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Abstract

Mitochondrial dynamics, fission and fusion, were first identified in yeast with investigation in 

heart cells beginning only in the last 5–7 years. In the ensuing time it has become evident that 

these processes are not only required for healthy mitochondria, but also, that derangement of these 

processes contributes to disease. The fission and fusion proteins have a number of functions 

beyond the mitochondrial dynamics. Many of these functions are related to their membrane 

activities, such as apoptosis. However, other functions involve other areas of the mitochondria, 

such as OPA1’s role in maintaining cristae structure and preventing cytochrome c leak, and its 

essential (at least a 10 kDa fragment of OPA1) role in mtDNA replication. In heart disease, 

changes in expression of these important proteins can have detrimental effects on mitochondrial 

and cellular function.

Introduction

Overview, History of Mitochondrial Research

Mitochondria perpetually provide fuel to feed the great energy needs of the heart, which is 

an elegant, self-repairing pump, which functions nonstop for many, many decades. Altman 

was the first to note the ubiquitousness of the mitochondria, which after viewing under a 

rudimentary light microscope, he termed bioblasts. He concluded that the bioblasts 

performed essential function (s), and even considered that they might be small organisms 

taken up by other organisms (3). Michaelis was the first to associate redox changes with 

mitochondria, but did not make the link to energy production (127). The first high resolution 

electron microcopy images of mitochondria were published in the early 1950’s (144). This 

early work on mitochondria, started from nothing other than intellectual curiosity and a need 

to understand the natural world, was conducted with rudimentary microscopes in the 1800’s, 

and laid the foundation for subsequent, robust and diverse research on the mitochondrion 

(51;161).
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Mitochondrial Origins

The endosymbiotic theory was first proposed by biologist Lynn Margulis in the 1960s. Dr. 

Margulis theorized that mitochondria and their plant counterparts, chloroplasts, arose 

millions of years ago as a result of the incorporation of prokaryotic organisms by other 

prokaryotes (116;157). It has been estimated that this event occurred 1.5 giga-years ago 

(107). Mitochondria have lipid bilayers as membranes and contain circular DNA, like 

prokaryotes, consistent with this theory. In humans mitochondrial DNA encodes for 13 

essential mitochondrial proteins along with tRNAs. Most mitochondrial proteins are 

encoded by nuclear DNA. It is thought that over time genes migrated to the nuclear genome 

or were lost. A large amount of energy is required for transcription and translation within the 

mitochondria, making it inefficient; however, for unclear reasons a subset of genes remain in 

the mitochondria (107). These genes are primarily involved in oxidative phosphorylation.

Mitochondrial Fission and Fusion Overview

For a long time mitochondria were viewed as important, but static, energy factories, whose 

main contribution to pathology was over production of ROS. However the mitochondria are 

now viewed as more dynamic organelles undergoing continuous fission and fusion, which 

were first described in yeast in the 1990s and found to be essential processes to maintain 

healthy mitochondria (167). Studies in yeast and cell lines in the 1990’s revealed that 

mitochondria were very active, continuously dividing and fusing (fission and fusion) 

(136;157). Importantly, mitochondria were found to exist as interconnected networks, rather 

than isolated energy factories (25;28). Although many studies demonstrated that loss of 

fission and fusion proteins was detrimental to lethal for the cell, the exact reasons remained 

obscure (25). Studies on mitochondrial function in biopsies from patients with inherited 

mutations of fusion proteins, which cause neuropathies, such as Charcot Marie Tooth disease 

(discussed below), were confusing, as different mutations had different phenotypes, and 

some seemed to have no phenotype (6). A newly established database of patients with OPA1 

mutations should improve our understanding of the associated mitochondrial pathology (54). 

However, original reports of OPA1 mutations without phenotype cast doubt on the 

importance of fission and fusion. This issue became moot when Chen et al. demonstrated 

that mitochondrial fusion was essential for mitochondrial (mt)DNA stability in skeletal 

muscle cells, providing some of the first information on an essential process impaired by 

loss of normal fission or fusion (28).

Mitochondrial Fission

Mitochondrial fission and fusion are dynamic events whereby the mitochondria divide and 

then fuse with other mitochondria. In eukaryotes, a number of proteins have been identified 

as being involved in fission (fig. 1). Proteins regulating mitochondrial fission in mammalian 

cells include dynamin related protein (Drp) 1, mitochondrial fission factor (Mff), and fission 

(Fis)1 (175;201). Fis 1 was originally identified as the homologue of the yeast fission 

protein, and was thought to be the only protein required for fission in eukaryotes (133). Fis 1 

is a tetratricopeptide repeat, which facilitates protein-protein interaction and is important in 

protein transport and in chaperone and transcription complexes (16). Although Fis1 had 

been identified as the only protein required for mitochondrial fission, further investigation 
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revealed that knockout of Fis1 did not impair fission, but knockdown of either Drp1 or Mff 

compromised mitochondrial fission (143). More recent work suggests that Fis1 has a smaller 

role in fission, but still participates in this process (111). However, both Fis1 and Mff 

contribute to the size and number of Drp1 puncta on mitochondria with induction of fission 

(111). Thus, Fis1 has a lesser role in fission and this may vary by cell type. Fission is more 

complex in mammalian cells compared to unicellular fungi, and Mff is now recognized as an 

important mediator of mitochondrial fission.

The 81.9 kDa Drp1 is a member of the GTPase superfamily, and is involved in 

mitochondrial and peroxisomal division. Drp1 also has a role in apoptosis and in 

mitochondrial fission for mitosis. Drp1 is a cytoplasmic protein, but at key times it creates 

complexes at fission sites on the outer mitochondrial mediating fission (175). The 16.9 kDa 

Fis1’s tetratricopeptide repeat motif helps create a scaffold, which facilitates the formation 

of protein clusters on the outer mitochondrial membrane (181). However, as discussed, Drp1 

can complex on the mitochondrial surface in the absence of Fis1, as long as Mff is present. 

Fis1 has been found to girdle mitochondrial surface, but it does not concentrate at scission 

sites (181;201). Increased expression of Fis1 increases autophagy, as well as increasing 

cytochrome c release and apoptosis (64;78;98). Inhibition of Drp1 with P110, which 

prevents binding of Drp1 to Fis1, but does not effect interactions with Mff or MiD51, 

ameliorated increased mitochondrial fission after several different toxic stresses (151). 

Disruption of Fis1 through mutation impairs the removal of damaged mitochondria through 

autophagy leading to an accumulation of large LC3 aggregates (169). Thus Fis1 has a 

complex role in maintaining mitochondrial integrity that remains to be fully elucidated.

Mff is a 38.5 kDa protein that has more recently been identified as having a key role in 

recruiting Drp1 to the mitochondria for fission (58;143). MiD49 and MiD51 also can recruit 

Drp1 to the mitochondria independent of Mff or Fis1 (145). The increasing number of 

proteins involved with fission and varying reports of proteins being essential or not essential 

for fission suggests that there are differences amongst different cell types with regards to the 

regulation of this important process. It is clear that the regulation of the recruitment and 

binding of Drp to the mitochondrial surface is complex, and more work will be needed to 

completely delineate its regulation.

