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Abstract

The oviductal microenvironment is a site for key events that involve gamete maturation, fer-

tilization and early embryo development. Secretions into the oviductal lumen by either the

lining epithelium or by transudation of plasma constituents are known to contain elements

conducive for reproductive success. Although previous studies have identified some of

these factors involved in reproduction, knowledge of secreted proteins in the oviductal fluid

remains rudimentary with limited definition of function even in extensively studied species

like cattle. In this study, we used a shotgun proteomics approach followed by bioinformatics

sequence prediction to identify secreted proteins present in the bovine oviductal fluid (ex

vivo) and secretions from the bovine oviductal epithelial cells (in vitro). From a total of 2087

proteins identified, 266 proteins could be classified as secreted, 109 (41%) of which were

common for both in vivo and in vitro conditions. Pathway analysis indicated different classes

of proteins that included growth factors, metabolic regulators, immune modulators,

enzymes, and extracellular matrix components. Functional analysis revealed mechanisms

in the oviductal lumen linked to immune homeostasis, gamete maturation, fertilization and

early embryo development. These results point to several novel components that work

together with known elements mediating functional homeostasis, and highlight the diversity

of machinery associated with oviductal physiology and early events in cattle fertility.

Introduction

The oviductal microenvironment is a site for key events that involve gamete maturation, fertil-

ization and early embryo development, processes that ultimately determine reproductive suc-

cess. The oviductal epithelium has long been known to secrete specific proteins and metabolic

elements, which in addition to components derived from blood plasma forms the oviductal

fluid [1, 2]. In recent years, there has been accumulating evidence that several of these protein

components might contribute to developmental events that occur in this microenvironment

[3, 4]. In support, supplementing oviductal fluid components during in vitro fertilization
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(IVF) has demonstrated improved fertilization success and development rates [5–7]; co-cul-

ture with bovine oviductal epithelial cells (OECs) during IVF has indicated positive effects on

early development of embryos [8–12]. These effects have been particularly linked to regulation

of metabolic pathways [10, 13, 14], and in some cases epigenetic modulation of the developing

embryo [11, 15]. Nevertheless, a comprehensive evaluation of secreted proteins in the oviduc-

tal fluid remains to be conducted, and data exist only from targeted studies with limited defini-

tion of function even in extensively studied species like cattle [16, 17]

Early embryonic loss is a major basis for reduced fertility in cattle [18]. Following fertiliza-

tion, the embryo resides in the oviductal microenvironment for the first 3–4 days of develop-

ment, during which sequential cleavage leading up to the 16-cell stage occurs before the

embryo enters the uterus [19]. Efforts to study bovine oviductal fluid components started in

the late 1950s [20], with initial focus on total protein content and free amino acid levels [21–

23], and concentrations of metabolic components [21, 24]. Subsequent studies examining spe-

cific proteins in bovine oviductal fluid have largely taken topical or focused approaches, for

example, visualizing proteins that associate with gametes [25–27], immuno-identification of

glycoproteins synthesized at estrus [28, 29], insulin-like growth factors and binding proteins

[30]. Proteomic profiling of components in the oviductal fluid and uterine fluid have been per-

formed in other farm animal species like pigs [31, 32], and this has led to improvement of in
vitro embryo production methods [33]. However, potential proteins that could be present in

the bovine oviductal fluid have only been extrapolated from gene expression studies on the

oviductal epithelium [34–36].

Knowledge of the bovine oviductal microenvironment and its effect on physiology of early

embryo development would be important for improving in vitro embryo production methods

and perhaps identifying unique bovine pluripotency mediators. In the present investigation,

we use a shotgun proteomics approach to identify and compare secreted proteins in the bovine

oviductal fluid, and secretions from OECs in culture with and without stimulation. Our results

reveal several novel components that highlight the diversity of functions associated with the

oviductal microenvironment. These findings represent the first step towards improved under-

standing of factors that could influence early events in cattle fertility.

Materials and methods

Animals and reagents

Samples from Holstein cows (Bos taurus) were collected from the slaughterhouse (Cargill1,

Wyalusing, PA). Healthy reproductive tracts in both follicular and luteal phases of the estrous

cycle were included in this study. All reagents were purchased from Sigma-Aldrich (St Louis,

MO), unless otherwise noted.

