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Abstract

The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of 

Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse 

gas measurements capabilities. A design approach for a dense observing network combined with 

atmospheric inversion methodologies is described. The Advanced Research Weather Research and 

Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to 

derive the sensitivity of hypothetical observations to surface greenhouse gas emissions 

(footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a 

k-means clustering method, was applied to minimize the similarities between the temporal 

response of each site and maximize sensitivity to the urban emissions contribution. Once a 

network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing 

system performance. We present the performances of various measurement network configurations 

consisting of differing numbers of towers and tower locations. Results show that an overly 

spatially compact network has decreased spatial coverage, as the spatial information added per site 

is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose 

capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a 

very high density network of lower cost and performance sensors characterized by larger 

uncertainties and temporal drift. Analysis convergence is faster with a large number of observing 

locations, reducing the response time of the filter. Larger uncertainties in the observations implies 

lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is 

added to the observations and, therefore, biasing the retrieved fluxes.
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1. Introduction

Carbon dioxide (CO2) is the major long-lived, anthropogenic greenhouse gas (GHG) that 

has substantially increased in the atmosphere since the industrial revolution due to human 

activities, raising serious climate and sustainability issues, (IPCC, 2013). Development of 
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methods for determination of GHG flows to and from the atmosphere, independent of those 

used to develop GHG inventory data and reports, will enhance that data scientific basis, and 

thereby increasing confidence in them.

Cities play an important role in emissions mitigation and sustainability efforts because they 

intensify energy utilization and greenhouse gas emissions in geographically small regions. 

Urban areas are estimated to be responsible for over 70% of global energy-related carbon 

emissions (Rosenzweig et al., 2010). This percentage is anticipated to grow as urbanizatio 

trends continue; cities will likely contain 85%–90% of the U.S. population by the end of the 

current century. Urban carbon studies have increased in recent years, with diverse 

motivations ranging from urban ecology research to testing methods for independently 

verifying GHG emissions inventory reports and estimates. Examples of these are Salt Lake 

City (McKain et al., 2012), Houston (Brioude et al., 2012), Paris (Bréon et al., 2015), Los 

Angeles (Duren and Miller, 2012) and Indianapolis (INFLUX; Cambaliza et al., 2014; 

Turnbull et al., 2015; Lauvaux et al., 2016). Different measurement approaches have been 

used to independently measure GHG emissions. These have included aircraft mass balance, 

isotope ratios, satellite observations, and tower-based observing networks coupled with 

atmospheric inversion analysis. A common conclusion is that greater geospatial resolution is 

needed to support urban GHG monitoring and source attribution, hence the need for 

measurement capabilities and networks of higher spatial density.

The North-East Corridor (NEC) Testbed project is the third of three NIST (National Institute 

of Standards and Technology) greenhouse gas emissions testbeds designed to advance 

greenhouse gas measurements capabilities and provide the means to assess the performance 

of new or advanced methods as they reach an appropriate state of maturity. The first two 

testbeds are the INFLUX experiment (Cambaliza et al., 2014; Lauvaux et al., 2016) and the 

LA Megacities project (Duren and Miller, 2012). As with the other testbeds, the NEC project 

will use atmospheric inversion methods to quantify sources of GHG emissions in the urban 

areas. Its initial phase is located at the southern end of the northeast corridor in the 

Washington D.C. and Baltimore area, and is focused on attaining a spatial resolution of 

approximately 1 km2. The aim of this, and the other NIST GHG testbeds, is to establish 

reliable measurement methods for quantifying and diagnosing GHG emissions data, 

independent of the inventory methods used to obtain them. Since atmospheric inversion 

methods depend on observations of the GHG mixing ratio in the atmosphere, deploying a 

suitable network of ground-based measurement stations is a fundamental step in estimating 

emissions and their uncertainty from the perspective of the atmosphere. A fundamental goal 

of the testbed effort is to develop methodologies that permit quantification of levels of 

uncertainty in such determinations.

