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Abstract

Purpose—Detecting signals of micrometastatic disease in patients with early breast cancer 

(EBC) could improve risk stratification and allow better tailoring of adjuvant therapies. We 
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previously showed that postoperative serum metabolomic profiles were predictive of relapse in a 

single-center cohort of estrogen receptor (ER)–negative EBC patients. Here, we investigated this 

further using preoperative serum samples from ER-positive, pre-menopausal women with EBC 

who were enrolled in an international phase III trial.

Experimental Design—Proton nuclear magnetic resonance (NMR) spectroscopy of 590 EBC 

samples (319 with relapse or ≥6 years clinical follow-up) and 109 metastatic breast cancer (MBC) 

samples was performed. A Random Forest (RF) classification model was built using a training set 

of 85 EBC and all MBC samples. The model was then applied to a test set of 234 EBC samples, 

and a risk of recurrence score was generated on the basis of the likelihood of the sample being 

misclassified as metastatic.

Results—In the training set, the RF model separated EBC from MBC with a discrimination 

accuracy of 84.9%. In the test set, the RF recurrence risk score correlated with relapse, with an 

AUC of 0.747 in ROC analysis. Accuracy was maximized at 71.3% (sensitivity, 70.8%; specificity, 

71.4%). The model performed independently of age, tumor size, grade, HER2 status and nodal 

status, and also of Adjuvant! Online risk of relapse score.

Conclusions—In a multicenter group of EBC patients, we developed a model based on 

preoperative serum metabolomic profiles that was prognostic for disease recurrence, independent 

of traditional clinicopathologic risk factors.

Introduction

In the treatment of early breast cancer (EBC), risk stratification based on prognostic features 

is critical to decisions about the appropriate adjuvant strategy, in particular whether or not 

chemotherapy is warranted. Molecular profiling of the primary tumor has improved on 

traditional clinicopathologic risk stratification, yet still a significant proportion of “high risk” 

patients do not relapse and may receive chemotherapy unnecessarily (1–3). In addition to 

focusing on the characteristics of the primary cancer, an improved method to detect the 

actual presence of micrometastatic disease would help to identify those who might benefit 

from adjuvant therapies and those who may not.

Metabolomics is the study of metabolites (small molecules) in blood, tissue, or other 

biological samples, where the presence and relative concentrations of these molecules can be 

used as evidence of cellular processes and functions. Given that cancer cells can have 

significantly altered metabolism, the pattern of metabolites produced can yield a “signature” 

that may indicate the cancer’s presence or behavior (4). Importantly, and in contrast to gene 

expression profiling as a risk stratifier, this is a signal that originates directly or indirectly 

from micrometastatic disease, rather than one derived from features of the primary tumor. 

Furthermore, the surrounding stroma and immune response may also contribute to an altered 

metabolomic profile, thus offering combined information on residual tumor and host 

response. A major challenge in metabolomics is detecting this signature against the dynamic 

sea of metabolic data from normal cellular function.

Several groups including our own have identified a metastatic “signature” in patients with 

advanced breast cancer, using nuclear magnetic resonance (NMR) spectra or mass 

spectrometry to analyze the metabolites in biological samples, primarily serum (5–7). We 
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compared the NMR spectra of serum from a group of EBC patients and a group of 

metastatic breast cancer (MBC) patients and identified a metastatic signature that could 

differentiate the two groups (5).

From there, we hypothesized that EBC patients with micrometastatic disease may also have 

features of the metastatic signature in their metabolomic profile, whereas those with no 

micrometastatic disease would not, and that this signature would predict for relapse. This 

hypothesis was tested in a follow-up study using serum from a biobank of estrogen receptor–

negative (ER−) patients from the Memorial Sloan Kettering Cancer Center (New York, NY), 

for whom clinical outcome (relapse at 5 years) was known (8). A model was built in which 

EBC patients were assigned a metabolomic risk score [Random Forest (RF) risk score], 

which was a function of the likelihood that they would be misclassified as metastatic based 

on their serum NMR spectra. Again, we were able to demonstrate that EBC and MBC 

profiles differed, but importantly, we also demonstrated that the RF risk score could predict 

relapse, independent of traditional clinicopathologic risk factors, in this single-center group 

of ER− EBC women.

In this current study, we aimed to test the RF risk score again as a predictor of relapse in a 

large group of premenopausal EBC patients with ER-positive (ER+) disease taking part in a 

multi-center adjuvant trial.