Mitochondrial Fusion

Mitochondrial fusion brings together two different mitochondrion to make a single, larger 

mitochondrion. In the process, there is mixing of mtDNA, which has been thought to be 

beneficial (28). Three proteins are essential for fusion (figure 1). Mitofusin (Mfn) 1 and 2 

together fuse the outer mitochondrial membrane. Inner mitochondrial membrane fusion 

depends solely on optic atrophy (OPA)1. Fission and fusion can be impaired under a number 

of conditions including heart failure and optic neuropathies, including Charcot Marie Tooth 

Disease and autosomal dominant optic atrophy (ADOA) (76;138;190). Decreased expression 

of key fusion proteins in ischemic heart failure and the accumulation of small, fragmented 

mitochondria are consistent with impaired fission and fusion, but no one to date has reported 

measuring these processes in this setting.
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Role of Mitochondrial Fission in Culling Damaged Mitochondria

Once mitochondrial dynamics, with the cycling of fission and fusion events, was identified, 

many questions arose about its role in the cell (28;104). Although fission and fusion had 

been shown to be essential processes for cell viability, simple continual mixing of the 

mitochondrial content would not be sufficient, as dysfunctional mitochondria would be 

mixed together with normal mitochondria, with no net gain in cellular efficiency and no 

culling of damaged mitochondria. Significantly, several key studies have delineated how 

fission can selectively remove impaired mitochondria. Twig et al. were the first to 

demonstrate that fission events can generate uneven daughter mitochondria with differences 

in size and membrane potential, Δψm (187). Others have confirmed these findings, showing 

that a damaged mitochondrion can undergo asymmetric fission with a smaller, damaged 

mitochondrion being set aside for removal and the healthier remaining mitochondrion 

continuing to produce energy (194). Uneven daughter mitochondria have differing fates with 

one daughter mitochondria with high membrane potential and high probability of fusion and 

the other with low membrane potential, low probability of fusion, and decreased OPA1. This 

selective fission leads to removal of dysfunctional daughter mitochondria by autophagy. 

Twig et al. found a lag time of up to several hours between depolarization and removal of the 

dysfunctional daughter mitochondria by autophagy (187;188).

It is now established that in the normal cell mitochondria normally undergo fission and 

fusion, dividing and fusing, and these processes are essential for mitochondrial health (figure 

1) (28;33;81;104). Fission and fusion are frequent events in some cells, occurring as often as 

every two minutes in yeast. Fission and fusion are presumed to take place much less 

frequently in mammalian cells, taking hours or longer (99;167). There has been skepticism 

that mitochondria in the densely packed cardiac myocyte would actually experience fission 

and fusion, but it is widely accepted that fission and fusion are critical processes in all cells 

(33;45;177). It may be that in complex cells, such as cardiac myocytes, more important than 

mitodynamics, are the other functions of the fission and fusion proteins, such as in 

mitophagy, which can remove damaged mitochondria without having ongoing repetitive 

fission and fusion.

Mitochondria and the Endoplasmic Reticulum (ER)

The ERMES (multi-subunit endoplasmic reticulum-mitochondria encounter structure) 

tethers the ER and mitochondria together (57). Hamasaki and colleagues demonstrated in 

mammalian cells that autophagosomes form at contact sites between ER and mitochondria 

and that ATG14 and ATG5 were present at these sites after starvation (70). ERMES has been 

localized to sites of mitochondrial division in yeast, but an exact counterpart has not been 

identified in mammalian cells, although Hamaski’s work is an important step (17;70;134). 

However, inverted formin 2 (INF2, 91), which localizes to the ER, mediates actin 

accumulation and polymerization between the ER and the mitochondrion at the constriction 

site, and this is followed by Drp1 recruitment (91). Interestingly, INF2 mutation is 

associated with the development of Charcot-Marie-Tooth disease accompanied by 

glomerulosclerosis (190). Mutation of many of the mitochondrial dynamics proteins causes 

Charcot-Marie-Tooth disease and other related inherited neuropathies (6;190). The 
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interactions of the mitochondria and the endoplasmic reticulum have not been investigated in 

the cardiovascular system.

Mitochondrial Biogenesis

Mitochondrial Biogenesis, Fusion and Fission

PGC-1α promotes mitochondrial biogenesis, but PGC-1α’s expression was decreased in 

studies of human heart failure (59;171;193); however others have found PGC-1α to be 

unchanged (74), or increased (1;85) in heart failure. A moderate increase in PGC1α 
expression in the heart in mice was associated with increased mortality with TAC surgery 

and no improvement in mitochondrial function 8 wks. post TAC (82). In fact the PGC1α 
transgenic mice did worse than non transgenic controls with higher BNP levels, even though 

expression of PGC1α downstream target genes was improved. Estrogen related receptor 

(ERR) α, which is not regulated by estrogen, but had some early sequences similarities to 

estrogen receptors, hence its name, also has a key role in mitochondrial biogenesis. ERRα, 

which is a downstream target of PGC-1α, is similarly downregulated in heart failure 

(130;171). mtDNA copy number, a key factor for mitochondrial functional integrity, is 

decreased in ischemic heart failure (HF, see Table I, (1;83;85). However, one study focusing 

specifically on dilated, nonischemic cardiomyopathy (DCM) reported higher mtDNA copy 

numbers in DCM, which evidence suggests is a very different disease from ischemic heart 

failure (1). Reduced mtDNA copy number corresponded with reduced expression of mtDNA 

encoded proteins (18;85) Moreover, mtDNA replication was defective in HF (83;85). This is 

particularly intriguing, given that a 10 kDa fragment of the fusion protein, OPA1, has been 

identified as being essential for initiation of mtDNA replication, and total OPA1 is decreased 

in human ischemic cardiomyopathy (ICM or HF, 32;32;47;185).

Mounting evidence supports that ischemic cardiomyopathy (ICM) and dilated 

cardiomyopathy (DCM), two common types of heart failure, differ significantly from one 

another at the cell and molecular level, despite the fact that clinically the two diseases are 

very similar. Investigations of mitochondria in heart failure demonstrate distinct differences 

between the two. Frequently studies of heart failure combine together DCM and ICM 

samples for study and variations in the composition of this mix may explain some of the 

end-point differences noted above. Most convincing is the comprehensive study by Ahuja 

and colleagues, which identified marked differences between ICM and DCM mitochondria, 

including greater mtDNA copy number and more mtDNA deletion mutations in DCM 

compared to ICM (1).

Mitochondrial Structure

Mitochondria constitute 20–40% of the cardiac cellular volume (117). Intact mitochondrial 

structure is critical for cellular energy production and overall cardiac function. Mitochondria 

are dynamic subcellular organelles, undergoing fission and fusion events, and constantly 

move along microtubules to where they are most needed. This is more apparent in neurons, 

where mitochondria must move down the axons, than in cardiac myocytes. In the 19th 

century, the morphologists were not sure that they were looking at the same functionally 

distinct structure in different cells by light microscopy, because of the variability in the 
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number and shape of mitochondria (3). It was not until the development of high resolution 

electron microscopy techniques beginning in the 1950’s that mitochondrial structure/

morphology could be clearly delineated (79;97).

In adult mammalian cardiac myocytes the mitochondria are intricately organized into three 

subsets. Most mitochondria are localized between the contractile filaments (interfibrillar), 

while a minority of mitochondria are localized next to the sarcolemma (subsarcolemmal). A 

very small amount of mitochondria are perinuclear. In heart failure the interfibrillar 

mitochondria lose their normal organization (32). Furthermore, size and density of 

interfibrillar mitochondria decreases in rodent heart failure models (112). OPA1 expression 

declined in both human and rat ischemic HF, but Mfn1/2, Fis1 and Drp1 are unchanged (32). 