Several studies have focused on designing global (Hungershoefer et al., 2010), regional 

(Lauvaux et al., 2012; Ziehn et al., 2014) and urban (Kort et al., 2013; Wu et al., 2016) GHG 

observing networks, relying on inverse modeling or observing system simulation 

experiments (OSSEs). Unlike other network design algorithms, we applied an iterative 

selection algorithm, based on a k-means clustering method (Forgy, 1965; Hartigan and 

Wong, 1979), to minimize the similarities between the temporal response of each site and 

maximize sensitivity to the urban contribution. Thereafter, a synthetic inversion Bayesian 
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Kalman filter (Lorenc, 1986) was used to evaluate the performances of the observing system 

based on the merit of the retrieval over time and the amount of a priori uncertainty reduced 

by the network measurements and analysis. In addition, we explore the possibility of using a 

very high density network of low-cost, low-accuracy sensors characterized by larger 

uncertainties and drift over time. As with all network design methods based on inversion 

modeling, our approach is dependent on specific choices made in configuring the estimation 

problem, such as the resolution at which fluxes are estimated or how the error statistics are 

represented. However, Lauvaux et al. (2016) showed that, for INFLUX, the uncertainty 

reduction in real working conditions is about 30% for the urban area, leading to estimated 

uncertainties about 25% of the total city emissions. We consider this as an acceptable level 

of uncertainty for our domain, and it will be considered as the target uncertainty reduction 

even though Wu et al. (2016) proposed more restrictive levels of uncertainties to be required 

for city-scale long-term trend detection.

The structure of the paper is as follows. Section 2 describes the transport model, the network 

selection algorithm and the inversion method employed. Section 3 presents and discusses the 

results obtained for the various measurement network configurations analyzed, discussing 

the impact of the network compactness, the impact of additional observing points, and the 

observation uncertainties and drift. Lastly, section 4 highlights the main conclusions 

obtained.

2. Methodology

In this work we employ high-resolution simulations to derive the sensitivity of hypothetical 

observations to surface GHG emissions in the Washington D.C./Baltimore area. Specifically, 

we performed two separate month-long simulations for 2013 (February and July) to capture 

the different meteorological behavior in winter and summer. Afterwards, we used an 

iterative selection algorithm to design and investigate the performance of potential observing 

networks. These were evaluated by means of an inversion algorithm within an OSSE.

For logistical considerations, the potential observation locations were obtained from existing 

communications antennas registered with the FCC (Federal Communications Commission). 

We selected the antennas located on towers, placed in urban locations, currently in service, 

and having a height between 50 and 150 m above ground level. This pre-selection criterion 

resulted in 98 candidate towers.

2.1 Transport model

The footprint (sensitivity of observation to surface emissions in units of ppm µmol−1 m2 s) 

for every potential observing location was estimated using the Stochastic Time-Inverted 

Lagrangian Transport model (STILT; Lin et al., 2003), driven by meteorological fields 

generated by the Weather Research and Forecasting (WRF) model (WRF--STILT; Nehrkorn 

et al., 2010). Five-hundred particles were released from each potential observation site 

hourly, and were tracked as they moved backwards in time for 24 h. The footprint can be 

calculated from the particle density and residence time in the layer that sees surface 

emissions, defined as 0.5 PBLH (planetary boundary layer height) (Gerbig et al., 2003).
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The Advanced Research WRF (WRF--ARW) model, version 3.5.1, which is a state-of-the-

art Numerical Weather Prediction simulator, was used to simulate the meteorological fields. 

The ARW core uses fully compressible, non-hydrostatic Eulerian equations on an Arakawa 

C-staggered grid with conservation of mass, momentum, entropy, and scalars (Skamarock et 

al., 2008).

The initial (0000 UTC) and boundary conditions (every three hours) were taken from North 

America Regional Reanalysis (NARR) data provided by the National Centers for 

Environmental Prediction. Simulations were run continuously for the 28 days of February 

2013 and the 31 days of July 2013.

A two-way nesting strategy (with feedback) was selected for downscaling the three 

telescoping domains, which had horizontal resolutions of 9, 3 and 1 km, with a Lambert 

conical conformal projection with N40 and N60 as reference parallels. These domains were 

centered on the Washington/Baltimore area (39.079°N, 76.865°W), with 101 × 101, 121 × 

121, and 130 × 121 horizontal grid (latitude×longitude) cells, respectively. This domain 

configuration was chosen to limit the influence of the NARR-provided boundary conditions 

on the area of interest. A configuration of 60 vertical levels, with higher resolution between 

the surface and 3 km, was selected to better reproduce the boundary layer dynamics. To 

ensure model stability, the time-step size was defined dynamically using a CFL (Courant--

Friedrichs--Lewy) criterion of 1.

