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Abstract

Sepsis remains a leading cause of morbidity and mortality among intensive care unit (ICU) 

patients. For each hour treatment initiation is delayed after diagnosis, sepsis-related mortality 

increases by approximately eight percent. Therefore, maximizing effective care requires early 

recognition and initiation of treatment protocols. Antecedent signs and symptoms of sepsis can be 

subtle and unrecognizable (e.g., loss of autonomic regulation of vital signs), causing treatment 

delays and harm to the patient. In this work we investigated the utility of high-resolution blood 

pressure (BP) and heart rate (HR) times series dynamics for the early prediction of sepsis in 

patients from an urban, academic hospital, meeting the third international consensus definition of 

sepsis (sepsis-III) during their ICU admission. Using a multivariate modeling approach we found 

that HR and BP dynamics at multiple time-scales are independent predictors of sepsis, even after 

adjusting for commonly measured clinical values and patient demographics and comorbidities. 

Earlier recognition and diagnosis of sepsis has the potential to decrease sepsis-related morbidity 

and mortality through earlier initiation of treatment protocols.

Introduction

Sepsis is among the leading causes of morbidity and mortality in critically ill patients and is 

the most expensive condition by healthcare spending [1–2]. The major tenet of sepsis care is 

prompt recognition and initiation of treatment. Recent studies have shown that survival 

benefit from early intervention in sepsis is almost entirely dependent on time-to-first 

antibiotics [3]. However, no clinically validated system exists for accurate, real-time 

prediction of sepsis onset in the adult intensive care unit (ICU) population. Such a system 
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should provide enough lead time for initiation of administration of pressors, fluids and 

antibiotics in a proactive and timely manner. Several publications have attempted to predict 

downstream events related to sepsis (such as organ failure and septic shock [4]), but the key 

issue (identifying sepsis in a few hours prior to the clinician identifies it) remains unsolved. 

A major impediment to application of supervised machine learning techniques to the 

problem of early prediction of sepsis has been the lack of a gold standard for diagnosis of 

sepsis [5]. More recently, the Third International Consensus Definitions Task Force [6], with 

the objective of increasing the specificity of diagnosis, defined sepsis as “life-threatening 

organ dysfunction due to a dysregulated host response to infection.” Subsequent work by 

Seymour et al. [7] provided a more precise clinical criteria for identifying patients with 

suspected infection who are at risk of sepsis. They identified an episode of suspected 

infection as the combination of antibiotics and blood cultures within a specific time epoch, 

and defined the first of these two events as the “onset” of infection. The onset time of sepsis 

was then defined as an episode of suspected infection with two points or more change in the 

Sequential Organ Failure Assessment (SOFA) Score. Using this new definition, Seymour et 

al. were able to validate the discriminative power of the existing clinical criteria and 

definitions for sepsis using 1.3 million electronic medical record (EMR) encounters [7].

Much of the existing literature on application of predictive analytics to early prediction of 

sepsis has focused around the EMR and lab results as features for a supervised machine 

learning algorithm. However, the resolution of the EMR data is far too coarse to produce 

individually specific predictions. In fact, often availability of certain lab results in 

themselves may be indicative of clinical suspicion of sepsis. Conversely, without having a 

clinician in the loop to recognize early signs of decompensation and order the necessary lab 

values, an EMR-based predictive analytic algorithm may not have access to the required 

features to predict sepsis in a timely manner.

The use of continuously measured high-resolution ECG and blood pressure data has 

provided promising results in the hunt for an accurate predictor. Sepsis is known as a 

dysregulated immune-mediated host response to infection. According to the anti-

inflammatory reflex model [20], action potentials coming from the vagus nerve control 

lymphocytes to secrete acetylcholine that inhibits the production of pro-inflammatory 

cytokines through alpha7 nicotinic receptors. In other words, pathogen-induced 

inflammation increases the activity of vagus nerve, which controls the production of pro-

inflammatory cytokines and prevents tissue damage. Although, the relationship amongst 

inflammation, vagus nerve activity and heart rate variability (HRV) and Baroreflex control 

of blood pressure (BP) and heart rate (HR) is complex, this model suggests that monitoring 

indices of heart rate variability and complexity (as markers of vagus nerve activity) may 

provide a useful tool as a measure of anti-inflammatory reflex in health and disease. Hug et 

al. [8] demonstrated that transient hypotensive events, identified from the raw blood pressure 

waveform, which later led to sepsis and a higher mortality, were missed by clinical teams for 