In contrast, in explanted ischemic failing human hearts, where disease has been present 

longer due to medical treatment, OPA1 was decreased, Mfn1/2 and Drp1 were increased, 

and Fis1 unchanged. In dilated, nonischemic cardiomyopathy explanted human hearts had 

no decrease in OPA1, but an increase in Mfn 1/2 and Drp1(32). Thus, OPA1 expression 

differs in failing human hearts, depending on type of heart failure. In H9c2 cells, an 

embryonic cell line, decreasing OPA1 led to more apoptosis at both baseline and after 

ischemia, through cytochrome c release, consistent with OPA1’s role in maintaining cristae 

tight junctions and preventing cytochrome c release (32;38;56).

Mfn1/2, OPA1 and Mitochondrial Abundance and Structure - Electron microscopic studies 

revealed more numerous, but smaller mitochondria in a rat model of ischemic HF (32). In 

contrast, reduced Mfn2, greater Fis1 and reduced OPA1 expression occurred at 18 weeks in 

a simple rat myocardial infarction model (80). Mfn2 knockout leads to pleiomorphic and 

somewhat larger mitochondria in cardiac myocytes (146). In vivo conditional cardiac Mfn2 

knockout mice have a low level of cardiac hypertrophy and minor changes reductions in 

heart function (146). Overall investigations of Mfn1 and Mfn2 support that each compensate 

for the loss of the other to a degree, but neither Mfn can compensate for loss of OPA1, 

knockout of which is embryonic lethal (40;43).

Mitochondrial Structure and Mitochondrial Trafficking

The individual mitochondrion is composed of an inner and an outer membrane. The outer 

membrane is a selectively permeable membrane, containing integral membrane proteins and 

pores for transporting molecules. Proteins larger than 5000 Daltons require specific 

signaling sequences, mitochondria targeting sequence (MTS), to be transported across the 

outer membrane (2;49;60;192). A consequence of this is that the proteins found in this space 

differ significantly from the proteins found in the cytosol. Energy produced by the electrons 

move down the electron transport chain powers the maintenance of the hydrogen ion 

gradient, which powers the conversion of ADP to ATP. Enzymes needed for the citric acid 

cycle, along with other essential component including dissolved oxygen, water, carbon 

dioxide, and the recyclable intermediates that serve as energy shuttles, are part of the 

mitochondrial matrix.
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Cristae

The inner membranes, separating mitochondrial matrix from the intermembrane space, 

convolute into numerous folds, termed cristae, the site of respiration. The number of cristae 

is proportionate to the metabolic activity of the cell. Thus very metabolically active cells, 

like cardiac myocytes, have large numbers of cristae in their mitochondria. Cristae, as they 

are derived from folding of the inner membrane, expand the surface area and enhance ATP 

production. As discussed above, a 10 kDa fragment of OPA1 keeps cristae junctions tightly 

closed, preventing the release of cytochrome c and apoptosis. Dysfunctional mitochondria 

have been frequently found to have disruption and loss of cristae, such as reported with 

ischemic heart failure (32;109), with reduction in OPA1 expression (31;152), in 

Huntington’s disease (36), and with reduction in Crif1, as occurs with Alzheimer’s disease 

(9;23).

The Complexes and the ETC

The protein-rich inner mitochondrial membrane remains sufficiently fluid to provide an ideal 

environment for each distinct, but connected functional complex comprising the electron 

transport chain (ETC), which provides essential energy to cells via oxidative 

phosphorylation. The ETC consists of four membrane-bound multi-subunit enzyme 

complexes (I–IV) and an ATP synthase (complex V). Subunits of complexes I, III, IV, and V 

are encoded either by the mitochondrial DNA (mtDNA) or, for the majority, by the nuclear 

DNA (nDNA, 121;150). On the other hand, complex II subunits are encoded by entirely by 

nuclear genes (174).

Morphologic Changes in HF

Mitochondria can change their overall morphology from elongated interconnected 

mitochondrial networks to a fragmented disconnected arrangement through fusion and 

fission (139;139). In ischemic heart failure, mitochondria have increased fragmentation 

(109;77;176). Others have found a reduction in size and density of interfibrillar 

mitochondria in rodent models of heart failure (112). Non ischemic heart failure has distinct 

changes in mitochondria compared to ischemic heart failure (1). Ahuja et al. found distinct 

differences in mitochondrial morphology and biogenesis and genomic integrity in human 

ischemic heart failure compared to non ischemic/dilated heart failure. Although 

mitochondrial dysfunction was present in both types of cardiomyopathy, mitochondria were 

smaller and increased number in non-ischemic cardiomyopathy vs. both normal hearts and 

ischemic cardiomyopathy. In contrast dilated cardiomyopathic hearts had a higher mtDNA 

copy number and mitochondrial density, but a marked increase in mtDNA deletions 

compared to both normal hearts and ICM hearts (1).

Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 3 (ChChd3) and Cristae Function/

Structure - ChChd3 interfaces with the inner membrane proteins mitofilin and OPA1, which 

stabilizes cristae morphology, and with the outer membrane protein sorting and assembly 

machinery (Sam) 50, which is involved in the import and assembly of β-barrel proteins on 

the outer membrane (38). Knockdown of ChChd3 result in a marked decrease of both 

mitofilin and Sam50, as well as in several mitochondrial proteins. These results were 
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interpreted as consistent with ChChd3 being a scaffolding protein, stabilizing protein 

complexes and retaining cristae conformation and protein import. Thus, ChChd3 would be 

essential for maintaining mitochondrial structure and function (38). In addition, ChChd3 has 

been identified as a transcription factor, repressing Bag1 expression (108).

Mitochondrial function

Mitochondria modulate cardiac energetics, reactive radical biology, calcium homeostasis, 

and apoptosis, which are essential for the function of a normal heart (129;156). The 

mitochondria are the primary source of the abundant high energy phosphates needed to 

maintain uninterrupted cardiac contraction, ion flux and membrane potential (197). Protein 

phosphorylation has been found to be a key element in regulating mitochondrial function 

and ROS production (41;94).

Energy production

Cellular respiration takes place in the mitochondria, converting biochemical energy from 

nutrients into adenosine triphosphate (ATP) which powers the cell, followed by the release 

of waste products. Mitchell in 1961 first proposed that cellular respiration works by 

chemiosmotic coupling, a chemical reaction that can drive an osmotic gradient (131). The 

hydrogen atoms that enter the respiratory chain are split into protons and electrons. The 

electrons pass down the chain via a succession of redox reactions. The energy released by 

electron flow is used to pump protons across the membrane. The electrical component 

generates a potential difference in pH, or acidity, with the outside more acid than the inside. 

The combination of pH and potential difference across the membrane constitutes proton-

motive force, which is the force that drives the synthesis of ATP (131;176). Electrons enter 

the ETC at either complex I: NADH:ubiquinone oxidoreductase or complex II: succinate 

dehydrogenase, and are passed to complex III: cytochrome bc1 complex by the carrier 

ubiquinone Coenzyme Q. Cytochrome c carries electrons from complex III to complex IV: 

cytochrome c oxidase, where they react with protons and oxygen to form water (26;66). In 

order to function, the heart must rely heavily on oxidative energy produced by the 

mitochondria. Fatty acids are the dominant energy source for ATP generation in healthy 

heart muscle. Other energy sources, such as glycolytic metabolism, are only a minor source 

of ATP in normal cardiac tissue (117;165). Fatty acid β-oxidation and the oxidation of 

carbohydrates through the TCA cycle produce most of the intramitochondrial NADH and 

FADH are the primary origin of electrons for the electron transport chain (173). In diseased 

heart, such as heart failure or acute ischemia, glycolysis is the primary source of energy.