Accurately reproducing the planetary boundary layer (PBL) structure is a key point in 

atmospheric transport models, since the species mixing within the boundary layer is 

primarily driven by the turbulent structures found there. Therefore, the Mellor--Yamada--

Nakanishi--Niino 2.5-level (MYNN2; Nakanishi and Niino, 2006) PBL parametrization was 

selected, because this scheme is a local PBL scheme that diagnoses potential temperature 

variance, water vapor mixing ratio variance, and their covariances, to solve a prognostic 

equation for the turbulent kinetic energy. It is an improved version of the former Mellor--

Yamada--Janjic (MYJ) scheme (Mellor and Yamada, 1982; Janjić, 1994), where the stability 

functions and mixing length formulations are based on large eddy simulation results instead 

of observational datasets. MYNN2 has been shown to be nearly unbiased in PBL depth, 

moisture and potential temperature in convection-allowing configurations of WRF--ARW. 

This alleviates the typical cool, moist bias of the MYJ scheme in convective boundary layers 

upstream from convection (Coniglio et al., 2013). For the radiative heat transfer scheme, the 

RRTMG scheme (Mlawer et al., 1997) for short and long wave radiation was selected, since 

good performance has been reported for it (Ruiz-Arias et al., 2013). To model the 

microphysics, we selected the Thompson scheme (Thompson et al., 2004) because of its 

improved treatment of the water/ice/snow effective radius coupled to the radiative scheme 

(RRTMG). For the cumulus cloud scheme, the widely used Kain--Fritsch scheme (Kain, 

2004) was selected only for the outermost domain (9 km). The Noah model was selected as 

the land surface model (LSM), since Patil et al. (2011) showed that the skin temperature and 

energy fluxes simulated by Noah-LSM are reasonably comparable with observations and, 

thus, an acceptable feedback to the PBL scheme can be expected.

Lopez-Coto et al. Page 4

Adv Atmos Sci. Author manuscript; available in PMC 2018 September 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



2.2 Network observation site selection

By using the footprints computed for each potential observation site along with Eq. (1), we 

simulated the hourly mixing ratio for each site assuming a uniform unit flux (1 µmol m−2 

s−1) over the domain. We simulated the urban land use response by assuming a unit flux for 

the urban category definition provided by MODIS 2012, MCD12Q1 (Loveland and Belward, 

1997; Strahler et al., 1999). The urban response was then normalized by the total response 

and averaged in order to obtain a weight representing the urban contribution observed at 

each potential observing location. Afterwards, an iterative selection algorithm was applied in 

order to minimize the similarities between the temporal response of each site and maximize 

the urban contribution. This method uses the k-means algorithm, a widely used method in 

cluster analysis. This aims to partition n vectors into N (N ≤ n) clusters to minimize the 

within-cluster sum of squares (Forgy, 1965; Hartigan and Wong, 1979). For each iteration, 

the algorithm groups the sites in N clusters based on the similarities of the logarithmic 

temporal response and removes from each cluster the site with the smallest urban 

contribution. If a cluster is singular, that site is kept if the urban contribution is larger than a 

user-defined threshold (minimum urban CO2 contribution for a given tower candidate). This 

process is iterated until the N clusters are singular and then the network is evaluated as 

described in the next section. Different networks were computed by using different numbers 

of clusters and threshold values, covering a wide range of possible configurations.

2.3 Network evaluation

Once the network locations have been selected, a synthetic inversion experiment within a 

Bayesian framework is conducted in order to evaluate the performances of the observing 

system.

The CO2 flux at the surface is related to the measurements by the following equation:

(1)

where y is the observations vector (n × 1) (here, the CO2 concentrations measured at 

different tower locations, heights and times); x is the state vector (m × 1, where m is the total 

number of pixels in the domain), which we aim to optimize (here, the CO2 fluxes); H is the 

observation operator (n × m), which converts the model state to observations, constructed by 

using the footprints previously computed, and εr is the uncertainty in the measurements and 

in the modeling framework (model--data mismatch).

Optimum posterior estimates of fluxes are obtained by minimizing the cost function J:

(2)

where xb is the first guess or a priori state vector; Pb is a priori error covariance matrix, 

which represents the uncertainties in our a priori knowledge about the fluxes; and R is the 
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error covariance matrix, which represents the uncertainties in the observation operator and 

the observations, also known as model–data mismatch.