Collection of oviductal fluid

Reproductive tracts were removed immediately after slaughter and both oviducts were isolated

for collection at random stages of the estrous cycle. Using a fire-polished glass Pasteur pipette,

fluid from the ampulla and isthmus of 28 cows (10–30 μl per animal) was collected by gentle

aspiration. Fluid collected were combined and centrifuged at 2000 x g for 5 minutes, superna-

tant then removed and filtered using a low protein binding 0.2 μm polyethersulfone syringe fil-

ter to remove any cells or debris. Samples were snap-frozen in liquid nitrogen and held at

-80˚C until further processing. The sample collection procedure was completed within 30 min-

utes after slaughter of the animal.
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Culture and characterization of OECs

Intact oviducts together with the tip of the uterine horn and the ovary were dissected immedi-

ately after slaughter and transported on ice in Dulbecco’s modified eagle medium (DMEM)

containing 10 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES) and

penicillin-streptomycin supplement. Chilled oviducts were dissected from the surrounding

connective tissue and washed several times using phosphate buffered saline (PBS). The region

of ampulla and isthmus were trimmed and retained in petridishes with M199 medium con-

taining penicillin streptomycin. The oviductal mucosa that contains the epithelial layer was

gently extruded by mechanical pressure using atraumatic forceps and collected in a separate

tissue culture dish containing the same medium in pairs (S1 Movie). The cell aggregates were

then gently dispersed using a fire-polished Pasteur pipette and centrifuged at 500 x g for 5 min-

utes in a swinging bucket centrifuge. The cell clusters were suspended in complete culture

medium M199 containing 10% fetal bovine serum, 1% non-essential amino acids supplement

and 1% penicillin-streptomycin and plated in tissue culture dishes and incubated at 37˚C

under an atmosphere of 5% CO2 to allow attachment and proliferation. Cell morphology and

growth was assessed visually, and subsequently OECs were evaluated for expression of the epi-

thelial marker cytokeratin (Fig 1).

Immunocytochemistry

Primary bovine OECs were grown on coverslips coated with 0.2% gelatin and fixed with 4%

formaldehyde. Cells were then permeabilized with 0.1% Triton X-100 in PBS for 1 minute and

blocked using 5% normal goat serum for 30 minutes. Coverslips were subsequently incubated

with a mouse monoclonal anti-cytokeratin antibody (1:200 dilution; Cell Signaling Technol-

ogy) for 1 hour. Coverslips were then washed three times using PBS and incubated with Alexa

Fluor conjugated anti-mouse Fab’ fragments for 30 minutes, washed again with PBS, counter-

stained/mounted with 4’,6-diamidino-2-phenylindole (DAPI) containing Prolong Gold

reagent (Life Technologies, Carlsbad, CA). Images were acquired using an inverted micro-

scope (DMI 3000, Leica) using a cooled monochromatic camera (DFC365FX, Leica).

Collection of OEC conditioned media

Confluent OEC mixed cultures from at least 10 different animals were used for generating two

types of OEC conditioned media mainly from apical secretions. First, adherent cells were

washed with two repeated changes of PBS followed by two repeated changes of serum free

M199 medium. For the 48-hour collection period (OEC-48), plates were returned to the incu-

bator and kept undisturbed for that duration. For the stimulated secretions (OEC-S4), fresh

serum free M199 medium supplemented with 5 ng/ml phorbol myristate acetate (PMA), 500

ng/ml of ionomycin and 0.5 mM of dibutyryl cyclic adenosine monophosphate (Bt2cAMP)

was added to the cells and incubated for 4 hours. Use of these secretagogues were to enhance

protein secretions mimicking cell activation signals that induce protein kinase A, protein

kinase C, and increase intracellular Ca2+ levels. At the end of the incubation period, media

were collected from the dishes, centrifuged at 500 x g for 5 minutes, filtered using a 0.2 μm

PES syringe filter, snap frozen in liquid nitrogen and stored at -80˚C until further processing.

Sample preparation and digestion

Protein concentrations were determined using BCA assay kit following manufacturer direc-

tions. Samples were then precipitated using the ProteoExtract Protein Precipitation Kit (Cal-

Biochem). Resulting protein pellet was solubilized in 6 M urea in 50mM ammonium
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bicarbonate. Dithiothreitol (DTT) was added to a final concentration of 5 mM and samples

were incubated for 30 min at 37˚C. Subsequently, 20 mM iodoacetamide (IAA) was added to a

final concentration of 15 mM and incubated for 30 min at room temperature, followed by the

addition of 20 μL DTT to quench the IAA reaction. Lys-C/trypsin (Promega) was used at a

1:25 ratio (enzyme:protein) and incubated at 37˚C for four hours. Samples were then diluted

to<1 M urea by the addition of 50 mM ammonium bicarbonate and digested overnight at

37˚C. The following day, samples were desalted using C18 Macro Spin columns (Nest Group)

and dried down by vacuum centrifugation.