Complex I Dysfunction

Defects of individual ETC complexes or components of the phosphorylation apparatus have 

been linked to HF. Complex I is crucial for mitochondria energy production. Complex I 

extracts energy from NADH, produced by the oxidation of sugars and fats. Complex I 

mutations are a frequent cause of inherited mitochondrial dysfunction, which occur with a 

frequency of approximately 1 in 10,000 births (186). Complex I abnormalities cause 

myopathies, encephalomyopathies, and neurodegenerative disorders, including Parkinson’s 

disease and Leigh syndrome (158;189). Complex I defects are most clearly manifest by 
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neurologic symptoms, as neurologic tissue is highly dependent on energy production, 

compared to workhorse cell types, such as fibroblasts. Mitochondrial abnormalities are less 

evident in the heart, likely because significant neurologic abnormalities lead to such global 

dysfunction, that any cardiac impairments are concealed. A subset of the mitochondrial 

abnormalities is secondary to mutations in the mitochondrial genome. However, other 

mitochondrial abnormalities, which are secondary to a decrease in complex I activity or an 

increase in the production of reactive oxygen species (ROS), are poorly understood. Rats 

with ischemic heart failure have decreased complex I activity, as well as proteomic 

remodeling with more than a 50% decrease in protein levels of NADH Dehydrogenase 

(Ubiquinone) Flavoprotein 1 (NDUFV1) and NADH Dehydrogenase (Ubiquinone) 1 Alpha 

Subcomplex, 5 (NDUFA5) (109). Complex I dysfunction has been found to lead to increased 

ROS and protein acetylation, as well as worsening of heart failure (84). In contrast to 

ischemic heart failure, in a TAC model (mouse) of heart failure based on mitochondrial 

respiration measurements, complex I activity was not impaired (22). Similarly there was no 

evidence of complex 1 dysfunction in a rat TAC model of heart failure (168). However, these 

investigators found a decrease in mitochondrial proteins and respiratory capacity in IFM, but 

not in SSM mitochondria (168).

Apoptosis

Human heart failure is associated with pathologic cardiac remodeling leading to progressive 

dilation of the ventricle, increased wall stress and depressed contractility. Apoptosis of 

cardiac muscle cells is a fundamental process contributing to the progression to heart failure 

(95;135). It has been shown that mitochondrial dysfunction and apoptosis contribute to the 

ongoing cell loss in progression of the failing heart (135). OPA1 has a role in protecting cells 

from apoptosis, at least in part by preventing cytochrome c release from the cristae into the 

cytosol (32;137). Prohibitins also have a role in regulating cristae structure and OPA1 

localization, and thus are indirectly anti-apoptotic (126;142;195).

The mitochondrial death pathway is effectuated by both the intracellular and extracellular 

death-signals through activation of mitochondrial permeability transition pore (MPTP) 

formation, which leads to the release of pro-apoptotic proteins, including cytochrome c and 

apoptosis-inducing factor (AIF), resulting eventually in the disruption of normal 

mitochondrial physiology (37;61). The Bcl-2 family also controls apoptosis by regulating 

mitochondrial permeability. The proteins are located on the outer mitochondrial membrane 

and the anti-apoptotic members of the Bcl-2 family can also inhibit cytochrome c release 

(21;106).

VDAC and mPTP

The mitochondrial permeability transition pore (mPTP) is a non-selective pore permeable to 

any molecule < 1.5 kDa between the cytosol and the mitochondrial matrix. Its primary 

components are the voltage-dependent anion channel (VDAC), the adenine nucleotide 

translocase (ANT) and cyclophilin D (191). The mPTP is a non-selective pore transporting 

small molecules (< 1.5 kDa) between the cytosol and the inner membrane. The mPTP opens 

during conditions of pathologically high [Ca2+]m (67). An increase in [Ca2+]m alone is a 
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relatively inefficacious at triggering pore opening; however, the sensitivity to [Ca2+]m can be 

markedly increased by adenine nucleotide depletion, high [Pi] and most significantly, 

oxidative stress (69). The resulting increased proton permeability leads to a dissipation of 

the proton motive force as a result of a reduction in both the pH gradient and the membrane 

potential. Subsequently, mitochondrial ATP synthesis by oxidative phosphorylation drops. 

Myocytes cannot maintain their ATP levels, therefore undergo necrotic cell death. The 

mPTP is widely studied in neuronal excitotoxicity, where over stimulation of glutamate 

receptors leads to excessive calcium entry into the cell (163). It has also been found that 

decreased NAD+/NADH ratio secondary to complex I deficiency enhances MPTP sensitivity 

(84). This has important implications for ischemic heart failure, where complex 1 function is 

impaired.

VDAC

VDAC, provides the aqueous pathway across the outer membrane for the transfer of the 

substrates generating ATP through oxidative phosphorylation from the cytosol to the inner 

membrane (100;148). VDAC, with a single pore 2.5–3 nm wide when fully open, allows the 

flux of metabolites including Pi, ATP/ADP, and Ca2+, across the outer membrane. It is 

thought that phosphorylation is one factor among many others, that controls the open and 

closed states of this channel(155). VDAC is reported to be involved in apoptosis of cell lines 

carrying the mitochondrial A4263G tRNAIle gene mutation, which is a cause of maternally-

inherited hypertension (204). This mutation is thought to lead to mischarging of VDAC 

secondary to amino acid substitutions. Cell studies of this mutation demonstrated that 

VDAC associated with Bax and that the mitochondrial membrane potential Δψm was 

decreased and apoptosis increased. Cyclosporin A treatment restored Δψm and decreased 

apoptosis (204).

Energy production

Mitochondrial Energetics, Respiration and Mfn1 and Mfn2

There is a direct relationship between maintenance of mitochondrial fusion and maintenance 

of normal mitochondrial function with preserved oxidative phosphorylation (205). Inhibiting 

mitochondrial fusion results in reduced oxygen consumption (28). Likewise, Mfn2 

expression inhibition markedly decreases pyruvate, glucose, and fatty acid oxidation. 

Intriguingly, skeletal muscle from both obese human and animal models has strikingly less 

Mfn2 expression (149). In fibroblasts Mfn2 knockdown reduced oxygen consumption and 

glucose oxidation (14). Compatible with these observations, MEFs with knockout of both 

Mfn1 and Mfn2 had reduced mitochondrial membrane potential, less respiration, and 

decreased maximal respiration (29). On the other hand, increased Mfn2 expression results in 

greater respiratory complex activity, more glycolysis and enhanced mitochondrial biogenesis 

(149). Similarly, Mfn2 expression increases in settings of intense energy demand, like 

exercise, and as a response to apoptotic stimuli (29). Hence, Mfn1 and Mfn2 have important 

effects on mitochondrial respiration and energetics.
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Mitochondrial Energetics, Respiration and OPA1

OPA1 has critical role in maintaining cristae structure, and disruption of OPA1 greatly 

changes cristae morphology (56;124). Furthermore, cristae structure/OPA1 oligomerization 

varies under different nutritional states (44;56;114). For example, OPA1 is more 

oligomerized and cristae junctions tighter in states of starvation (124). OPA1 

oligomerization also changes with different metabolic substrates.

Complex I and II substrates are associated with much less oligomerization of OPA1 (75). 

Furthermore, neither rotenone nor the mitochondrial uncoupler, CCCP, affected OPA1 

oligomerization, supporting that this is regulated by upstream substrate availability (147). 