We aim to use observations distributed in time to constrain a state vector potentially 

evolving with time. Thus, the minimization of Eq. (2) leads to the well-known Kalman filter 

equations (Lorenc, 1986):

(3)

(4)

(5)

(6)

(7)

Here, xa is the analysis state vector or the optimized fluxes and Pa is the analysis error 

covariance matrix. K is the Kalman gain matrix, and it modulates the correction being 

applied to the a priori state vector as well as the a priori error covariance matrix.

Equations (6) and (7) are the evolution equations of the filter. Here, we consider persistence 

for x and, thus, the evolution operator M will be the identity matrix with no evolution error 

covariance Q. Therefore, the new state vector and error covariance will be the analysis state 

vector and error covariance calculated in the previous time step.

It is commonly assumed that the initial covariance Pb follows an exponential model, 

(Mueller et al., 2008; Shiga et al., 2013), where σi represents the uncertainty for the pixel i 
(considered here as 100% of the pixel emissions), di,j represents the distance between the 

pixels i and j, and L is the correlation length of the spatial field:

(8)

This analytical framework allows us to evaluate each network configuration by selecting a 

reasonable state vector x, which will be considered as the actual emissions and employed 

using Eq. (1) to generate synthetic observations (pseudo-observations) with added 

statistically independent Gaussian random errors εr consistent with diagonal R. The standard 
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deviation (SD) of the added Gaussian errors is selected to be 5 ppm, and it aims to reproduce 

the uncertainties in the observations (0.1 ppm) and the modeling framework (4.999 ppm). 

When considering the case of low-cost, low-accuracy mixing ratio sensors, the uncertainty 

was increased to 7 ppm, as a result of assuming a sensor uncertainty of 4.9 ppm. Drift in 

these sensors is treated as a bias in the observations that linearly increases with time; all 

sensors drift with the same rate during one month. We simulated 1, 3 and 5 ppm as total drift 

over the course of a month in the simulation. We understand that the sensors would probably 

drift differently with an instrument-specific non-constant rate, causing biases (or 

compensating biases) and spurious spatial gradients. However, the assumption of a linear 

drift increasing with time at a constant rate equal for all the sensors allows us to get an 

estimation of the impact of the drift in a simple way, avoiding the possible compensation 

between the different sensors drifts.

It is worth noting that in the current standard, high accuracy networks (0.1 ppm) require very 

expensive sensors, costly infrastructure, and recurrent calibration strategies. The technical 

requirements for operating a low accuracy sensor network (4.9 ppm) are less stringent than 

the current standards and, therefore, the cost (sensors, installation and maintenance/

calibration) will be much lower. Nevertheless, the feasibility of such a network is still an 

open question and it has to be further studied and demonstrated.

We apply the filter forwards in time with a time window of six hours, advancing one hour in 

each iteration by using as initial estimate that is half the value of the true emissions. Then, 

we compare the analysis state vector retrieved in each iteration with the assumed true value 

to assess the merit of the observation system (bias and SD of the differences between the 

retrieved and true emissions). In addition, we compare the analysis error covariance matrix 

Pa for the last time-step with the initial error covariance matrix Pb, to evaluate the capability 

of the system to reduce the uncertainty in our estimates [uncertainty reduction: Eq. (9)]:

(9)

The actual emissions assumed here aim to represent three kinds of sources; area sources, 

transportation sources, and point sources. Two area sources are defined: urban emissions are 

based on the urban fraction computed from the MODIS-IGBP land cover, multiplied by 5 

µmol m−2 s−1, with the remaining area assumed to emit 1 µmol m−2 s−1. Emissions from 

main roads are assumed to be 30 µmol m−2 s−1. Point source emissions are taken from the 

EPA GHG inventory, normalized by the area of one pixel (~ 1 km2). This inventory allows 

us to test the capabilities of the network for recovering a wide range of emissions (1–2400 