Patients and Methods

This retrospective study was a collaborative project among the International Breast Cancer 

Research Foundation, the University of Florence Magnetic Resonance Centre (Florence, 

Italy), and the Sandro Pitigliani Medical Oncology Department, Hospital of Prato (Prato, 

Italy). The study protocol received ethics approval from the ethics committee of the Hospital 

of Prato.

Patient selection

Serum samples for analysis were obtained from a bank of blood samples that had been 

collected during a phase III adjuvant breast cancer clinical trial (NCT00201851; ref. 9) and a 

parallel phase III MBC clinical trial (NCT00293540; ref. 10) conducted at centers across 

South East Asia. Both the trials were run by the International Breast Cancer Research 

Foundation.

In the adjuvant trial, 740 premenopausal women with stage II–IIIB hormone receptor (HR)–

positive breast cancer received surgical oophorectomy at the time of breast cancer surgery 

(mastectomy), followed by tamoxifen for 5 years, to investigate the hypothesis that surgery 

performed during the luteal phase of the menstrual cycle would be associated with better 

outcomes. At the time of enrollment, 231 patients were estimated to be in the luteal phase 

and were scheduled for immediate surgery; 509 patients were estimated not to be in the 

luteal phase and were randomized to receive either immediate surgery or surgery scheduled 

to occur in the predicted mid luteal phase (9). Blood samples were collected preoperatively 

in fasted patients on the day of surgery. Frozen sera were initially stored at local sites and 

then shipped frozen to the United States. Subsequently specimens were shipped still frozen 
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to Italy. No patients were recorded as diabetic. The trial was designed to follow patients for 

recurrence for at least 6 years, and deidentified clinical outcome data were made available 

for the purposes of this study. The study was approved at individual participating institutions 

in the Philippines, Vietnam, and Morocco and/or by supervising Institutional Review Boards 

for these institutions and at lead investigator’s American institutions. The consent processes 

addressed the use of samples for future research studies.

In the metastatic trial, premenopausal patients with ER+ MBC were randomized to undergo 

oophorectomy surgery as palliative endocrine therapy in either the follicular or the luteal 

phase of the menstrual cycle, followed by tamoxifen (10). Blood samples were collected 

preoperatively from fasted patients on the day of surgery. Frozen sera were initially stored at 

local sites and then shipped frozen to the United States. Subsequently specimens were 

shipped still frozen to Italy. Diabetic status of patients was not recorded.

NMR sample preparation

Frozen serum samples were thawed at room temperature and shaken before use and then 

were prepared according to standard operating procedures (11).

A total of 300 μL of sodium phosphate buffer (70 mmol/L Na2HPO4; 20% (v/v) 2H2O; 

0.025% (v/v) NaN3; 0.8% (w/v) sodium trimethylsilyl [2,2,3,3-2H4]propionate pH 7.4) was 

added to 300 μL of each serum sample, and the mixture was homogenized by vortexing for 

30 seconds. A total of 450 μL of this mixture was transferred into a 4.25-mm NMR tube 

(Bruker BioSpin srl) for the analysis.

NMR analysis

Monodimensional 1H NMR spectra for all samples were acquired using a Bruker 600 MHz 

spectrometer (Bruker BioSpin) operating at 600.13 MHz proton Larmor frequency and 

equipped with a 5-mm CPTCI 1H-13C-31P and 2H-decoupling cryoprobe, including a z-

axis gradient coil, an automatic tuning-matching, and an automatic sample changer. A BTO 

2000 thermocouple served for temperature stabilization at the level of approximately 0.1 K 

at the sample. Before measurement, samples were kept for at least 3 minutes inside the 

NMR probehead for temperature equilibration (310 K for serum samples).

According to standard practice (12, 13), three monodimensional 1H NMR spectra with 

different pulse sequences were acquired for each serum sample, allowing the selective 

detection of different molecular components:

i. a standard nuclear Overhauser effect spectroscopy pulse sequence NOESY 

1Dpresat (noesygppr1d.comp; Bruker BioSpin) using 64 scans, 98,304 data 

points, a spectral width of 18,028 Hz, an acquisition time of 2.7 seconds, a 

relaxation delay of 4 seconds, and a mixing time of 0.1 second was applied to 

obtain a spectrum in which both signals of metabolites and high molecular 

weight macromolecules (lipids and lipoproteins) are visible.

ii. a standard spin echo Carr–Purcell–Meiboom–Gill (CPMG; ref. 14; 

cpmgpr1d.comp; Bruker BioSpin) pulse sequence with 64 scans, 73,728 data 

points, a spectral width of 12,019 Hz, and a relaxation delay of 4 seconds was 
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used for the selective observation of low molecular weight metabolites, 

suppressing signals arising from macromolecules.

iii. a standard diffusion-edited (ledbgppr2s1d.comp; Bruker BioSpin; ref. 15) pulse 

sequence, using 64 scans, 98,304 data points, a spectral width of 18,028 Hz, and 

a relaxation delay of 4 seconds was applied to suppress metabolite signals.