Fig 1. Collection of oviductal cell secretions. Oviducts were dissected and removed from the

mesosalphinx and fluid was collected either by direct aspiration (ex vivo) or after the culture of the oviductal

epithelium (in vitro). Media used for culturing oviductal epithelial cells (OECs) were collected after passive

conditioning for 48 hours or after a 4-hour stimulation with phorbol myristate acetate (PMA), ionomycin and

dibutyryl cyclic adenosine monophosphate (Bt2cAMP). (1) Extruded oviductal mucosa containing intact

epithelial sheets. (2) Representative image showing attachment and growth of the oviductal epithelial cells

after 2–3 days in culture (Scale bar 300 μm). Immunohistochemistry for cytokeratin as a marker for OECs

showed that the cultures established by this method were of high purity (Scale bar 200 μm).

https://doi.org/10.1371/journal.pone.0188105.g001
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LC-MS/MS analysis

LC separation was done on a Proxeon Easy-nLC II HPLC (Thermo Scientific) with a Proxeon

nanospray source. The digested peptides were reconstituted in 2% acetonitrile/0.1% trifluoroa-

cetic acid and 10 μl of each sample was loaded onto a 100 μm x 25 mm Magic C18 100Å 5U

reverse phase trap where they were desalted online before being separated on a 75 μm x 150

mm Magic C18 200Å 3U reverse phase column. Peptides were eluted using a gradient of 0.1%

formic acid and 100% acetonitrile with a flow rate of 300 nL/min. A 120-min gradient was run

with 5% to 35% acetonitrile over 100 min, 35% to 80% acetonitrile over 10 min, 80% acetoni-

trile for 2 min, 80% to 5% acetonitrile over 5 min, and finally held at 5% acetonitrile for 5 min.

Mass spectra was collected on an Orbitrap Q Exactive mass spectrometer (Thermo Fisher

Scientific) in a data-dependent mode with one MS precursor scan followed by 15 MS/MS

scans. A dynamic exclusion of 5 sec was used. MS spectra were acquired with a resolution of

70,000 and a target of 1 × 106 ions or a maximum injection time of 20 msec. MS/MS spectra

were acquired with a resolution of 17,500 and a target of 5 × 104 ions or a maximum injection

time of 250 msec. Peptide fragmentation was performed using higher-energy collision dissoci-

ation (HCD) with a normalized collision energy (NCE) value of 27. Unassigned charge states

as well as +1 and ions > +5 were excluded from MS/MS fragmentation.

Database searching

Tandem mass spectra were extracted by Proteome Discoverer v1.2. Charge state deconvolu-

tion and deisotoping were not performed. All MS/MS samples were analyzed using X! Tandem

(The GPM, www.thegpm.org; version CYCLONE 2013.02.01.1). X! Tandem was set up to

search the Uniprot bovine proteome (23,942 entries) and 116 common laboratory contami-

nants (www.thegpm.org/crap) with an equal number of reverse decoy sequences assuming the

digestion enzyme trypsin. X! Tandem was searched with a fragment ion mass tolerance of 20

PPM and a parent ion tolerance of 20 PPM. Carbamidomethyl of cysteine was specified in X!

Tandem as a fixed modification. Glu->pyro-Glu of the n-terminus, ammonia-loss of the n-ter-

minus, gln->pyro-Glu of the n-terminus, deamidated of asparagine and glutamine, oxidation

of methionine and tryptophan, dioxidation of methionine and tryptophan and acetyl of the n-

terminus were specified in X! Tandem as variable modifications.

Criteria for protein identification

Scaffold (version 4.2.0, Proteome Software Inc., Portland, OR) was used to validate MS/MS

based peptide and protein identifications. Peptide identifications were accepted if they could

be established at greater than 79.0% probability by the Scaffold Local FDR algorithm. Protein

identifications were accepted if they could be established at greater than 95.0% probability to

achieve an FDR less than 5.0% and contained at least 2 unique peptides. This resulted in a

spectra decoy FDR of 0.35% and a protein decoy FDR of 4.9%. Protein probabilities were

assigned by the Protein Prophet algorithm [37]. Proteins that contained similar peptides and

could not be differentiated based on MS/MS analysis alone were grouped to satisfy the princi-

ples of parsimony. Proteins sharing significant peptide evidence were grouped into clusters.

Analysis of identified proteins

To predict proteins secreted via the classical secretory pathway in the resulting dataset, we

used SignalP v4.1 (http://www.cbs.dtu.dk/services/SignalP/) [38] to identify N-terminal

sequence motifs directing proteins to the secretory pathway, in tandem we used TargetP v1.01

(www.cbs.dtu.dk/services/TargetP) [39] to refine this dataset by removing proteins destined
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for the mitochondria [40]. This predicted dataset was further refined using Phobius (http://

phobius.sbc.su.se/) [41] to remove proteins that contained transmembrane regions. In this

overall analysis, proteins were considered secreted if they contained an N-terminal secretory

sequence, did not traffic to the mitochondria, and lacked transmembrane regions. In parallel,

to predict proteins secreted via the non-classical secretory pathway in the same dataset, we

used SecretomeP v2.0 (http://www.cbs.dtu.dk/services/SecretomeP/) [42] for feature-based

analysis and identification of secreted proteins that do not contain an N-terminal signal

sequence motif. Results from SecretomeP were further filtered using Phobius as described

above. In this pipeline, glycosylphosphatidylinositol anchored surface proteins would also be

identified as secreted. The resulting protein lists were classified by using gene ontology (GO)

terms using PANTHER (protein analysis through evolutionary relationships tool [43]. For

integrated functional evaluation, the proteins identified were also analyzed using Ingenuity1

pathway analysis (IPA) to model and interpret biological significance of identified compo-

nents. Common candidates in the proteomics dataset and from reanalysis of two published

transcriptomics datasets from Bos taurus (NCBI GEO: GSE74612 [44]), and Bos indicus (GEO

GSE65681 [36]), were identified and visualized as Circos plots [45], together with the classifi-

cation based on GO terms.