4 hours on average. The key to this discovery was the use of signal quality metrics to 

reprocess the blood pressure waveform and remove untrustworthy data. Changes in blood 

pressure and heart rate dynamics have been shown to be associated with the onset of 

decompensation in critically ill patients [9–11]. In particular, Mayaud et al demonstrated that 

the entropy of heart rate is associated with sepsis in adult critical care subjects [11]. After 
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extracting a cohort of 2155 severe sepsis patients from the MIMIC II database [12] using the 

Angus criteria [13] they trained a logistic regression algorithm to predict in-hospital 

mortality. They showed that when using multiscale entropy (MSE) coefficients [14] as 

inputs, an AUROC of 0.63 ± 0.01 was possible, compared to 0.68% ± 0.01 when using the 

Acute Physiology Score (APS) with its original coefficients. Combining both gave an 

AUROC of 0.70 ± 0.01. This motivates the need for high-resolution physiological data on 

multiple time scales.

In this work, following the latest definition of sepsis [6–7], we sought to predict onset of 

sepsis four hours ahead of time, using commonly measured vital signs, as well as features 

derived from ECG and Blood pressure waveforms.

Methods

Description of cohort

Heart rate (from the electrocardiogram) and blood pressure time series at 2 seconds 

resolution were collected from ICU bedside monitors in an Emory affiliated hospital, using 

the BedMaster system (Excel Medical Electronics, Jupiter FL, USA), which is a third-party 

software connected to the hospital’s General Electric (GE) monitors for the purpose of 

electronic data extraction and storage of high-resolution waveforms. All adult ICU units 

were included in this study, including Medical and Surgical, Cardiac Care, and Neuro-

intensive care units. The bedside monitor data was then matched and time synchronized to 

each patient’s EMR data. Of the total of 1100 matched patients, 242 (~22%) met the 

definition of sepsis by Seymour et al. [7] at some time point during their ICU stay. 

Specifically, all episodes of suspected infection (tsuspicion) were identified as the earlier 

timestamp of antibiotics and blood cultures within a specific time span; if the antibiotic was 

given first, the culture sampling must have been obtained within 24 hours. If the culture 

sampling was first, the antibiotic must have been ordered within 72 hours. The onset time of 

sepsis (tsepsis) was then defined as an episode of suspected infection with a two or more 

points change in the SOFA score from up to 48 hours before to up to 24 hours after the 

tsuspicion. The average length of hospital stay (LOS) among the septic patients was 137.6 

[68.2–295.7] hours, and the percentages of in-hospital mortality and in-patient hospice were 

15.2% and 13.5%, respectively. The septic patients exhibited a higher average SOFA score 

compared to non-septic patients (4.8 [3.1–6.8] versus 1.6 [0.6–3.4]).

Features

For every subject, their socio-demographics features (Age, Gender, Weight, Race) were 

collected. We also included features that were commonly recorded by the bedside nurses 

including, Mean Arterial Pressure (MAP), Heart Rate (HR), Peripheral capillary Oxygen 

Saturation (SpO2), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), 

Respiration Rate (Resp), Glasgow Coma Score (GCS), and Temperature (Temp). Each of the 

above mentioned features were discretized into 8 bins. We also extracted a few features that 

capture history, comorbidity, and the clinical context of the patient, including Charlson 

Comorbidity Index, Mechanical Ventilation, Unit Information (Surgical, Cardiac Care, or 

Neuro-intensive care), as well as Surgical Specialty (Cardiovascular, Neuro, Ortho-Spine, 
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Oncology, Urology, etc.) and Wound Type (clean, contaminated, dirty, or infected) if the 

patient had a surgery in past 72 hours.