Spectral processing

Free induction decays were multiplied by an exponential function equivalent to a 1.0-Hz 

line-broadening factor before applying Fourier transformation. Transformed spectra were 

automatically corrected for phase and baseline distortions and calibrated (anomeric glucose 

doublet at 5.24 ppm) using TopSpin 3.2 (Bruker Biospin srl). Each 1D spectrum in the range 

0.2 to 10.00 ppm was segmented into 0.02-ppm chemical shift bins, and the corresponding 

spectral areas were integrated using AMIX software (version 3.8.4, Bruker BioSpin). 

Binning is a means to reduce the number of total variables and to compensate for small 

shifts in the signals, making the analysis more robust and reproducible (16, 17). Regions 

between 4.5 and 6.5 ppm containing residual water signal were removed, and the dimension 

of the system was reduced to 391 bins. The total spectral area was calculated on the 

remaining bins, and total area normalization was carried out on the data prior to pattern 

recognition.

Statistical analysis

Statistical analyses were planned prior to specimen retrieval, based on those performed in 

the previous study, including minimum number of samples required (8). All data analyses 

were performed using R (18). Principal component analysis (PCA) was used first as an 

unsupervised exploratory analysis to assess the presence of any clusters or outliers.

To confirm that serum metabolomic profiles can be used to distinguish patients with MBC 

from those with early disease, an RF classifier (19) was built to separate early and metastatic 

patients. For the initial model, the group of EBC patients who had relapsed or had minimum 

5 years clinical follow-up was randomly split into two groups, to form a training set and a 

validation set, as in the previous study (8). Briefly, the RF classifier uses data from the 

metastatic and training set to build an ensemble of decision trees, where each tree contains a 

random sample of the original data, with only a small number of variables (bins) at each 

decision node, used to predict whether a sample is early or metastatic. For early patients, a 

score was created that expresses the extent to which the serum metabolomic profile appears 

to be metastatic, designated as the “RF risk score.” For each patient, three “RF risk scores” 

were derived using the three types of spectra (NOESY1D, CPMG, and diffusion-edited 

spectra). For all calculations, the R package “Random Forest” (20) was used to grow a forest 

of 1,000 trees, using the default settings.

The next step was to test the hypothesis that a metastatic metabolomic signature in early 

disease would be predictive of relapse and that higher RF relapse scores would correlate 

with higher risk of developing a relapse. Using ROC analysis, the performance of the RF 

risk score was compared with actual breast cancer outcome. A prognostic model was created 

using the CPMG RF risk score, which had the best performance in the training set. To 
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delineate high risk of relapse, a cutoff for the RF risk score was calculated in the training set 

that optimized accuracy, sensitivity, and specificity, and the performance of the model was 

subsequently tested in the validation set.

Multivariate analysis of the impact of provenance of the sample was achieved using 

unsupervised PCA of the spectra. When this impact was found to be significant, the model 

for relapse prediction was redesigned:

i. We hypothesized that samples from different clinical sites had been collected or 

stored following different operating procedures (e.g., longer periods from 

collection to sera separation and freezing, or different freezing temperatures), 

and that this may be reflected in the metabolomic spectra. As reported in the 

literature (11), lactate (coupled with pyruvate and glucose) is the most sensitive 

marker for sample degradation. To overcome this influence, we removed the bins 

related to lactate from the data matrix.

ii. The nonrelapsing patients included in the analysis were restricted to those with a 

minimum follow-up of 6 years, as HR+ breast cancer has a relatively steady 

relapse rate for at least 10 years.

iii. Finally, we chose to include in the training set only women who had not 

developed a recurrence, to reduce the likelihood of confounding factors due to 

the presence of patients with micrometastases in the model. Thus, ROC analysis 

could only be carried out on the subsequent test set of relapsed and nonrelapsed 

patients.