Data availability

Raw data, mzML and Scaffold results are available from the MassIVE proteomics repository

(MSV000081192) and Proteome Exchange (PXD006794). Complete protein lists are provided

in supporting information (S1 Dataset).

Results and discussion

Secreted proteins in the bovine oviductal fluid

Experimental groups in this study enabled the identification of proteins that were secreted

under ex vivo (OF) and in vitro (OEC-48 and OEC-S4) conditions (Fig 1). Cytokeratin expres-

sion evaluated in the in vitro cultures showed that OECs were of high purity without any con-

taminating fibroblasts (Fig 1). Protein mass spectrometric analysis identified a total of 2087

proteins combined for the three groups: 1289 proteins in OF, 1148 proteins in OEC-48, and

1391 proteins in OEC-S4. Within this combined list that would include proteins present

within exosomes or released from damaged cells, 266 proteins passed the SignalP, TargetP,

SecretomeP and Phobius filters indicating the putative number of secreted proteins identified:

148 proteins in OF, 200 proteins in OEC-48, and 151 proteins in OEC-S4. Of these, 68 proteins

(26%) were common for all three groups (S1 Table), 109 proteins (41%) were common

between in vivo and in vitro conditions, and 165 proteins (62%) were common for at least two

of the groups (Fig 2A and 2B, S1 Dataset). We did not detect immunoglobulins in any of the

samples demonstrating that our sampling method was without plasma/serum contamination.

General categories of function for proteins identified in the oviductal secretome based on

biological process or molecular function (Fig 3) were aligned to the major physiological pro-

cesses that occur in the oviductal lumen. When the list of secreted proteins identified were

compared to oviduct transcriptomics data from two different studies, we identified 236 (89%)

of the proteins identified also represented as transcripts in Maillo et al. [35], and 200 (75%) in

Gonella-Diaza et al. [36] (Fig 4). This also highlighted an important finding that most of the

proteins detected were synthesized and secreted by the oviductal epithelium, and that there

was little contribution of plasma protein components to the oviductal fluid (S2 Table). This is

in contrast to a previous observation made in rabbits in which immunoglobulins and albumin

were identified as major components [46]. We can only speculate the reason underlying this
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distinction, and one possibility is the species differences that are known to impact events that

occur in the oviduct.

The list of proteins and the experimental group in which they were detected are presented

based on broad categorizations as, growth factors and cytokines integral to this functional

niche (Table 1), homeostasis maintained by protease and protease inhibitors (Table 2), other

enzymes involved in a variety of functions (Table 3), other proteins associated with gamete

maturation fertilization and preimplantation embryo development (Table 4). Although, a sub-

set of these proteins identified are already supported by functional evidence in the literature

from different species, we identified several proteins and associated physiological pathways

that have not been previously reported for this microenvironment. In sections below, we focus

in brief on the relevance of these results and discuss their importance in understanding fertility

in cattle.

Growth factors and cytokines

Developmental functions that occur in the oviductal microenvironment are known to be sup-

ported by factors that signal to gametes or embryo in the lumen. Among the proteins classified

as growth factors and cytokines (Table 1), only 15 have been linked in previous reports to

potential functions in the oviduct. The remaining 24 proteins were candidates detected in this

microenviroment for the first time, the functional significance of which remains to be uncov-

ered. Expression of macrophage colony stimulating factor 1 (CSF1) has been reported to

increase after lipopolysaccharide exposure in the bovine oviductal epithelium [47]. CSF1 has

been shown to accelerate development in bovine embryos [48, 49]. Although function remains

unclear, hepatocyte growth factor has been reported in human oviductal fluid [50]. Activin/

inhibin subunits have been identified in the murine oviduct as responsible for stimulating

early embryogenesis [51]. During bovine embryogenesis, platelet derived growth factor

(PDGF) is known to stimulate development during the fourth cell cycle [52]. Transforming

growth factor β and vascular endothelial growth factor have been previously identified in the

bovine oviduct [53], and may play a role in the developmental competence of bovine oocytes

Fig 2. Comparison of proteins identified under different collection methods for oviductal cell secretion

conditions. A total of 266 secreted proteins were identified. (A) Distribution of proteins that were unique or common

between the three different groups: oviductal fluid (OF) and conditioned media obtained from oviductal epithelial cell

cultures without (OEC-48) or after stimulation (OEC-S4). A subset of 68 proteins was common for the three groups.