Studies using RNAi to deplete OPA1 in MEFs demonstrated that reduction in OPA1 led to a 

reduction in basal respiration and loss of the ability to increase oxygen consumption in the 

presence of the uncoupler 2,4-dinitrophenol (maximal respiration) (29). In studies of the 

fibroblasts of patients with ADOA, certain OPA1 mutations had impaired complex I driven 

ATP synthesis, as well as, not unexpectedly, reduced mitochondrial fusion (205). Lodi and 

colleagues assessed post-exercise phospho-creatinine in the calf muscles of patients with 

ADOA with OPA1 mutations(heterozygotes for c.2708–2711 deletion TTAG in exon 27, 

most common OPA1 mutation for ADOA) and controls using phosphor-magnetic resonance 

spectroscopy (110). With this approach the investigators identified that basal levels of PCr 

were significantly lower in the OPA1-ADOA patients by about 10%. Furthermore, after 

exercise the recovery time of PCr levels was markedly prolonged (28 vs. 19 sec, p<0.01). 

Some OPA1 mutations did not alter mitochondrial activity or bioenergetics (122). Thus, 

there are select OPA1 domains required to maintain normal mitochondrial function. More 

comprehensive knowledge of post-translational modifications and identification of proteins 

complexing with OPA1 will lead to greater insight into the mechanism(s) by which select 

ADOA OPA1 mutations cause disease without impairing measured mitochondrial function.

Mitochondrial Fission Proteins and Mitochondrial Energetics

Mitochondrial fission protein changes can alter mitochondrial metabolism. Drp1 reduction 

lowered the basal rate of oxygen consumption, reduced coupled respiration, and slowed ATP 

synthesis (13). Likewise, a dominant negative Drp1 led to a marked reduction in respiratory 

capacity (187). Hyperglycemia induced fission and cell death, but prevention of this with a 

dominant negative Drp1 significantly decreased the mitochondria’s ability to increase 

respiration (202;203). Likewise, Fis1 depletion decreased the maximal respiratory activity, 

and increasing Fis1 expression restored the phenotype (187). Thus, both DRP1 and Fis1 

influence mitochondrial metabolism.

Mitochondrial Protein Trafficking

The outer and inner membrane of mitochondria define the separation from the cytosol and 

from each other. Ions, nutrient molecules, ATP, ADP, and other small molecules can readily 

move through the outer membrane. Proteins more than 5000 Daltons in size must have a 

specific signaling sequence, the mitochondrial targeting sequence (MTS), to be transported 

across the outer membrane (102). While pores in the outer membrane formed by VDAC 

make this membrane highly permeable to most small molecules (<4–5 kDa), the inner 
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mitochondrial membrane is a functional permeability barrier between the cytosol and the 

mitochondrial matrix. Trafficking of proteins and small solutes in and out of the 

mitochondria is essential for normal mitochondrial function (figure 2). The traffic of 

metabolites and ions tightly links mitochondria to the many other cellular activities.

Mitochondrial Protein Importation

The coding capacity of the small mitochondrial genome is quite limited. The mitochondrial 

genome encodes approximately 1% of mitochondrial proteins. Thus, 99% of mitochondrial 

proteins are expressed by nuclear genes, synthesized on cytosolic ribosomes and then 

imported into mitochondria through specialized sorting machineries (164;200). Most 

synthesized precursor proteins are imported through the translocase of the outer 

mitochondrial membrane (TOM) complex, and this is facilitated by the chaperones in the 

aqueous compartments operating along the import pathways (50). Once passed through the 

TOM channel, the precursor proteins are direct to different sorting machineries by their 

targeting signals. Almost all proteins imported into mitochondria are targeted to the 

organelle via a cleavable presequence or mitochondrial transport signal (MTS) (113;159). 

The MTS is proteolytically removed during import into the mitochondria.

TOM/TIM: the Protein Import Machinery of the Mitochondria

Intensive investigation has led to the identification and structural characterization of the 

large family of transporters involved in mitochondrial protein trafficking. However work 

remains to be done, particularly with regards to characterizing the specificity of many of the 

transporters. TOM/TIM are the major mitochondrial protein import machinery: TOM and 

TIM complexes is designed to conduct translocation of a polypeptide across both the outer 

and inner mitochondrial membranes (160). The translocase of the outer membrane (TOM) 

complex is the main entry gate used by most nucleus-encoded mitochondrial precursor 

proteins. The translocases of the inner membrane(TIMs) are small proteins localized in the 

inter membrane space, which form specific aggregates and function as chaperones for 

unfolded proteins in transit through the intermembrane space (90). The TOM complex and 

the TIM23 complex in the inner membrane align to form a channel through both the outer 

and inner mitochondrial membranes to import proteins into the matrix. After entering TOM, 

the precursor proteins with MTS’s are imported by the presequence -TIM23 complex, and 

then bind to chaperone-like proteins in the intermembrane space, which will remove the 

MTS.

Role of Heat Shock Proteins in Mitochondrial Protein Trafficking

The HSP70 family members are chaperones for mitochondrial protein import. 

Macromolecules need to be unfolded for import into the mitochondria and other organelles 

and the HSP70 group of proteins is responsible for this. HSP75, also known as GRP75, 

mortalin, mtHSP70, and HSPA9, is an HSP70 family member, which primarily localizes to 

the mitochondria. HSP75 is also found in the endoplasmic reticulum, the plasma membrane 

and cytoplasmic vesicles. Schekman originally identified the key role of HSP75 in 

facilitating the translocation of proteins into the mitochondria (42). Interestingly, HSP75 was 

significantly decreased in interfibrillar mitochondria in type 1 diabetic heart failure patients 

(12).
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A cytosolic protein is maintained in an unfolded state by association with HSP70 proteins 

and is thus able to present the MTS to the receptor on the outer mitochondrial surface. When 

import is initiated, the chaperone proteins are sequentially released as the peptide is 

transferred into the mitochondrion (162). The dissociation of the chaperone from the 

imported peptide requires ATP hydrolysis (128). Within the mitochondrial matrix, HSP60 

forms a heptameric barrel along with HSP10, which forms the heptameric barrel lid. Within 

this barrel imported proteins are refolded in a process requiring ATP hydrolysis (119). 

HSP60 and its prokaryote homologue, GroEL, also protect mitochondrial proteins from 

denaturation (118;125). In addition, HSP75 has recently been identified as having a key role 

in assembly of cytochrome c oxidase (complex IV) (19). Thus, heat shock proteins have a 

critical set of functions with regards to protein import into the mitochondria. First they 

unfold proteins for transfer, and then other HSPs refold the proteins within the mitochondria. 

In heart ischemic failure, although mitochondrial levels of HSP60 remain the unchanged, 

HSP60’s overall localization within the cell changes. In the normal heart about 75% of 

HSP60 is in the mitochondria, with the rest in the cytosol, but in ischemic heart failure, 

about 8% of HSP60 is located in the plasma membrane fraction (105). At least some of this 

HSP60 is actually on the surface of the cardiac myocytes, where it may bind toll-like 

receptor (TLR4), leading to activation of NFκB and production of inflammatory cytokines, 

including TNFα (87;105;183).

Small Solutes Trafficking in Mitochondria

Ions and small solutes, such as H+,Pi, ADP/ATP, Ca+2 are trafficking through mitochondria 

constantly. The transportation of H+,Pi, ADP/ATP is essential to build the proton gradient 

and generate energy. Calcium signaling through ion channels is key to cardiac function, 

regulating the pace and strength of the beat of the heart. In the normal heart mitochondrial 

calcium concentrations ([Ca+2]m) have an essential role in regulating oxidative 

phosphorylation to keep ATP levels matching the demand for ATP as work load changes. 

Overall, mitochondrial free calcium is thought to be an important mediator of a range of 

metabolic activities (154).

Autophagy and Mitochondrial Fission and Fusion

Autophagy, including mitochondrial autophagy (mitophagy), is an essential cellular process 

for removing irreversibly damaged proteins and organelles (figure 3). There is limited work 

on autophagy in heart failure, but it does suggest that autophagy is impaired in HF (65;86). 