µmol m−2 s−1) spatially distributed in a high resolution grid (Fig. 1). The simulated CO2 

enhancements by using the inventory proposed here provided time series at the different 

stations with mean enhancements ranging from 3.5 to 8.5 ppm, a median from 1 to 4.4 ppm, 

and SD between 4 and 14 ppm, resembling the atmospheric variability observed in other 

urban settings (McKain et al., 2012; Lauvaux et al., 2016)
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The diurnal cycle of photosynthesis and respiration significantly influences atmospheric 

mixing ratios of CO2, specifically in summer; photosynthesis draws down atmospheric CO2 

during the daytime when fossil fuel CO2 is maximized. The presence of biogenic fluxes will, 

therefore, reduce the CO2 enhancements measured at the towers, increasing the relative 

importance of the uncertainties over the signal, thus significantly weakening the ability to 

estimate fossil fuel emissions in an urban environment. Although the a posteriori error 

covariance does not depend on the enhancements nor the a priori fluxes, the inclusion of 

biogenic fluxes will impact the values of the overall uncertainty reduction due to the fact that 

the a priori error covariance will account for the presence of those fluxes. This limitation 

will be important in determining the actual performance of a network configuration, 

especially in summer (July), but it will not have any impact on the comparison between 

network configurations.

3. Results and discussion

The correlation length used in the initial covariance Pb impacts observing system 

capabilities to constrain fluxes (Fig. 2). By using a correlation length equal to the grid 

resolution (1 km), the inversion system is challenged to constrain the fluxes. Most of the 

correction is applied nearby tower locations and is reflected in the bias and SD shown in Fig. 

2. Larger correlation lengths positively impact retrieval quality, considerably reducing the 

bias and SD. However, as the correlation length is allowed to increase to 20 km, the SD 

increases, indicating that for this case, a correlation length of ~10 km seems appropriate 

(Fig. 2b). Similar performance in terms of the bias is also observed in Fig. 2a. This behavior 

seems to be in agreement with Lauvaux et al. (2012), who showed that including 

correlations that are too large can lead to an overly constrained system. Published values of 

the correlation length ranges from a few kilometers (< 10 km) to hundreds or thousands of 

kilometers (Mueller et al., 2008; Lauvaux et al., 2012, 2016). Typically, small values of the 

correlation length are associated with high-resolution studies conducted in a small domain 

with a relatively high density network, as seen in INFLUX (Lauvaux et al., 2016) and the 

case in this study, while large correlation length values are seen in low-resolution inversions 

in regional to global domains with sparse networks (Mueller et al., 2008).

The user-defined threshold controls the compactness of the network, with higher threshold 

values resulting in a more compact network (Figs. 3a and b). The Baltimore area presents a 

denser network in all cases, probably due to higher variability in the meteorological 

conditions between stations due to the local effects produced by the proximity of 

Chesapeake Bay. The presence of more towers in the same area increases the uncertainty 

reduction in that specific area, leading to better local flux constraint. However, better 

performances in terms of total CO2 retrieved fluxes are achieved by using lower threshold 

values (Figs. 3c and d), due to the increased network spatial coverage. In addition, the mean 

uncertainty reduction in February for the urban land use is 29.5%, 30.5%, 30.2% and 28.2%, 

for threshold values of 15%, 25%, 35% and 45%, respectively. This indicates that too 

compact a network loses spatial coverage whilst too dispersed a network loses capability in 

constraining flux uncertainties. The selected threshold values covered the full range of urban 

contribution for the candidate towers. We do not expect the results to significantly improve 

the performances of the network in the threshold range of 25%–35%, due to the discrete 
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nature of the possible candidates and the small differences between the values of uncertainty 

reduction shown for those two threshold values.

Figure 4 compares the mean CO2 flux estimated uncertainty for the urban area by using 

randomly selected networks and the proposed clustering approach. Both months, February 

and July, show a similar declining trend as the number of towers increases. However, July 

presents larger values of uncertainty, which is related to weaker sensitivities. The fact that 

the random method is significantly different from the clustering method shows that the latter 

is selecting observing locations in a smarter way. For instance, the random method could 

select two towers too close together and, therefore, the footprints would be highly 

overlapped, reducing the spatial coverage of the network. Another possibility is that the 

random method could pick locations too close to the edge of the urban area or with too little 

urban contribution, limiting the impact of that location on the inversion. From the results 

shown here, the proposed approach to select towers outperforms the random method. The 

benefits of the clustering approach are larger for July and for low tower numbers. 

Preselection of potential tower locations in the first stage improves the performances of the 

randomly selected networks, as there are only towers within the urban land use region 

available for selection, and therefore contributing to the networks’ measurement ability.