OEC-S4 had the least number of unique proteins that were not represented in OF or OEC-48. (B) Distribution of the

percentage of unique and common proteins within each of the three collection groups.

https://doi.org/10.1371/journal.pone.0188105.g002
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[54], and promote early embryonic development [55]. It has been suggested that BMP signal-

ing is involved in crosstalk between the oviduct and the embryo during early stages of develop-

ment [56].

Cytokines that included several inflammation-associated candidates were found to be

expressed by oviductal cells (Table 1). Only few of these have been previously reported in the

oviduct for any species. Early studies have demonstrated synthesis of leukemia inhibitory fac-

tor (LIF) by bovine oviductal cells [57]. LIF expression is known to have beneficial effects on

Fig 3. Gene ontology (GO) classification for all proteins identified in oviductal cell secretions.

Distribution of GO terms describing (A) biological processes, and (B) molecular functions for the number of

identified secreted proteins.

https://doi.org/10.1371/journal.pone.0188105.g003
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sheep oocytes [58], and early embryos [59]; similar results have been recently reported for cat-

tle [49, 60]. Interleukin 8 expression, often connected to inflammation, has been reported in

human fallopian tubes [61]. Macrophage migration inhibitory factor has been identified in

bovine oviducts with higher levels detected in the postovulatory phase, but its function remains

unclear [62]. Previous studies have detected and linked osteopontin expression in the bovine

oviduct [63], with a role in sperm-egg binding and fertilization [64]. Conserved functions for

osteopontin have also been reported in porcine [65], and murine oviducts [66]. The tumor

necrosis factor α system has been suggested to be responsible for local contractions modulat-

ing transport of the gametes and embryos [67].

Proteases and protease inhibitors

Protease activity has been reported in oviducts in several species, and some of their functions

have been linked to sperm capacitation [68, 69]. We identified 27 proteases and 16 protease

inhibitors expressed by oviductal cells (Table 2). Cathepsins are considered to be involved in

gamete maturation leading to fertilization, and we identified several cathepsins (A, B, C, D, V

and Z) produced by the oviductal cells. Previous studies have reported cathepsins in the ovi-

ducts of domestic cats [70], hamsters [71], and llamas [72]. Components of the complement

pathway were also identified (S1 Fig). Complements have been suggested to be important for

sperm-oocyte interaction [73, 74]; complement components are also known to be activated by

spermatozoa and could cause acrosome loss in rabbit spermatozoa [75]. Complements have

also been demonstrated to stimulate embryo development [76, 77]. Although furin has not

been reported in the oviductal secretions, its role in protein processing in the epididymal fluid

Fig 4. Comparison of oviductal cell secreted proteins to transcriptome of the bovine oviduct from two published

datasets. Of the 266 secreted proteins identified in oviductal cells, 236 (89%) and 200 (75%) of the proteins were

detected as transcripts in the oviduct by Maillo et al. [35], and the Gonella-Diaza et al. [36] respectively. This comparison

indicates that almost 90% of the proteins identified in this study are synthesized by the oviductal epithelium, with only 30

(11%) of proteins putatively derived by plasma protein transudation.

https://doi.org/10.1371/journal.pone.0188105.g004
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has been suggested [78]. Haptoglobin mRNA has been previously reported in the oviduct of

cycling cows [79]. Kallikrien-related peptidases have been linked to a role in host defence in

cervical mucus [80]. Lactotransferrin has been reported in human oviducts as a modulator of

gamete interaction [81].

Table 1. Growth factors and cytokines in the oviductal cell secretions.

Protein name Accession OF OEC-48 OEC-S4

Growth factors

Bone morphogenetic protein 7* F1MLT0 ●
Connective tissue growth factor O18739 ● ●
C type lectin domain family 11, member A A5D7L1 ●
Endothelial cell specific molecule 1 A5D7V3 ● ● ●
Fibroblast growth factor 18 Q0VCA0 ●
Fibroblast growth factor 21* E1BDA6 ●
Glia maturation factor beta P60984 ● ● ●
Granulin E1BHY6 ● ●
Growth arrest specific 6 F1MZ40 ● ● ●
Growth differentiation factor 15 E1BBL5 ●
Hepatocyte growth factor Q76BS1 ●
Hepatoma derived growth factor Q9XSK7 ● ● ●
Inhibin, beta A chain P07995 ●
Kit ligand Q28132 ●
Macrophage colony stimulating factor 1 F1MGS9 ● ●
Midkinea Q9N0E6 ●
Nephroblastoma overexpressed Q2HJ34 ●
Nicotinamide phosphoribosyltransferase* F1MJ80 ●
Pigment epithelium derived factor Q95121 ●
Platelet derived growth factor C E1BJY4 ● ●
Transforming growth factor beta 1 P18341 ● ●
Transforming growth factor beta 2 P21214 ●
Vascular endothelial growth factor A P15691 ● ●