The failing heart with increased inflammation and increased ROS would be expected to 

require a higher rate of autophagy than normal heart. Autophagy, including mitophagy, is an 

essential cellular process for removing irreversibly damaged proteins and organelles. 

Autophagy is a highly conserved cellular process responsible for the regulation of cellular 

degradation. It is referred as a destructive process in which a double membrane envelops 

cytoplasm and organelles before targeting them to lysosomes for destruction. Ashford and 

Porter in 1962, first described autophagy as the membrane “shielding the rest of the cell 

from the general spread of the degradative process” (7). Mitochondria are the center of 

oxidation and a major source of ROS. Consequently mitochondria are more subject to injury 

than other organelles, as they are exposed to more ROS than other organelles. Similarly, 
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mtDNA has greater ROS exposure than nuclear DNA, making it more vulnerable to the 

threat of mutation than nuclear DNA damage leading to mutation. This may be in part why 

many genes migrated from the mitochondria to the nucleus, as discussed above. Given the 

dangerous nature of the damaged mitochondrion, the timely removal of this organelle is vital 

to maintain normal homeostasis. In recent years, an increasing number of studies have 

shown that mitophagy is a specific process which involves mitochondrial dynamics, or 

fission and fusion (196).

Mitophagy is a specialized autophagy governing selective removal of damaged mitochondria 

by autophagosomes (figure 3). Damaged mitochondria exhibit depolarized membrane 

potential, triggering accumulation of PINK1, which phosphorylates Mfn2, which then acts 

as a draw for Parkin (34). Parkin binding Mfn2 triggers mitophagy (figure 3). Others have 

found a role for mtHSP70 in facilitating the interaction of Parkin and Mfn2 in muscle cells 

(46). The exact molecular mechanisms involved in the important steps leading to activation 

of mitophagy remain to be completely defined, and may differ in different cell and tissue 

types. Following recruitment of Parkin, ubiquitination of OMM proteins, such as Mfn1, 

Mfn2, and VDAC1 occurs. P62, is recruited and binds the Parkin-ubiquitinated substrates, 

linking these to LC3 for autophagic degradation. Mitochondria are engulfed after elongation 

of the isolation membrane. Eventually the autophagosome fuses with lysosomes to form the 

autolysosomes in which the lysosomal hydrolases degrade the damaged mitochondria.

Mitophagy overlaps with ERMES, discussed above, where tethering of mitochondria to ER 

leads to formation of autophagosome. Fission is needed to chop up mitochondria to fit in the 

autophagosome. Twig was the first to show that an asymmetric fission occurred, generating a 

normal polarized daughter and a smaller depolarized daughter, in which the small 

depolarized daughter is removed by autophagy (187). Twig et. al observed that fission events 

often generated uneven daughter units, and one daughter with decreased membrane potential 

has a lower probability of subsequent fusion. The subpopulation of non-fusing mitochondria 

generated that were found to have reduced Δψm and decreased levels of the fusion protein 

OPA1. Thus fission followed by selective fusion segregates dysfunctional mitochondria and 

permits their removal by autophagy (187). Twig et. al also found that the probability for 

fusion is influenced by organelle motility, instead of contact duration and organelle 

dimensions; a previous fusion event of the individual mitochondrion influenced the 

likelihood for a subsequent fusion event, as well as the site where the fusion occurred (188).

Cardiomyopathy, Increased ROS, Inflammation and Mitochondria

Heart Failure, cardiomyopathy and ROS/Inflammation

ROS are persistently elevated in both ischemic heart failure and many cardiomyopathies. 

The mitochondria are considered to be the primary source of the augmented ROS as well as 

the major target, leading to a concatenation of events with more ROS, more oxidation of 

mitochondrial proteins, greater mitochondrial dysfunction and the production of even more 

ROS. Regular fission and fusion are necessary for healthy mitochondria (figure 1) 

(28;33;81;104). As discussed, a damaged mitochondrion can undergo asymmetric fission 

with a smaller, damaged mitochondrion being set aside for removal and the healthier 

remaining mitochondrion continuing to produce energy (194). We have previously shown 
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that optic atrophy (OPA)1, a critical mitochondrial fusion protein responsible for fusing the 

inner mitochondrial membrane, is decreased 50% in both rat and human IHF, but not in 

nonischemic dilated HF (32). Mutations of fusion proteins are associated with inherited 

optic neuropathies, but have not been previously implicated in heart disease (4;6). This may 

be because the optic neuropathies associated with fusion protein mutation lead to visual 

problems and loss of sight. Gradual onset of cardiac impairment is less likely to be noticed 

as overall activity declines with vision impairment. Knockout of OPA1, modeling one form 

of ADOA, is lethal. We have shown that the heterozygote mice, hereafter referred to as 

OPA1 mice, at 3 months have increased ROS, decreased mtDNA copy number, and 

depressed complex IV activity (31). By 12 months they develop a cardiomyopathy with 

decreased fractional shortening, decreased heart weight/tibia length ratio, depressed LV 

developed pressure, decreased cardiac output, increased BNP, increased ROS, decreased 

mtDNA, depressed complex activity (I and IV), decreased state III and FCCP respiration, 

and loss of contractile reserve (31). These mice had no response to an infusion of 

isoproterenol. Most striking was decreased expression of a wide range of anti-oxidant genes, 

all encoded by the nuclear genome. This was seen as early as 3–4 mo and was more 

pronounced at 12 mo. Protein levels of transcription factors, including Nrf2, involved in 

regulation of mitochondrial proteins (nuclear encoded) were not changed, but protein levels 

do not necessarily translate into transcription factor activity.

Mitochondrial Dynamics in Heart Failure

Fission and Fusion in Disease

Mutations involving fusion and fission proteins most often manifest as neurological disease, 

likely because of the high energy requirements of the nervous system and the high sensitivity 

of this tissue to any perturbations. Neurologic impairment may mask cardiac abnormalities, 

as blindness and other neurologic changes reduce activity such that exercise intolerance and 

other symptoms will not be induced. Charcot-Marie-Tooth (CMT) disease and ADOA, both 

inherited neuropathies causing blindness, are both associated with mutations in fusion 

proteins, Mfn2 for CMT and OPA1 for ADOA (6;43), although the list of genes associated 

with CMT extends beyond fusion proteins. Similarly, Parkinson’s disease, another 

significant neurologic disease, has been found to have abnormal expression of Mfn2 (104). 

Parkinson’s disease has also been linked to mutations in OPA1 (24). More unexpected is the 

decrease in Mfn2, which has been observed in patients with diabetes (11). Mutation in the 

fusion proteins is associated with cardiac abnormalities, more evident for OPA1 than Mfn1 

and 2, each of which can compensate somewhat for the loss of the other. This is discussed 

further below.

Fission and Fusion in Heart Failure

Since the first report of changes in mitochondrial fusion proteins in ischemic HF, there has 

been a marked increase in interest in mitochondrial dynamics in heart disease. OPA1 

expression was depressed both explanted human hearts and rats with ischemic heart failure 

(32). In contrast, both Mfn1/2 and Drp1 increased in human dilated cardiomyopathy (32) As 

discussed above, OPA1 mutation modeling ADOA resulted in a late onset cardiomyopathy, 

which coincided with the onset of blindness (31) The OPA1 mutant heart has increased 
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ROS, but decreased anti-oxidant gene expression. Despite increased ROS and impaired 

mitochondrial function, expression of TFAM, PGC1α, Mfn1/2, Bax, Bak and Nrf2 were 

unchanged (31). Given that human ischemic HF has a similar decrease in OPA1, these 

results raise the possibility that human ischemic heart failure is accompanied by similar 

changes. It is increasingly apparent that abnormalities in fission and fusion contribute to 

cardiovascular disease (139). Inhibition of mitochondrial fission reduced ischemia/

reperfusion injury in the heart (140). As discussed, fission and fusion proteins also have 

roles in mitophagy and in apoptosis (120). Thus, these proteins have complex functions in 

the cell beyond mitochondrial fission and fusion.