Figure 5 shows the average sensitivity and uncertainty reduction for the designed networks 

for the months of February and July using 12 towers, a 25% threshold (minimum urban CO2 

contribution for a given tower candidate), and a 10 km correlation length. It is worth noting 

that during the summer (July), the excess of energy causes deeper boundary layers and 

enhanced mixing that reduces the tower sensitivity to the surface fluxes (footprints). 

Therefore, weaker sensitivities lead to smaller uncertainty reduction. Winter (February) is 

the opposite, showing larger values of sensitivities and uncertainty reduction. During spring 

and autumn, we can assume the situation will be something between the two, being that 

these two months are representative of the two extreme cases during the year. The tower 

distribution is also different for each month, caused by the different meteorological 

conditions. However, there are up to six coincident stations. In both cases, the networks 

show high sensitivity values for most of the MODIS-defined urban area. The average 

uncertainty reduction for the urban land use achieved by these networks is 31% and 25%, 

and the 95th percentile is 54% and 42% for February and July, respectively.

The average uncertainty reduction for urban land use increases as the number of towers 

increases, as expected (Fig. 6a). However, the uncertainty reduction is not additive and, 

therefore, the impact of adding towers decreases as the number of towers increases (Fig. 6b). 

The average uncertainty reduction per unit cost (ratio performance/cost) decreases 

proportionally to  As a consequence, low numbers of towers would seem to be a more 

efficient selection. Nevertheless, in absolute numbers, more towers mean more uncertainty 

reduction, as well as more spatial coverage. Similar results were shown in Wu et al. (2016). 

On the other hand, by using low-accuracy sensors, the trend is conserved but shifted to lower 

values of average uncertainty reduction. For instance, 12 low-cost, low-accuracy sensors 

would perform the same as 7 high-accuracy sensors (Fig. 6a). However, assuming the high-

accuracy sensors network would cost 10 times more than the low-accuracy sensors network 
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(including the price of the sensors, installation and maintenance/calibration), the benefits of 

using the low cost sensors is rather clear. In this case, the average uncertainty reduction per 

unit cost (ratio performance/marginal cost) of a 96 low-cost sensors network is comparable 

to a network with 3–4 high-accuracy sensors (Fig. 6b). This fact impacts the capabilities of 

the network in reducing uncertainty and the spatial coverage.

Despite the decreased efficiency per tower, adding new towers allows us to “see” areas 

nearby the added towers (Fig. 7). Thus, a network with too few stations (Fig. 7a), or one that 

is overly dense (Fig. 7b), would not be sufficient to constrain the fluxes for the whole urban 

area of Washington D.C. and Baltimore. Networks with a larger number of observing points 

(Figs. 7c and d) would cover the urban areas with considerably improved values of 

uncertainty reduction.

The addition of observing points also impacts the quality of the retrieved CO2 fluxes, as 

lower bias and SD are obtained by using a larger number of towers (Fig. 8). In addition, the 

convergence to the true values is faster with a large number of towers, reducing the response 

time of the filter (Fig. 8a). Thus, by using 12 towers, the spin-up time of the filter is in the 

order of 100 h, 20 days, if we use just 5 h during the afternoon hours. On the other hand, by 

using 96 towers, the spin-up time of the filter is reduced to just 10 h, 2 days. Reducing the 

spin-up time of the filter directly impacts the analysis system’s ability to constrain time-

dependent fluxes to shorter time scales.

Sensor drift is a bias in nature. Such drift disrupts the Gaussian assumptions, therefore 

biasing the retrieved fluxes. Low drift (1 ppm) results in small bias, slowly increasing with 

time. In addition, the SD is also low and comparable to the case with no drift (Fig. 9). On the 

other hand, larger drifts (3 and 5 ppm) result in bias and SD dramatically increasing with 

time as the drift increases. This fact makes it unacceptable to perform inversions and 

periodic calibrations would be required in order to minimize the impact of the drift. From 

these results, an optimum calibration period for large drifts would be in the order of half of 

the spin-up time of the filter (~ 20 h in the case of February, with 24 observing points).

4. Conclusions

High-resolution simulations along with clustering analysis were used to design a network of 

surface stations for the area of Washington D.C./Baltimore. Thereafter, a Kalman filter 

within an OSSE was employed to evaluate the performances of different networks consisting 

of different number of towers and where the location of these towers varied. Additionally, 

we explored the possibility of using a very high density network of low-cost, low-accuracy 

sensors characterized by larger uncertainties and drift over time.