Cytokines

Complement component 5a F1MY85 ●
C-X-C motif chemokine 16 Q29RT9 ● ●
C-X-C motif chemokine 6 P80221 ●
Dickkopf wnt signaling pathway inhibitor 3 A6QL81 ● ●
Family with sequence similarity 3, member B E1BQ21 ● ●
Family with sequence similarity 3, member C A5PKI3 ● ●
Family with sequence similarity 3, member D E1BDN9 ●
Growth regulated protein homolog gamma O46675 ●
Interleukin 8 P79255 ●
Leukemia inhibitory factor Q27956 ● ●
Macrophage migration inhibitory factor P80177 ● ●
Myeloid derived growth factor P62248 ● ●
Osteopontin P31096 ● ●
Small inducible cytokine subfamily E, member 1 Q3ZBX5 ● ● ●
Tumor necrosis factor ligand 1B E1BF06 ●

* Exceptions: Proteins identified with only one unique peptide

https://doi.org/10.1371/journal.pone.0188105.t001
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Table 2. Proteases and protease inhibitors in the oviductal cell secretions.

Protein name Accession OF OEC-48 OEC-S4

Proteases

Cathepsin A Q3MI05 ● ●
Cathepsin B P07688 ● ● ●
Cathepsin C F1N455 ● ●
Cathepsin D F1MMR6 ● ●
Cathepsin V P25975 ● ● ●
Cathepsin Z P05689 ● ●
Coagulation factor II P00735 ● ●
Complement C1S Q0VCX1 ●
Complement C2 Q0V7N2 ● ●
Complement C3 Q2UVX4 ● ● ●
Complement factor B P81187 ● ● ●
Complement factor D Q3T0A3 ● ●
Furin Q28193 ●
Gamma glutamyl hydrolase A7YWG4 ●
Granzyme A F6QZF5 ●
Haptoglobin Q2TBU0 ●
Serine protease HTRA 1 F1N152 ● ● ●
Kallikrein related peptidase 10 Q0VCZ4 ● ●
Lactotransferrin P24627 ● ● ●
Legumain Q95M12 ●
Matrix metalloproteinase 1 F1MT97 ●
Matrix metalloproteinase 2 Q9GLE5 ●
Plasminogen E1B726 ● ● ●
Protein disulfide isomerase A5D7E8 ● ● ●
Tissue type plasminogen activator Q28198 ● ● ●
Tripeptidyl peptidase I Q0V8B6 ●
Urokinase type plasminogen activator Q05589 ● ●

Protease Inhibitors

Alpha-1-antiproteinase P34955 ● ● ●
Alpha-2-antiplasmin P28800 ● ●
Alpha-2-HS-glycoprotein P12763 ● ● ●
Alpha-2-macroglobulin Q7SIH1 ● ● ●
Angiotensinogen Q3SZH5 ●
Antithrombin III P41361 ● ● ●
Cystatin B F6QEL0 ● ● ●
Cystatin C P01035 ● ● ●
Metalloproteinase inhibitor 1 P20414 ● ● ●
Metalloproteinase inhibitor 2 F1N430 ● ● ●
Metalloproteinase inhibitor 3 P79121 ● ●
Serpin A3-1 Q9TTE1 ●
Serpin A3-7 A2I7N3 ● ● ●
Serpin A3-8 A6QPQ2 ●
Serpin D1 A6QPP2 ●
Serpin H1 Q2KJH6 ● ● ●

https://doi.org/10.1371/journal.pone.0188105.t002
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Table 3. Other enzymes identified in the oviductal cell secretions.