Assessment of confounding factors (e.g., age, tumor size, nodal status, etc.) within the 

spectra was performed by using the multivariate RF classifier analysis to determine whether 

spectra could be predictive of each factor. The independent prognostic capacity of the 

redesigned RF risk score model was evaluated in a multivariate analysis controlling for 

standard prognostic features, which also included an Adjuvant! Online (AoL) risk of relapse 

score. The AoL score was calculated for 10-year risk of relapse assuming no adjuvant 

therapy and was used as a surrogate combined clinicopathologic risk.

For the analysis of individual metabolites, the spectral regions related to 22 metabolites were 

assigned in the 1H CPMG NMR profiles by using matching routines of AMIX 3.8.4 (Bruker 

BioSpin) in combination with the BBIOREFCODE (Bruker BioS-pin) and the Human 

Metabolome Database (21). The spectral regions were fitted and integrated to obtain the 

concentration in arbitrary units, and these data were used to compare metabolite 

concentrations between EBC and MBC patients. Wilcoxon signed-rank test (22) was chosen 

to perform the analysis on the biological asymptotic assumption that the metabolite 

concentrations are not normally distributed, and FDR correction was applied using the 

Benjamini–Hochberg method (23). P < 0.05 was deemed significant. Because of the method 

used to generate spectra, NMR profiles could not be used to measure individual lipid 

concentrations, nor metabolites in very small concentrations, such as acylcarnitines.
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Results

Patients

Serum samples from 675 women with EBC and 125 with MBC were received. Of these, 101 

samples were deemed nonevaluable for technical reasons (plasma instead of serum, 

inadequate amount of serum, hemolysis, and insufficient clinical information), leaving 590 

EBC and 109 MBC samples suitable for NMR spectroscopy to build metabolomic profiles. 

Baseline characteristics are reported in Table 1.

Provenance of samples

EBC samples came from 5 centers in the Philippines and 2 centers in Vietnam; MBC 

samples came from 5 centers in the Philippines, 3 centers in Bangladesh, and one in Nigeria 

(Table 2). Notably, no MBC samples came from Vietnam, and only 24 came from Philippine 

General Hospital in Manila, yet these centers contributed the majority of EBC samples, 

representing significant imbalance.

Discrimination between EBC and MBC patients

Using the RF classifier for supervised analysis, the metabolomic profiles of 590 EBC and 

109 MBC patients were classified, and show significant differential clustering, with near-

complete separation of the two groups (Fig. 1). Clustering was achieved by the CPMG, 

NOESY1D, and diffusion spectra.

As in the previous studies (5, 8), the clustering provided by the CPMG spectra shows the 

highest accuracy for predicting early or metastatic status, with accuracy of 90.3% [95% 

confidence interval (CI), 90.2%–90.4%], compared with 86.8% (95% CI, 86.7%–86.8%) for 

NOESY1D, and 84.4% (95% CI, 84.3%–84.5%) for diffusion edited. Only results for 

CPMG spectra will be reported from here on.

Relapse prediction by RF score

A metabolomic RF risk score for each EBC sample was generated on the basis of the 

probability that the NMR spectrum would be classified as metastatic. The initial model was 

built using the same parameters as in the previous study, using CPMG spectra and only 

including EBC samples from patients who either relapsed or were relapse free with a 

minimum of 5 years clinical follow-up data (total 443). The training set consisted of 68 

relapsed and 41 nonrelapsed EBC patients chosen at random and all 109 metastatic patients. 

The validation set consisted of the remaining 124 relapsed and 210 nonrelapsed EBC 

patients. The AUC obtained for the training set was 0.644, and the accuracy of the RF risk 

score was maximized using a threshold of 0.18, which yielded sensitivity of 61.3% (95% CI, 

60.3%–62.2%), specificity of 61.0% (95% CI, 60.6%–61.3%), and overall accuracy for 

predicting likelihood of relapse of 61.1% (95% CI, 60.6%–61.6%; Supplementary Fig. 

S1A). The model was then applied to the validation set, using the RF risk score threshold of 

0.18, achieving a sensitivity, specificity, and predictive accuracy of 71.7%, 46.7%, and 

62.4%, respectively, and an AUC of 0.631 (Supplementary Fig. S1B).
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In view of the low AUC results, investigation of the effect of provenance (collection center) 

and length of follow-up was carried out.

Exploratory unsupervised PCA of the CMPG spectra showed marked differentiation among 

the different centers of collection (Supplementary Fig. S2A), with the spectral region of 

lactate resulting in the most relevant discrimination in the first two principal components. 