The results show that overly compact networks lose spatial coverage, whilst overly spread-

out networks lose capability in constraining uncertainties in the fluxes. July presents weaker 

sensitivities and, therefore, lower uncertainty reduction. The tower distribution is also 

different for each season, caused by the different meteorological conditions. However, there 

are up to six coincident stations. In both cases, the networks show high sensitivity values and 

uncertainty reduction for most of the urban land use.
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The average uncertainty reduction for the urban land use increases as the number of towers 

increases. However, the uncertainty reduction is not additive and, therefore, the impact of 

adding towers decreases as the number of towers increases. By using low-accuracy sensors, 

the trend is conserved but shifted to lower values of average uncertainty reduction. For 

instance, 12 low-cost, low-accuracy sensors would perform the same as 7 high-accuracy 

sensors. Nevertheless, the benefits of using low-cost sensors is rather clear. In this case, the 

average uncertainty reduction per unit cost (ratio performance/marginal cost) of a 96 low-

cost sensors network is comparable to a network with 3–4 high-accuracy sensors. This fact 

impacts the capability of the network in reducing uncertainty and the spatial coverage. In 

addition, the convergence to the true values is faster with a large number of towers, reducing 

the response time of the filter, which directly impacts our ability to constrain time-dependent 

fluxes at shorter time scales.

The drift is a bias in nature, which is added to the observations, therefore biasing the 

retrieved fluxes. Low drift results in bias and SD comparable to the case with no drift. On 

the other hand, larger drifts results in bias and SD dramatically increasing with time as the 

drift increases. This fact makes it unacceptable to perform inversions, and periodic 

calibrations would be required in order to minimize the impact of the drift.
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Fig. 1. 
Assumed CO2 emissions inventory.
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Fig. 2. 
The (a) bias and (b) standard deviation (SD) evolution of the CO2 flux retrieval for the urban 

land use in February (afternoon hours) by using 12 towers, a threshold of 25%, a model–data 

mismatch of 5 ppm, and five values of correlation length.
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Fig. 3. 
Uncertainty reduction using threshold values of (a) 15% and (b) 45%, and the (c) bias and 

(d) standard deviation (SD) evolution of the CO2 flux retrieval for the urban land use with 

four threshold values employed in the selection of the network for the month of February 

(afternoon hours) by using 12 towers, a correlation length 10 km, and a model–data 

mismatch of 5 ppm.
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Fig. 4. 
Mean CO2 flux estimated uncertainty for the urban area after a month of assimilation 

(afternoon hours only: 1700–2100 UTC) as a function of the number of towers employed 

using a randomly generated network (dashed lines) and the proposed clustering method 

(solid lines).
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Fig. 5. 
Average (a, b) sensitivity and (c, d) uncertainty reduction for the designed networks for the 

months of (a, c) February and (b, d) July, with 12 towers, a 25% threshold, and a 10 km 

correlation length. Red contours in the sensitivity plots correspond to 3.33×10−4 ppm (µmol 

m−2 s−1)−1.
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Fig. 6. 
The (a) average uncertainty reduction and (b) average uncertainty reduction per unit cost for 

the urban land use as a function of the number of towers after a month of assimilation 

(afternoon hours) for the months of February and July. The unit cost per tower is 10× for the 

case of 5 ppm and 1× for the case of 7 ppm.
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Fig. 7. 
Uncertainty reduction for networks using (a) 4, (b) 14, (c) 48 and (d) 96 observing points, 

with a correlation length 10 km and model–data mismatch of 5 ppm for July (afternoon 

hours).
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Fig. 8. 
The (a) bias and (b) standard deviation (SD) evolution of the CO2 flux retrieval for the urban 

land use in July (afternoon hours) by using 2, 4, 12, 48 and 96 observing points, with a 

correlation length of 10 km and model–data mismatch of 5 ppm.
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Fig. 9. 
The (a) bias and (b) standard deviation (SD) evolution of the CO2 flux retrieval for the urban 

land use in February (afternoon hours) by using 24 observing points, with a correlation 

length of 10 km, model–data mismatch of 5 ppm, and 0, 1, 3 and 5 ppm total drift.
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