Protein name Accession OF OEC-48 OEC-S4

Acid ceramidase Q17QB3 ● ●
Alpha amylase F1MJQ3 ●
Alpha lactalbumin P00711 ●
Alpha-N-acetyl-galactosaminidase Q1RMM9 ● ●
Alpha-N-acetyl-glucosaminidase A6QM01 ●
Angiogenin 1 P10152 ●
Apolipoprotein A-1 binding protein Q6QRN6 ● ●
Arylsulfatase A Q08DD1 ● ●
Arylsulfatase B A6QLZ3 ● ●
Beta galactosidase Q58D55 ●
Beta hexosaminidase H7BWW2 ● ●
Beta hexosaminidase subunit alpha Q0V8R6 ● ●
Beta mannosidase Q29444 ●
Biotinidase A6QQ07 ● ●
Carbonic anhydrase IV Q95323 ● ●
Chitinase 3 like protein 1 G3X7D2 ● ●
Coagulation factor V Q28107 ● ● ●
Egf containing fibulin like extracellular matrix protein 1 A2VE41 ● ● ●
Egf domain-specific O-linked N-acetyl-glucosamine transferase A0JND3 ●
Endoplasmic reticulum protein 44 Q3T0L2 ● ● ●
Ero1 like protein A5PJN2 ● ●
Gamma interferon inducible lysosomal thiol reductase F1MAU3 ● ●
Glucose regulated protein 78 Q0VCX2 ● ● ●
Glucosidase 2 subunit beta Q28034 ● ● ●
Glutaminyl peptide cyclotransferase Q28120 ●
Heparanase F1N1G1 ●
Interferon, gamma inducible protein 30 A6QPN6 ● ●
Lysyl oxidase homolog 4 Q8MJ24 ● ●
Peptidylprolyl isomerase C Q08E11 ● ●
Peroxiredoxin 4 Q9BGI2 ● ● ●
Phospholipid transfer protein Q58DL9 ●
Procollagen lysine, 2-oxoglutarate 5-dioxygenase 1 O77588 ● ●
Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 A7MB83 ● ●
Prolyl 4-hydroxylase subunit alpha 1 A6QL77 ●
Prostaglandin-H2 D-isomerase O02853 ● ●
Protein disulfide isomerase A6H7J6 ● ● ●
Protein disulfide isomerase A4 F1MEN8 ● ● ●
Protein O-fucosyltransferase 1 Q7YRE7 ●
Protein O-glucosyltransferase 1 Q5E9Q1 ●
Ribonuclease 4 Q58DP6 ● ●
Serpin peptidase inhibitor, clade C, member 1 P41361 ● ● ●
Stromal cell derived factor 2 Q3SZ45 ●
Sulfhydryl oxidase F1MM32 ● ● ●
Superoxide dismutase A3KLR9 ● ● ●
Tissue alpha-L-fucosidase Q2KIM0 ●
Vanin 1 Q58CQ9 ● ●

https://doi.org/10.1371/journal.pone.0188105.t003

Bovine oviductal secretome

PLOS ONE | https://doi.org/10.1371/journal.pone.0188105 November 20, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0188105.t003
https://doi.org/10.1371/journal.pone.0188105


The proteases plasminogen, tissue type plasminogen activator, urokinase type plasminogen

activator, and the protease inhibitor α-2-antiplasmin were identified in the oviductal secre-

tions. Plasminogen/plasmin system has been suggested to regulate sperm entry into the oocyte

in multiple species [82, 83]. In addition, α2 macroglobulin known to inhibit proteases from all

catalytic classes was also identified in the oviductal cell secretions for the first time. An immu-

noprotective role for placenta-sourced α2 macroglobulin has been suggested for this acute

phase protein in rats [84]. Other candidates that regulate extracellular matrix remodeling were

also present in the oviductal secretions (S2 Fig). Matrix metalloproteinases (MMP 1 and 2),

and corresponding tissue inhibitors of metalloproteinases (TIMP 1, 2 and 3) were identified in

the oviductal secretome. Differential expression for MMPs and TIMPs have been reported in

the bovine oviduct during the estrous cycle [85], with potential effects across fertilization and

early embryonic development.

Inhibitors of acrosomal and other lysosomal proteases like α-1-antiproteinase/antitrypsin

and different serpins (A3-1, A3-7, A3-8, D1 and H1), cystatins (B and C) were identified. Simi-

lar inhibitors of acrosomal proteases has been reported in oviductal fluid collected from the

rhesus monkey [86] and the rabbit [87].

Other enzymes

In addition to the proteases indicated above, the oviductal cell secretions contained numerous

enzymes (Table 3). Of these, only a few have been previously identified in the oviduct in differ-

ent species. Ceramide metabolism mediated by acid ceramidase has been demonstrated to be

critical for early embryo survival in mice [88]. Glycosidase activities in bovine oviductal fluid

have been reported in previous studies [89]. These enzymes have been associated with modifi-

cations to the oocyte zona pellucida and capacitation of spermatozoa. In addition to glucosi-

dase 2 reported in sheep [90] and cows [23], this study also identified 6 specific enzymes that

may be linked to specific carbohydrate modifications previously measured in the oviductal

Table 4. Other proteins associated with gamete maturation, fertilization and preimplantation embryonic development in the oviductal cell

secretions.

Protein name Accession OF OEC-48 OEC-S4

Alpha-1-acid glycoprotein Q3SZR3 ● ●
Apolipoprotein A-I P15497 ● ● ●
Apolipoprotein A-IV F1N3Q7 ●
Apolipoprotein C-III P19035 ●
Apolipoprotein D Q32KY0 ●
Apolipoprotein H P17690 ● ●
Calreticulin P52193 ● ● ●
Endoplasmin Q95M18 ● ● ●
Fetuin B Q58D62 ● ●
Fibronectin P07589 ● ● ●
Oviduct specific glycoprotein Q28042 ● ● ●
Prosaposin P26779 ● ● ●
Serum Albumin P02769 ● ● ●
Zinc alpha-2-glycoprotein Q3ZCH5 ● ● ●
Complement C5a F1MY85 ● ●
Follistatin P50291 ● ●
Gelsolin F1N1I6 ● ● ●