Lactate concentrations, calculated in arbitrary units from the spectra, differed significantly 

between EBC and MBC patients (Table 3), demonstrating the key role of lactate in both 

discrimination of EBC and MBC and in the identification of treatment centers. This finding 

was consistent with our hypothesis regarding differences in storage and handling between 

treatment centers in our samples.

Relapse prediction by RF score—optimized model

To overcome the influence of lactate, we removed the bins related to this metabolite from the 

data matrix. The PCA score plot (Supplementary Fig. S2B) calculated using this reduced 

data matrix shows greatly reduced dispersion of the data points. This observation is 

confirmed by calculating the generalized variance (24) of the first three PCA components. 

This value (calculated as the determinant of the covariance matrix) represents the volume of 

the ellipsoid containing the data. Using the complete data matrix, we obtain a generalized 

variance of 16.8, whereas for the reduced data matrix, the generalized variance is 11.8, 

illustrating that removal of the bins corresponding to lactate indeed reduced spreading of the 

data, thus reducing the location effect.

The EBC cohort was restricted to those with relapse or minimum 6 years follow-up, which 

reduced the sample size to 319. In this new model, the training set consisted of 85 early 

patients without relapse (randomly selected) and all 109 metastatic patients. The test set 

contained 192 early patients that suffered relapse and the remaining 42 relapse-free early 

patients.

Using the CPMG NMR spectra, the RF classifier discriminated EBC from MBC patients in 

the training set with sensitivity, specificity, and predictive accuracy of 90.0% (95% CI 

89.7%–90.3%), 84.9% (95% CI 84.7%–85.1%), and 87.1% (95% CI 86.9%–87.3%), 

respectively (Fig. 2A). This new model was then applied to the test set to assess ability to 

predict relapse, attaining an AUC of 0.747. The accuracy of the RF risk score was 

maximized using a threshold of 0.235, which yielded sensitivity of 70.8%, specificity of 

71.4%, and overall accuracy for predicting likelihood of relapse of 71.3% (Fig. 2B). AUC 

scores for NOESY1D and diffusion-editing spectra were inferior, at AUC 0.706 and 0.617, 

respectively.

The AUC score calculated on the RF score was assessed for significance against the null 

hypothesis of no prediction accuracy in the data, by means of 10,000 randomized class 

permutation tests. The estimate AUC score obtained after randomization is 0.531 (95% CI, 

0.53–0.531), demonstrating the significance of our result (AUC, 0.747; P = 1.63 × 10−20) 

despite the problems encountered.
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Comparison with known prognostic factors

The known prognostic factors age, tumor size (0–2 cm, 2.1–5 cm, >5 cm), nodal status (0, 

1–3, >3), histologic grade, and HER2 overexpression were compared with the CPMG RF 

risk score, calculated on the optimized set, in univariate and multivariate regression analyses 

(Table 4). We also compared the RF risk score with the 10-year risk of recurrence as 

calculated by AoL in a separate multivariate analysis. In all cases, the RF risk score 

maintained independent prognostic value.

Similarly, using RF classification to predict individual prognostic features based on the 

CPMG NMR spectra, none of these features could be meaningfully discriminated 

(Supplementary Fig. S3). Only the tumor size showed a weak concordance with the CPMG 

RF risk score (coefficient of correlation = 0.18; P value corrected with Bonferroni = 0.02).

Metabolite analysis

NMR spectra were analyzed to identify which metabolites were contributing to 

discrimination of MBC and EBC profiles. In the combined multicenter populations (Table 

3), compared with EBC patients, patients with MBC are characterized by higher serum 

levels (adjusted P < 0.05) of citrate, choline, acetate, formate, lactate, glutamate, 3-

hydroxybutyrate, phenylalanine, glycine, leucine, alanine, proline, tyrosine, isoleucine, 

creatine, creatinine, and methionine and lower serum levels (adjusted P < 0.05) of glucose 

and glutamine. In single-center analysis (Supplementary Table S1), citrate, formate, 

methionine, and phenylalanine were significantly higher in MBC patients. Others were 

numerically higher, consistent with the multicenter populations, but low patient numbers 

limit statistical significance.

In the cohort of EBC patients with relapse or follow-up of at least of 6 years (those included 

in the RF models), the patients who developed a recurrence were characterized by higher 

serum levels (adjusted P < 0.05) of choline, phenylalanine, leucine, histidine, glutamate, 

glycine, tyrosine, valine, lactate, and isoleucine but lower levels of glutamate 

(Supplementary Table S2). In the RF risk score algorithm, bins corresponding to 

phenylalanine, histidine, a lipid fraction (undifferentiated), methionine, glutamate, acetone, 

and formate carried the most weight in descending order of rank.