In neonatal ventricular myocytes exposed to high glucose conditions, mitochondrial fission 

inhibition using a dominant negative Drp1 mutant (Drp1-K38A), precluded the expected 

increase in ROS, opening of the mPTP and cell death (202). Cytosolic Ca2+ overload, with 

thapsigargin or potassium chloride treatment, caused a rapid increase in mitochondrial 

fragmentation in cardiac myocytes (73). Calcium overload occurs frequently in the diseased 

heart, and this could be expected to lead to increased mitochondrial fission and increased 

mitochondrial fragmentation. This is consistent with the finding that mitochondria in 

ischemic HF are small and fragmented. This in itself would suggest loss of the balance 

between fission and fusion (32), and would be expected to further escalate the energetic 

abnormalities in HF (81). In the Drosophila heart silencing of OPA1 and mitochondrial 

assembly regulatory factor (MARF) resulted in increased mitochondrial heterogeneity and 

dilation of the Drosophila heart tube along with loss of contractility (45). Interestingly, 

human Mfn1/2 was able to rescue the MARF RNAi induced cardiomyopathy in the 

Drosophila (45).

Fission Inhibition to Mitigate Injury and HF - Mitochondrial fission has not been studied as 

a target in ischemic heart failure. In an in vivo model of mouse cardiac ischemia, 

pretreatment with mitochondrial division inhibitor (Mdivi)-1 reduced cardiac injury and 

preserved mitochondrial elongation and reduced opening of the mPTP (140). Similarly 

transfection of HL-1 cells with a dominant negative Drp1 reduced mitochondrial 

fragmentation in HL-1 cells after simulated ischemia (140) In studies of neonatal mouse 

cardiac myocytes subjected to simulated ischemia, Mdivi-1 treatment cardioprotective with 

decreased ROS and cell death (166). Parallel studies in a Langendorff rat heart model 

demonstrated that Mdivi before or after reperfusion was protective, reducing ROS and 

improving cardiac function, both systolic and diastolic, post-ischemia (166). Interestingly, 

treatment with the calcineurin inhibitor, FK506, inhibited dephosphorylation at s637, 

preventing Drp1’s mitochondrial translocation and reducing cardiac injury (166).

Despite these promising studies in mitigating cardiac injury associated with ischemia/

reperfusion, inhibition of Drp-1 has not been investigated as a treatment for ischemic heart 

failure. The balance of fission and fusion is thought to be essential for maintenance of 

healthy mitochondria. Ischemic HF is a chronic disease, and sustained inhibition of either 

fission or fusion would be expected would be expected to be detrimental. Thus, neither 

mitochondrial fission or fusion appear to be good therapeutic targets in IHF as this time. 

Greater understanding of the role of mitochondrial dynamics in the complex cardiac 
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myocyte may provide new insights into when fission and/or fusion may be dysfunctional in 

IHF and warrant inhibition.

Cardiomyopathy and Inherited Neuropathies

Fusion protein mutations are a cause of inherited optic neuropathies, which as a rule have a 

gradual onset. Approximately 20% of Charcot-Tooth-Marie disease type II cases are caused 

by Mfn2 mutation, and much less often OPA1 mutation leads to CTM (104). In contrast, 

OPA1 mutations are more often the cause of ADOA, which is characterized by the visual 

impairment and blindness (40). An OPA1 mutation often associated with ADOA had been 

found to be homozygous embryonic lethal, and not to cause cardiac abnormalities in the 

heterozygote, but this was based on basic parameters such as heart weight (40). More 

intensive investigation with advanced cardiac imaging and functional studies demonstrated 

that the OPA1 heterozygous mutant mouse develops cardiomyopathy at 12 months (31) 

Multiple mitochondrial abnormalities were present as discussed above.

Alternate Functions of Fusion/fission Proteins

It is now quite evident that abnormalities in fission and fusion are a factor in cardiovascular 

disease (139). As detailed above, OPA1 was decreased in ischemic cardiomyopathy, while 

Mfn1/2 were increased in both ischemic and nonischemic heart failure (32). Deletion of Mfn 

2 led to mild cardiac hypertrophy with small functional changes (146). Mfn2 knockout 

actually slowed opening of the mitochondrial permeability transition pore, protecting cardiac 

myocytes and leading to better recovery after ischemia/reperfusion (146). Unexpectedly, 

Mfn2 knockouts had higher levels of the anti-apoptotic Bcl2. Knockout of both cardiac Mfn 

1 and Mfn2 was embryonic lethal, while inducible knockdown of the two proteins resulted 

in greater mitochondrial fragmentation, decreased mitochondrial respiration and a fatal 

dilated cardiomyopathy (33). Mitochondrial fission inhibition can lessen ischemia/

reperfusion injury in the heart (140). As discussed earlier, both fission and fusion proteins 

have roles in apoptosis (120). Thus, this group of mitochondrial proteins has cellular 

functions beyond mitochondrial fission and fusion.

Mfn2

Mfn2 levels are reduced in skeletal muscle both in obesity and in diabetes. Exercise can 

mitigate some of these changes (10;62). Mfn2 was first identified as the hyperplasia 

suppressor gene (HSG). Mfn2 inhibited vascular smooth muscle cell (VSMC, from arteries 

of spontaneously hypertensive rats) proliferation in culture, and also in a rat model of 

balloon injury (30). Overexpression of Mfn2 results in higher levels of p21 and p27 leading 

to cell cycle arrest. Thus, increased Mfn2 inhibits VSMC proliferation without increasing 

the amount of apoptosis (30). Likewise, Mfn2 overexpression inhibited LDL provoked 

VSMC proliferation and ameliorated atherosclerosis in a rabbit model (68). Hence results of 

several studies support a significant role for Mfn2 in preventing or reducing vascular 

disease. Further studies of Mfn2 indicate that this protein has a role in metabolic control, an 

idea that has been originated by the Zorzano group (206).

Knowlton and Liu Page 17

Compr Physiol. Author manuscript; available in PMC 2017 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Regulation of Expression of Fission/fusion Proteins

Despite great interest in fusion and fission in mammalian mitochondria, work investigating 

the regulation of expression fission and fusion protein genes has been very limited. The 

Regulation of Mfn2 expression has been studied, and the Mfn2 promoter has been shown to 

contain common elements in the human, rat, and mouse Mfn2 promoters. These elements 

include including the binding elements for NFκB, ERRα, C/EBP and GATA-1 (179). Six 

Sp1 sites were conserved in the promoters for all three species. Furthermore, the Mfn2 

promoter did not contain a TATA box. Finally high levels of CpG islands were present, 

which would not be expected to be methylated in mammalian cells, and thus would lead to 

greater activity. Multiple Sp1 sites are present in the Mfn2 promoter, and it has been shown 

by ChIP assay that Sp1 binds to the Mfn2 promoter in VSMCs (179). Knockdown of Sp1 in 

VSMCs with shRNA led to much less Mfn2 promoter activity. However, although much is 

now known about regulation of Mfn2 expression, little is known about regulation of the 

other proteins involved in mitochondrial dynamics, and they remain to be investigated.