We also calculated the following features from the HR and MAP time series (2 sec 

resolution) derived from the bedside monitor’s proprietary software from the ECG and BP 

waveforms: standard Deviation of HR (HRSTD), Standard Deviation of MAP (MAPSTD), 

Multiscale Entropy and Conditional Multiscale Entropy of (60/HR or RR intervals) and 

MAP (Over 17 Scales; RRMSE and RRMSCE, and MAPMSE and MAPMSCE, respectively). 

The time series-related features were calculated using 6 hours time windows, with one hour 

strides. For each window (6 hour × 60 min/hour × 30 samples / min = 10800 samples) we 

considered 17 different scales ( scales 1, 4, 7, …, 49), over which sample entropy [14] and 

conditional entropy [15] were calculated. A comparison between the Multiscale entropy 

features of a septic and a control subject is shown in Fig. 1.

All clinical features with a higher sampling frequency than 1/hour were further uniformly 

resampled into one hour time bins, by taking the median values if multiple measurement 

were available, updated hourly if/when new data became available, and otherwise the old 

values were kept (sample-and-hold interpolation). Mean imputation was used to replace all 

remaining missing values (mainly at the start of each record).

Algorithm

As noted above, to predict sepsis or suspicion of sepsis 4 hours ahead of time, we considered 

three separate models, based on, 1) entropy features derived from the bedside monitor data, 

2) combining the EMR features, and socio-demographic-patient history features, and 3) 

combining features from models 1 and 2. An Elastic Net logistic classifier was trained for all 

the three models, where an internal 10 fold cross validation was performed to determine the 

optimal regularization parameter (λ).

Statistical Methods

For all continuous variables we report medians ([25-percentile, 75-percentile]) and utilize a 

two-sided Wilcoxon rank-sum test while comparing two populations. All classification 

results are based on a 10 fold cross-validation (80% training 20% testing), and the area 

under receiver operating characteristic (AUROC) curves is reported, as well as specificity 

and accuracy at a fixed 85% sensitivity level. We combined all the predictions (probabilities 

of being septic) across all the ten folds to report a single pooled AUROC [19].

Results

We evaluated a total of 242 subjects for this study. The median [25-percentile, 75-percentile] 

age of the cohort was 59 [46, 69] years, and approximately 47% were female. The baseline 

characteristics of the entire patient population have been tabulated in Table 1. Notably, onset 

of sepsis is associated with a drop in MAP (76 [70 87] vs. 80.3 [70.0 94.0]) as well as SBP 

and DBP, and an increase in HR.

Table 2 provides a summary of the performance of all the three models. The Entropy 

features alone (Model 1) achieved a pooled AUROC of 0.67, with an overall accuracy of 
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47% on the testing set. A statistical significance test was performed to determine the 

importance of the entropy features, and 14 out of the 68 entropy features had p-values less 

than α= 0.05 (including scales 4, 7, and 10). Next, the model based on combining the EMR 

features and socio-demographic-patient history features (Model 2) achieved a pooled 

AUROC of 0.70, with an overall accuracy of 50%. Finally, by combining all the features 

(Model 3), the classifier achieved a pooled AUROC of 0.78, with an overall accuracy of 61% 

(See Fig. 2).

Discussion

Our results demonstrate that the dynamics of the HR and BP time series (at varying scales) 

provide useful predictors of sepsis in the critical care setting four hours before suspicion of 

sepsis. Inclusion of patients’ demographics, comorbidities, and history of surgery provided a 

boost in AUROC from 0.67 to 0.78 (p<0.01) and similar improvement in specificity (41% 

versus 55%) at 85% sensitivity level.

Many predictions focus on death, an outcome for which there is little that can be directly 

modified in management [16–17]. Earlier recognition and diagnosis of adverse events such 

as sepsis has the potential to decrease morbidity and mortality through earlier initiation of 

treatment protocols. However, even when an outcome can be modified, it may be too late to 

have significant impact. Detection or classification of sepsis or associated sequelae, such as 

death, has received significant attention in the literature (clinical, engineering and statistical/

machine learning). However, prediction has almost exclusively focused on the downstream 

events to onset of sepsis (such as the septic shock) [4] when it may be too late to effectively 

intervene in many cases.