Discussion

Risk stratification in EBC for the purpose of deciding whether to recommend adjuvant 

therapies is of great importance, not least because of the significant toxicity associated with 

such treatment. For those at low risk of relapse, the risk of harm may outweigh the absolute 

risk of benefit.

The purpose of adjuvant therapy is to treat suspected residual micrometastatic disease. Yet, 

current prognostic factors and algorithms, including modern genomic signatures, are 

extrapolated from features of the primary tumor, surrogate markers for the likelihood of 

micrometastatic disease being present and progressing to an incurable state. Importantly, 

however, even among high-risk populations, a substantial proportion of patients is cured by 

surgery alone. In the seminal trial of adjuvant CMF versus no further treatment in women 
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with node-positive EBC after primary cancer resection, 22% of untreated patients remained 

alive and disease free after a median of 28.5 years (1). In another study of ER+, node 

positive, EBC patients stratified by Oncotype DX, 60% of those with a high Oncotype 

recurrence score remained disease free after 6 years, with only tamoxifen as adjuvant 

therapy (3). These nonrelapsing high-risk patients either had no micro-metastatic disease to 

begin with or were able to control it without the use of chemotherapy. The ability to detect 

the presence of micrometastatic disease could greatly refine the selection of high-risk 

patients.

A theoretical advantage of metabolomics as a residual disease detector is its potential to 

capture not only signals from the micrometastatic disease, but also the surrounding stroma 

and any inflammatory/immune response. Other liquid biopsies, such as circulating tumor 

cells or plasma tumor DNA, will miss these host factors, potentially reducing sensitivity.

In this study, we were once again able to identify a metabolomic signal in the sera of EBC 

patients associated with increased risk of disease recurrence that is independent of standard 

risk factors, this time in a large, multicenter population. Our previous study was limited to a 

set of ER− patients from the MSKCC biobank, with blood draws taken after resection of the 

primary cancer, but before commencement of adjuvant therapy (8). In the current study, all 

patients were HR+, blood samples had been taken preoperatively, and patients came from 

multiple clinical sites in several countries, making this a new exploratory study rather than a 

confirmatory one. These differences introduced new challenges.

The effect of serum sample provenance was found to be the most discriminating feature of 

spectra. Causes for this may be multiple and include differences in the populations, such as 

diet or ethnicity, but may also reflect non-patient–related factors, such as specimen handling. 

Delays in centrifugation, insufficient or variable cooling, and unintentional thaw refreeze 

can affect the metabolic composition dramatically.

As noted in Table 2, only 5 centers collected samples both from EBC and MBC patients, and 

these samples are very few with respect to the total population of this study, while Vietnam 

provided a large proportion of EBC samples and no MBC samples. This large discrepancy, 

and resultant effect on spectra, would therefore be expected to induce an error in the building 

of the models (i.e., we are discriminating collection centers rather than EBC and MBC). 

Limiting the model to samples from a single site to control for location gave too few 

samples for meaningful analysis.

Controlling for lactate, a metabolite associated with suboptimal handling, removed much of 

the bias associated with location and thus may explain the cause. Lactate may also be 

affected by other metabolic factors. In this study, all patients were fasted as per preoperative 

protocol, reducing a dietary effect. Similarly, diabetes can have an effect if uncontrolled; to 

the best of our knowledge, there were no patients with diabetes in the EBC trial, but these 

data were lacking from the MBC trial. However, lactate is known to be altered in metastatic 

disease (7, 8), and indeed in this study, it differed between EBC and MBC patients and 

relapsing and nonrelapsing patients.
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Examination of individual metabolites was performed to compare with results from other 

studies, but data must be interpreted with caution in light of the strong observed effect of 

provenance. A comparison of metabolites between EBC and MBC patients from a single 

center was also included, but small numbers of MBC patients affect statistical significance. 

Large numbers of metabolites were at significantly higher concentrations in MBC (Table 3), 

of which nine also correlated with relapse in the refined EBC cohort (Supplementary Table 

S2). Higher levels of phenylalanine were seen in MBC, in line with other studies (5, 6), and 

correlated with relapse in EBC. Similarly, higher glutamate in MBC is consistent with 

Jobard and colleagues’ work (6) and correlated positively with relapse in EBC here. 