Mfn2 and Atherosclerosis

Mfn2 has been found to possess metabolic properties, as discussed above. In studies of Mfn2 

and its possible role in the pre-atherosclerotic artery, using the ApoE-KO mouse on a high 

fat diet, there was a 50% decline in aortic levels of Sp1 mRNA and a 60% drop in aortic 

Mfn2 mRNA levels at one week (179). Provocatively, these were transient changes, 

disappearing after extended treatment. Nonetheless, these results provide intriguing insights 

into vascular disease and early atherosclerosis.

There is increasing data supporting a link between reduced Mfn2 and vascular disease. Both 

diabetes and obesity are associated with reduced Mfn2. Sorianello and colleagues identified 

that a high fat diet led to reduced Mfn2; however this drop in Mfn2 disappeared over time, 

despite continuing the same high fat diet. Other investigators have demonstrated that both 

diabetics and the obese have less Mfn2 in their skeletal muscle (10;62). Humans have repeat 

exposure to high fat meals, instead of a sustained exposure, and this may preclude 

development of an adaptive response. Exercise has been shown to enhance Mfn2 expression, 

offering one approach to mitigating the decrease in Mfn2 in diabetes and the obesity (62). 

Mfn2’s positive effects on the vasculature, such as possibly slowing atherosclerosis, make it 

a strong potential target in diabetes and obesity, both of which greatly enhance the risk of 

heart failure.

Mitochondria, Free Radicals and Aging

The mitochondrial theory of aging was initially proposed in 1972 by Denham Harman, a 

pioneer in free radical research. This theory proposes that the rate of aging is a function of 

the amount mitochondrial free-radical leakage vs. the cell’s native ability to repair any 

resulting damage (71). Aging and aging related diseases can be attributed to mitochondrial 

free-radical leakage; this is a natural by product of energy production, but greatly increases 

when there is mitochondrial damage. Free radicals play multiple roles in the cell. Free 

radicals released from mitochondria can serve to signal respiration, and can cause cellular 

damage to the nucleus. The deficient respiration signaled by increased free radicals can be 
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corrected by compensatory changes in the activity of mitochondrial genes. However, if the 

deficiency is not compensative, the overload of free radicals will oxidize the membrane 

lipids, and eventually collapse membrane potential (172). The risk of myocardial infarction 

increases with aging. Although the mortality from myocardial infarction has been reduced 

through a combination of preventative measures and intervention, heart failure, which can 

result from coronary disease, continues to have a very high mortality with a 50% five year 

survival (55;132). Overall there has been an increase in the prevalence of heart failure with 

better survival from coronary disease (132). It is known that there is an increase in the levels 

of free radicals, including both superoxide anion and the hydroxyl radical, with cardiac 

reperfusion, which is a common occurrence in cardiac treatment (5;53;123). During the first 

minutes of reflow, free radicals increase markedly and remain elevated for a prolonged 

period after restoration of flow in the coronary (182). Mitochondria have been identified as 

the major source of free radicals during reperfusion, and a potential site of free radical-

mediated dysfunction. During normal cellular metabolism, free radicals are produced at the 

site of complex I and III (20). Ischemia reduces iron-sulfur and ubiquinone, inhibits complex 

I (also a source of free radicals in heart failure), and decreases superoxide dismutase activity, 

which results in increased free radical levels with reoxygenation (182). All of these settings 

enhance endogenous free radical production, which then compounds any myocardial injury, 

and this response is increased with aging(92;180).

Conclusions

Mitochondrial fission and fusion are essential processes for maintaining mtDNA and normal 

mitochondrial function. Changes in the proteins involved in fission and fusion have been 

reported in a number of diseases, including ischemic heart failure, making them a possible 

therapeutic target. The fission and fusion protein also have roles in apoptosis and mitophagy. 

Overall they are essential for maintaining cellular homeostasis. Yet, there are some who are 

skeptical about the feasibility of repetitive mitochondrial fission and fusion in the densely 

packed adult cardiac myocyte. However, these processes have been shown essential to 

maintaining mtDNA and mitochondrial function. Are mitochondrial dynamic processes the 

only way mtDNA and mitochondrial function are maintained, or are there other mechanisms 

at work in the heart? Given the high energy needs to the adult heart, the need for these 

processes would seem greatest in the heart and in the brain. However, processes, such as 

mitophagy, might substitute for frequent fission and fusion. Much investigation remains to 

be done to understand the many roles of fission and fusion proteins, some of which extend 

far beyond the mitochondria. There are many interesting things yet to be explored.
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Figure 1. 
Mitochondrial Fusion and Fission: Diagram summarizes mitochondrial fusion and fission. 

Fusion (top panels) - Mitofusin (Mfn) 1 and 2 together fuse the outer mitochondrial 

membrane. Expression of these two proteins is unchanged in HF. OPA1 fuses the inner 

mitochondrial membrane, leading to a single, larger mitochondrion, and OPA1 is decreased 

in HF. Fission (lower panels) - Fission divides one mitochondrion into two smaller 

mitochondria. Mff recruits Drp1 to the mitochondria for fission. Drp1 is a cytoplasmic 

protein, but forms complexes at fission sites on the outer mitochondrial mediating 

fission.Fis1’s tetratricopeptide repeat motif helps create a scaffold, which facilitates the 

formation of protein clusters on the outer mitochondrial membrane, but is not essential for 

fission, as Drp1 can complex on the mitochondrial surface without Fis1, if Mff is present. 

Mitochondrial fission and fusion are essential for maintenance of normal mitochondria. A 

key aspect of fusion in the heart may be asymetric fission, as described by Twig et al. (see 

text). Asymmetric fission generates a smaller mitochondrion with a decreased Δψ m and a 

larger mitochondrion with a preserved Δψ m. The small, depolarized mitochondrion is 

removed by mitophagy. Figure updated from Knowlton and Chen (88).
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Figure 2. 
Mitochondrial Protein Trafficking: Diagram summarizes key pathways for protein and solute 

import into the mitochondria. 1) The TIM/TOM complex is the major mitochondrial 

proteins importing machinery. Proteins that are encoded in the nucleus and synthesized in 

the cytoplasm are transported into the mitochondrion through TIM/TOM assisted by 

chaperones. 2) VDAC and ANT have roles in small solute trafficking, but in the stressed cell 

they are part of the mPTP, which opens leading mitochondrial depolarization. 3) mPTP, 

spanning the IMM and OMM, consists of membranous elements, including VDAC on the 

OMM, ANT on the IMM. Under conditions like high Ca+2 concentration, increased 

oxidative stress, low ATP, and mitochondrial depolarization, mPTP is allows free diffusion 

of solutes across the membranes, which ultimately leads to mitochondrial swelling, and 

apoptosis.

Knowlton and Liu Page 32

Compr Physiol. Author manuscript; available in PMC 2017 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Mitophagy: Summary of steps involved in mitophagy. The depolarized mitochondrion leads 

to accumulation of PINK1, which phosphorylates Mfn2, which acts as a lure for Parkin. 

Parkin binding Mfn2 triggers mitophagy. Outer membrane proteins, including both Mfn’s 

and VDAC, are ubiquitinated. P62 is recruited, binding the ubiquitinated proteins, linking 

them to LC3. The isolation membrane elongtes and eventually engulfs the mitochondrial 

pieces destined for autophagy, forming the autophagosome, which eventually fuses with the 

lysosome, leading to degradation of the enclosed mitochondria.
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Figure 4. 
Summary of Mitochondrial Dynamics and Ischemic Heart Failure. Major findings with 

multiple studies supporting them are shown. The next few years should lead to identification 

of more roles for fission and fusion in heart failure.
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