advantage of estimating the RMST by a flexible parametric survival model is that 

we can predict the RMST beyond the actual follow-up time, which allows us to include all 

the trial data in a meta-analysis even when some trials actually have follow-up less than t*. 

This is appealing in meta-analysis context because trials typically have different lengths of 

follow-up. The pseudo-values method does not have such a property, with its estimation of 

the RMST necessarily constrained within the observed time period. In the NSCLC dataset, 

the trials BLT2 and LCSG853 have follow-up less than 5 years, and we were not able to 

include them in the 5-year RMST meta-analysis with the pseudo-values method. The 

flexible parametric survival model can produce reasonable extrapolation (see pp.153-156 in 

[23]) for the survival function, which is essential for predicting the restricted mean survival 

time, the integral of the survival function (Equation 1). Royston and Lambert (2011) 

compared the survival function estimated from observed data and from the predicted data 

and showed that the flexible parametric survival model can extrapolate the survival function, 

and the extrapolated survival functions are reasonably close to the observed survival 

function. They also showed that the extrapolation based on the 3 d.f. model is more precise 

than the 1 d.f. model (Weibull, loglogistic and lognormal). We have used 3 d.f. for the 

baseline distribution throughout the paper. In addition, in Scenarios 6 and 8 of our 

simulation study, extrapolation took place at a 10-year follow-up for a number of the 

simulated data sets as their follow-up are less than 10 years. The results from these two 

scenarios (see Table A.6 and Table A.8 of the Web Supporting Information) suggest that the 

extrapolation from both the flexible model and the non-parametric method [21] seems to be 

reasonable. In addition, the flexible parametric survival model gives a small reduction in the 

mean square errors when the survival time follows a Weibull distribution. The extrapolation 

using the flexible parametric model is useful when a small number of trials within a meta-

analysis have followup shorter than t* while the majority of the trials have follow-up longer 

than t*. It allows us to combine results across trials with a unified t* as well as keep the 

analysis dominated by the observed data.

However, it is worth noting that the RMST is dependent on t* [8]. The considerable follow-

up in the ABC meta-analysis enables the RMST analysis to be performed at 10 years. This 

does not necessarily mean the 10-year RMST analysis should typically form a primary 
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analysis. In fact, there was a relatively small sample of trials with 10-year follow-up and we 

expect that the RMST at 10 years will be imprecisely estimated. This is confirmed in Figure 

3, where the precision is highest at the time of randomisation and gets poorer over time. Our 

simulation study also shows that the mean square errors become larger as the t* increases 

and the coverage probabilities can be slightly further away from their nominal values. It is 

therefore important that the t* is chosen with due caution. A choice of t* too near to the time 

of randomisation may be insufficient to evaluate the alternative treatments. In contrast, a 

choice of t* too close to the time when most at-risk patients have been censored can produce 

estimates with very wide 95% CI. This can potentially make the meta-analysis inconclusive. 

Thus, a compromise between the two is perhaps necessary. The choice of t* is disease and 

problem specific and likely to further depend on the disease type, clinical interests and the 

available length of follow-up. Where an RMST analysis is planned, it is desirable for t* to 

be prespecified in the trial protocol [8] and in meta-analysis or systematic review protocols, 

perhaps based on the clinical questions or motivations, disease severity and the planned 

follow-up time. The choice of t* is an issue in meta-analyses with variable follow-up times. 

A chosen time point t* may be greater than the maximum follow-up in some trials so 

extrapolation is needed; in contrast, the chosen t* may be smaller than the maximum follow-

up time in other trials so data beyond t* are not included in the meta-analysis. From a 

statistical perspective, a reasonable choice of t* will be that allows using as much data as 

possible and minimizes the need of extrapolation. The optimal choice of t*, which satisfy 

this conditions, is a future research question. In the absence of such choice, plotting the 

difference in RMST against t* (Figures 3 and 5) would be helpful to gain insights into how 

treatment effect estimates may vary across the follow-up time and if the conclusions are 

sensitive to the choice of t*.

We have demonstrated the RMST meta-analysis with a two-stage approach. As well as its 

popularity in practice [19], the two-stage approach is flexible to determine a parsimonious 

model for all the trials in the first stage. This is beneficial because the flexible parametric 

survival model requires the specification of the number of d.f. for the baseline distribution 

function and the time-dependent coefficient, although a general choice of 3 d.f./1 d.f. is 

recommended [8]. In addition, the two-stage approach also allows us to investigate the 

estimated RMST for each trial and to study how much weight is assigned to the trials with 

non-PH. The RMST meta-analysis can be adapted to incorporate the participant-level 

covariates and their interactions with treatment effects, in order to detect whether treatments 

are more likely to benefit patients with specific characteristics. A further extension is to 

jointly synthesize the 5-year and 10-year differences in RMST using a multivariate meta-

analysis model, which may improve precisions due to taking into account correlations of 

effect sizes estimated at multiple time points [55].

In summary, we have demonstrated the use of RMST in meta-analysis of time-to-event 

outcomes based on IPD. The difference in RMST is a useful effect measure in a meta-

analysis because it avoids the proportional hazards assumption. The measure is interpretable 

and helpful in situation when treatment effects may change with time. Recent development 

in data reconstruction techniques enables the extension of RMST meta-analysis for 

aggregate data, and we are currently investigating the methodology in this domain.
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Supporting information

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Trials included in the advanced bladder cancer (ABC) meta-analysis. Kaplan–Meier survival 

curves.
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Figure 2. 
Advanced bladder cancer (ABC) meta-analysis. Forest plots for differences in restricted 

mean survival times at 5 year (left panel) and 10 year (right panel), with overall effect 

estimated from fixed-effect meta-analysis.
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Figure 3. 
Advanced bladder cancer meta-analysis. Effects of varying t* on the overall effects in the 

difference of restricted mean survival time (RMST) by subgroups of trials‡, using the fixed-

effect meta-analysis model. Left: Single agent platinum chemotherapy in research arm; 

right: Platinum-based combination chemotherapy in research arm. Estimation of RMST for 

individual trial was obtained from a flexible parametric survival model with 3 degrees of 

freedom (d.f.)/1 d.f. (3 d.f. for the baseline distribution and 1 d.f. for the time-dependent 

treatment effect) and standard errors estimated by formula (7).

‡Trial subgroup 1: single agent platinum; Trial subgroup 2: platinum-based combinations
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Figure 4. 
Non-small cell lung cancer meta-analysis. Forest plots for hazard ratios estimated from the 

Cox model (left panel) and differences in restricted mean survival times at 5 years (right 

panel), with overall effect estimated from fixed-effect meta-analysis.
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Figure 5. 
Non-snall cell lung cancer meta-analysis. Effects of varying t* on the overall effects in the 

difference of restricted mean survival time (RMST) by subgroups§, using fixed-effect meta-

analysis model. Estimation of RMST for individual trial was obtained from a flexible 

parametric survival model with 3 degrees of freedom (d.f.)/1 d.f. (3 d.f. for the baseline 

distribution and 1 d.f. for the time-dependent treatment effect) and standard errors estimated 

by formula (7).

§Trial subgroup 1: platinum in combination with vinca alkaloid/etoposide in research arm; Trial subgroup 2: platinum in combination 
with vinorelbine in research arm; Trial subgroup 3: other platinum regiments. rmstD: difference in restricted mean survival time; 
rmstRD: difference in restricted mean survival time in relative to t*
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