Histidine was higher in MBC compared with EBC, but in this case, it is at odds with three 

other studies (6–8) in which it was lower.

The fact that geographical differences impacted significantly on the construction of a 

discriminating model is reflective of a broader issue for this approach, related to the need to 

establish a specific metastatic profile for each new study population. For example, applying 

the RF risk model created on the MSKCC dataset (8) to the current study population yielded 

very poor accuracy, due to the fact that differences between samples were far greater than 

the differences between the respective EBC and MBC cohorts (Supplementary Fig. S4). This 

greatly limits the transferability of the current approach between populations, until common 

standard procedures for metabolomics are adopted and a more universal metastatic profile 

can be established. In this regard, further studies are warranted.

A limitation of the dataset used is the fact that a follow-up time of 5 or 6 years is insufficient 

to capture all relapses in an HR+ EBC cohort, where relapse rates remain fairly constant for 

at least 10 years. Thus, there will be a proportion of EBC patients labeled as nonrelapsed 

who are in fact destined to relapse. Limiting the EBC cohort to patients with longer follow-

up would be expected to improve on this but comes at the expense of a reduced sample size 

and was not possible here.

All patients in this study received systemic adjuvant endocrine therapy, making it impossible 

to know whether the therapy was directly responsible for the lack of relapse. An ideal series 

would have an arm with no intervention, although this is unlikely to be feasible for high-risk 

patients.

In this study, we were able to detect a signal correlated with recurrence despite the fact that 

the primary tumor was in situ at the time of blood draw. The presence and stage of the 

primary tumor might be expected to alter the metabolomic profile, and yet, the model 

predicted poorly for tumor size and nodal status, with little or no correlation. Whether the 

small correlation with size was as a direct result of the primary tumor or related to the fact 

that larger tumors are associated with higher risk of relapse, and thus may be a surrogate for 

presence of micrometastatic disease, is unknown. Part of our hypothesis is that the 

metabolomic signal correlating with residual disease, and thus relapse, is as much a 

reflection of the host state as it is of the presence of the tumor cells themselves, and our 

results support this.
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Given the challenges of this study, in particular, the diversity of the populations and the fact 

that the bulk of the MBC and EBC sera came from different clinical sites, respectively, it is 

all the more compelling that a signal could be identified that discriminated between early 

and late breast cancer patients and that the RF risk score, essentially a measure of the 

“metastatic-ness” of the sera, correlated with relapse. Indeed, we see this study as 

complementary to the previous one because it suggests that the metabolomic score is 

relevant in predicting relapse in both ER− and ER+ patients, in both a single-center and in a 

multicenter setting.

What remains to be determined is whether the signal that correlates with relapse is truly a 

marker of micrometastatic disease or in fact reflective of the biological state of the primary 

tumor. Tumor-based genomic profiling assays, such as the 21-gene assay or MammaPrint, 

assess the expression of a number of genes to arrive at a risk of recurrence score, with those 

genes relating to proliferation playing a significant role. It is possible that differences in 

tumor gene expression state are also reflected in the metabolome, contributing to the 

metabolomic profile, in which case the metabolomic signals correlating with relapse may be 

dependent on the gene expression profile. It is vital then that future studies address this 

question, to examine whether metabolomics may provide independent, relevant prognostic 

information in the setting of genomic risk stratification, and we are investigating this 

currently. Given that a substantial proportion of patients designated as high-risk by genomic 

assays will not relapse, it would be invaluable to have a biomarker that might identify and 

restratify these patients. Ideally, this would be performed in prospective trials in which there 

is prespecified stratification by genomic risk score, where the metabolomic risk score could 

be tested for prognostic power within each risk group.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Adjuvant chemotherapy in early breast cancer improves survival by targeting 

micrometastatic disease. Because of difficulties in detecting such a disease in patients, 

there is a tendency to overtreat, meaning that many patients receive chemotherapy 

unnecessarily, with substantial morbidity. We hypothesize that the combined altered 

cellular behavior of micrometastatic disease, supporting stroma and host response, results 

in a unique, detectable pattern of metabolites (metabolomic profile) similar to that seen in 

advanced disease and that it correlates with relapse. Here, using serum taken from 

premenopausal women enrolled in two phase III trials, and using nuclear magnetic 

resonance spectroscopy, we show that patients with metabolomic profiles more 

resembling the metastatic profile have a higher rate of relapse. Metabolomics thus has the 

potential to identify patients with micrometastatic disease, improve risk stratification, and 

reduce overprescription of chemotherapy.
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Figure 1. 
Clustering of serum metabolomic profiles. Discrimination between EBC (black circles, n = 

590) and MBC (gray squares, n = 109) patients using the RF classifier. A–C, CPMG (A), 

NOESY1D (B), and diffusion (C).
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Figure 2. 
A, Discrimination between EBC patients without relapse for at least 6 years (black circles, n 
=85) and MBC patients (gray squares, n =109) using the RF classifier on CPMG spectra. 