This paper is among the first of its kind to look at combining different “granularities” of data 

to evaluate their combined effect. We note that the InSight algorithm [18] utilized a minimal 

set of commonly available EHR variables (including blood pressure, heart rate, respiration 

rate, temperature, SpO2, and GCS) to achieve a slightly lower AUC of 0.74 (± 0.01) for 4 

hours ahead prediction of sepsis. However, the authors followed the sepsis III definition, 

they opted for predicting the time of two or more points change in the SOFA score (tsofa), 

which is arguably easier to detect than tsepsis given the lab data. In our cohort, roughly 20% 

of the time tsofa occurs after tsepsis, which may be a consequence of the fact that calculation 

of an updated SOFA score requires ordering of labs, which is more likely to occur if there is 

already a clinical suspicion of sepsis. In general, comparison of various algorithms within 

the literature has been made complicated due to scarcity of standardized publicly available 

ICU datasets, in addition to differences in definitions of sepsis and data elements collected 

across institutions. This may include utilization of acausal measurements, which occurs 

when the order-time of labs are used in prediction models [4, 18] rather than the time when 

laboratory data become available to the bedside clinicians. Therefore, validation and 

prospective studies are needed to shed light on the strengths and weaknesses of various 

algorithms.

Some of the limitations of the current study include the relatively small sample size and the 

utilization of a single clinical cohort from an urban, academic hospital. Our final model 
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achieved an AUROC of 0.78 which is slightly higher than the existing works [18]. We 

anticipate that use of high resolution BP, HR and Resp dynamics, including waveform 

morphology and coupling features, will add further predictive power to our and other 

existing models and provide a more objective metric of early identification of sepsis and 

other types of decompensation in critically ill patients.

Conclusion

Multiscale entropy-based measures of HR and BP dynamics can independently predict 

sepsis four hours prior to its onset. Predictive performance is greatly improved by creating a 

model that includes other relevant clinical data available from the EMR in real time. Future 

studies will validate these findings in a larger cohort, and add respiratory dynamics and more 

advanced derivatives of the ECG and BP waveform to test for further improvement in sepsis 

prediction.
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Figure 1. 
(Left panel) Plot of MAP time series for a septic and a control subject, and their 

corresponding multiscale entropy at Scale 4. (Right panel) Plot of HR time series for a septic 

and a control subject, and their corresponding multiscale entropy at Scale 4. The HR and 

MAP time series have been normalized by their standard deviations for illustration purposes
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Figure 2. 
Area under the receiver-operating characteristic (ROC) curve of Model 3 (Combining 

Entropy, EMR, and socio-demographic-patient history features). The AUROC on test set and 

training set was 0.78 and 0.80 respectively. The model 3 achieved a specificity of 0.55 at 

0.85 sensitivity level (for the test set).
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Table 1

Baseline characteristics of the patient population

Clinical Variables Baseline Septic p-value

MAP 80.3 [70.0 94.0] 76 [70 87] 0.02

HR 90.0 [75.0 104.5] 92.0 [78.0 110.0] <0.01

SpO2 98.0 [96.0 100.0] 98.0 [96.0 100.0] 0.15

SBP 119.0 [105.0 140.0] 116.0 [102.0 136.0] <0.01

DBP 62.0 [53.4 73.2] 58.0 [52.0 66.0] <0.01

Respiration Rate 18.0 [12.5 22.0] 17.0 [10.0 22.0] 0.29

GCS 10.0 [6.0 15.0] 9.0 [5.0 14.0] 0.13
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Table 2

Performance summary of all three models.

Model AUC ROC
Test (Train)

Specificity*
Test (Train)

Accuracy*
Test (Train)

Entropy features 0.67 (0.68) 0.41 (0.42) 0.47 (0.49)

EMR + Socio-demographic patient history features 0.70 (0.72) 0.45 (0.46) 0.50 (0.52)

Entropy + EMR + Socio-demographic patient history features 0.78 (0.80) 0.55 (0.57) 0.61 (0.62)

*
Model sensitivity was fixed at 0.85
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