https://doi.org/10.1371/journal.pone.0188105.t004
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fluid [89]. Arylsulfatases (A and B) have been reported in the rabbit oviduct [91], and indicate

potential for glycoconjugate formation in this microenvironment [92]. Carbonic anhydrase IV

has been demonstrated to provide an essential role in bicarbonate mediated activation of

human and murine sperm [93, 94]. Chitinase-like proteins have been previously reported in

the sheep oviduct [95]. Chitinase 3 like protein 1 has been reported to regulate inflammation

and tissue remodeling [96]. Glucose-regulated protein 78 secreted in the human oviduct has

been demonstrated to decrease sperm zona pellucida binding [97]. Heparan sulfate proteogly-

cans and their binding proteins have been found to be important in the bovine reproductive

physiology. Heparanase has not been previously reported in the oviduct, but its function in the

uterus during implantation has been well studied in murine models [98, 99]. Phospholipid

transfer protein expression is known to be stimulated in response to embryos in the murine

oviduct [100]. Superoxide dismutase expression was also detected in the oviductal cell secre-

tions indicating antioxidant defense by reducing superoxide radicals in this microenviron-

ment. Superoxide dismutases have been previously reported in the bovine oviduct [101], and

its importance in redox regulation has been emphasized in several species.

Other proteins associated with gamete maturation, fertilization and

preimplantation embryo development

Among proteins that did not fall into one of the above categories, we identified several that are

of functional importance for gamete regulation, fertilization and preimplantation embryonic

development (Table 4). In male fertility, apolipoprotein A-1 has been associated with sperm

motility [102]. Apolipoproteins can act as cholesterol acceptors that facilitate cholesterol efflux

from plasma membrane of spermatozoa [103], a necessary event for capacitation/hyperactiva-

tion. Specific association of apolipoprotein A-1 to bovine seminal plasma proteins [104] and

modulation of sperm capacitation [105] have been previously demonstrated. Expression of

apolipoproteins in the oviduct has been reported in different mammalian model systems: Apo-

lipoprotein D has been detected in guineapig oviducts [106]. Apolipoprotein A-1 has been

detected in rat oviducts [107]. An apolipoprotein H-like protein has been purified from

human follicular fluid [108]. In addition to apolipoproteins A-1 and D, apolipoproteins A-IV,

C-III, and H that were detected in this study have not been previously reported in mammalian

oviducts.

The oviductal secretome also contained factors that have been associated with sperm sur-

vival, transport, and signal transduction during fertilization. α-1-acid glycoprotein has been

reported to inhibit neutrophil phagocytosis of sperm in the bovine oviduct [109]. Fibronectin

has been demonstrated to stimulate human sperm capacitation by activating the protein kinase

A pathway [110]. Organization of the extracellular matrix and paracrine communication by

fibronectin has been identified to be important for early embryogenesis [111, 112]. Zinc-α-

2-glycoprotein has been demonstrated to induce cAMP signaling and modulate motility in

human sperm [113]. Calreticulin has been suggested to interact with the murine oocyte and

mediate signaling linked to cell cycle resumption [114]. Phosphorylation of endoplasmin

bound to murine spermatozoa has been associated zona pellucida interactions preceding fertil-

ization [115]. Fetuin B is vital for maintaining fertility of murine ovulated oocytes by blocking

ovastacin, a cortical granule protease known to trigger zona pellucida hardening [116]. Albu-

min has been found to increase blastocyst development in individual culture of bovine

embryos [117]. Follistatin has been shown to be important for bovine early embryo develop-

ment [118, 119]. Complement C5a has been shown to support human embryonic stem cell

pluripotency even in the absence of other growth factors [120] (S1 Fig).
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Conclusions

The oviduct presents a crucial site for gamete regulation including sperm capacitation, oocyte

maturation, fertilization and preimplantation development of the early embryo. This study

represents a comprehensive documentation of the bovine oviductal secretions comparing both

ex vivo intact oviducts and in vitro oviductal epithelial cells. It is of interest to note that transu-

dation from plasma contributes little to the defining characteristics of this luminal microenvi-

ronment in cattle. The secreted protein profile established for the oviductal fluid in this

manuscript forms the foundation for future functional studies for both advancing basic under-

standing and making improvements to reproduction technologies in cattle. Our proteomics

database will also serve as a long-term reference for addressing a variety of questions regarding

the bovine oviduct, and seed new discoveries and linkages over time; perhaps aspects that we

failed to appreciate given the current state of understanding will manifest with parallel

advancements to bovine reproductive function. Some areas not distinguished by this study are

the changes that may occur to the oviductal microenvironment with the estrous cycle [16, 121]

and microvesicles/exosomes present in the oviductal fluid that may deliver proteins to sperm

and regulate its functional activation [122, 123]. These remain important topics for future

investigations towards refining understanding of bovine oviductal physiology.
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