The confusion matrix is also reported. B, Prediction of relapse in the test set containing 192 

EBC with relapse and 42 EBC without relapse up to 6 years. The ROC and AUC scores are 

presented for the RF risk score on CPMG spectra. The confusion matrix is also reported.
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Table 1

Patients and tumor characteristics for EBC and MBC cohorts, including populations restricted to include only 

relapsed patients or those with clinical follow-up greater than 5 or 6 years

Characteristic EBC all EBC – relapsed or follow-up ≥5 years EBC – relapsed or follow-up ≥6 years MBC

Number 590 443 319 109

Age, mean (range) 42 (29–50) 42 (29–50) 42 (29–50) 39 (22–53)

Tumor size, n (%)

 <2 cm 35 (5.9) 23 (5.2) 11 (3.5%) —

 2–5 cm 396 (67.1) 285 (64.3) 203 (63.6%)

 >5 cm 159 (27) 135 (30.5) 105 (32.9%)

Grade, n (%)

 I 74 (13) 63 (14) 46 (14) —

 II 300 (51) 224 (51) 162 (51)

 III 115 (19) 89 (20) 73 (23)

 Unknown 101 (17) 67 (15) 38 (12)

Lymph node status, n (%)

 0 248 (42) 166 (37.5) 106 (33) —

 1–3 157 (27) 121 (27.5) 83 (26)

 >3 185 (31) 156 (35) 130 (41)

HER2, n (%)

 Positive 108 (18) 90 (20.5) 76 (24) —

 Negative 388 (66) 298 (67) 210 (66)

 Unknown 94 (16) 55 (12.5) 33 (10)

ER, n (%)

 Positive 552 (93.6) 410 (92.6) 297 (93) —

 Negative 37 (6.3) 32 (7.2) 22 (7)

 Unknown 1 (0.2) 1 (0.2) 0 (0)

PR, n (%)

 Positive 545 (92.4) 405 (91.4) 291 (91) —

 Negative 44 (7.4) 37 (8.4) 28 (9)

 Unknown 1 (0.2) 1 (0.2) 0 (0)

Treatment arm, n (%)

 A 186 (31.5) 142 (32.0) 106 (33.2) —

 B 216 (36.6) 158 (35.7) 111 (34.8)

 C 188 (31.9) 143 (32.3) 102 (32.0)

Dominant metastatic site, n (%)

 Soft tissue — — — 79 (72.5)

 Bone 17 (15.6)

 Viscera 13 (11.9)

Prior systemic treatment, n (%)

 No — — — 69 (63.3)

 Yes 40 (36.7)
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NOTE: Treatment arm A: not in luteal phase at the time of trial entry, randomized to luteal phase surgery; treatment arm B: not in luteal phase at 
the time of trial entry, randomized to immediate, non-luteal phase surgery; and treatment arm C: in luteal phase at the time of trial entry, immediate 
surgery in luteal phase.

Abbreviation: PR, progesterone receptor.
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Table 2

Distribution of EBC and MBC samples by treatment center

Country Samples, n EBC samples, n MBC samples, n

Vietnam, Hanoi - Hospital K 228 228 —

Vietnam, Danang - Danang General 14 14 —

Philippines, Manila - PGH 302 278 24

Philippines, Cebu - Vicente Sotto Hospital 39 26 13

Philippines, Manila - Santo Tomas Hospital 9 3 6

Philippines, Manila - Rizal 20 15 5

Philippines, Manila - East Avenue 29 26 3

Nigeria, Ibadan - University College Hospital 8 — 8

Bangladesh, Dhaka - Dhaka Medical College 15 — 15

Bangladesh, Khulna - Khulna Medical College 28 — 28

Bangladesh, Dhaka - BSMMU 7 — 7

Total 699 590 109

Abbreviations: BSMMU, Bangabandhu Sheikh Mujib Medical University; PGH, Philippine General Hospital.
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