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Summary

The use of longitudinal measurements to predict a categorical outcome is an increasingly common 

goal in research studies. Joint models are commonly used to describe two or more models 

simultaneously by considering the correlated nature of their outcomes and the random error 

present in the longitudinal measurements. However, there is limited research on joint models with 

longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging 

task is how to model the longitudinal predictor process such that it represents the true biological 

mechanism that dictates the association with the categorical response. We propose a joint logistic 

regression and Markov chain model to describe a binary cross-sectional response, where the 

unobserved transition rates of a two-state continuous-time Markov chain are included as 

covariates. We use the method of maximum likelihood to estimate the parameters of our model. In 

a simulation study, coverage probabilities of about 95%, standard deviations close to standard 

errors, and low biases for the parameter values show that our estimation method is adequate. We 

apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and 

predict a 6-month outcome based on physiological data collected post-injury and admission 

characteristics. Our analysis indicates that the information provided by physiological changes over 

time may help improve prediction of long-term functional status of these severely ill subjects.
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1. Background

In medical research, it is often of interest to investigate the association between patient 

specific longitudinal information collected over some period and a primary outcome. For 

instance, studies on patients with AIDs have assessed the relationship of CD4 counts as a 

longitudinal covariate marker and survival [1], and traumatic brain injury (TBI) studies have 

looked at the relationship between intracranial pressure and ICU length of stay [2]. A 

classical model to describe this type of associations is a survival model with time-dependent 

covariates. However, in the past few years, joint models for longitudinal and time-to-event 
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data [3, 4] have gained popularity because the joint modeling strategy can account for 

measurement error on endogenous time-dependent covariates such as longitudinal 

biomarkers. For outcomes measured repeatedly over time, longitudinal generalized linear 

models with time-dependent covariates have been applied in many settings.

A stochastic process approach based on Markov chains has also been used to study 

associations between longitudinal outcomes and longitudinal predictors. A Markov chain is 

a collection of random variables or events where the probability of occurrence of future 

events depends only on the present state of the system and not on the path that led to the 

present state. Markov chains have been generally used as response or dependent variables, 

for example, the progression of several neurological diseases, but they have seldom been 

used as predictors in scientific research. In 2009, Hubbard et al. developed a joint model to 

study the relationship between self-rated health and changes in physical function in adults 65 

years of age or older. In their model, a binary outcome measured longitudinally was related 

to a non-homogenous Markov process model through a logit function [5].

Although statistical methods have been proposed for longitudinal covariates and outcomes 

measured over time, there are few research studies on longitudinal covariates and cross-

sectional responses, particularly categorical. Wang et al. proposed a joint longitudinal/

generalized linear model for a cross-sectional endpoint, where one or two features of 

longitudinal curves from a linear random effects model are used as covariates in their 

primary model [6]. Extensions of this model relaxed the normal distribution assumption of 

the random effects [7-9], the independence assumption of the within-subject measurement 

errors [10], or modeled non-linear longitudinal covariate effects [11, 12]. In these models, 

the features included in the primary model may not be representative of the overall behavior 

of the individual curves. For instance, Wang et al. in a childhood growth study used the 

initial BMI value at age 3 (random intercept) and the rate of change of BMI (random slope) 

to predict the risk of hypertension later in life [6], while in a pregnant women data example, 

De la Cruz et al. studied the effects of β-HCG longitudinal process on normal versus 

abnormal pregnancy using in their primary model random effects that represented the curve 

levels and inflection point of the curves [11].

Functional discriminant methods such as the generalized functional linear model with a 

scalar response and a functional predictor [13, 14] have also been applied to model a cross-

sectional outcome as a function of longitudinal covariates [15, 16]. Other functional data 

analysis (FDA) techniques based on dimension reduction such as functional principal 

component analysis and filtering methods have been applied to select features or 

“covariates” for posterior analysis [14]. Even though models based on FDA techniques have 

proven to be useful to describe associations and for prediction purposes, the application of 

these models poses challenges principally related to the selection of adequate parameters to 

represent complex processes (e.g. choosing basis functions, number of eigenfunctions, 

smoothing penalties, and number and location of knots) and to computational costs.

Another approach for classification problems with binary outcomes and subject features 

measured repeatedly over time was proposed by Tomasko et al.[17]. They introduced the 

longitudinal discriminant analysis classifier where estimated means and covariance matrices 
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from mixed models are embedded in linear discriminant functions. Studies that applied this 

method showed good discrimination power [18, 19] but were based on saturated models for 

the mean response with high variance associated with its parameters. In addition, the mixed 

model assumptions of normal responses and linearity on the model parameters may be too 

restrictive to represent complex longitudinal data.

In most models that have been developed in the past for longitudinal predictors the outcome 

is measured multiple times or is a death process. Models proposed for responses measured at 

a single time point have been based on mixed models or functional predictors, characterizing 

continuous curves with random effects or functional parameters that may not represent the 

overall behavior of the individual profiles.

In an unpublished dissertation in 2011 titled ‘Logistic regression with Markov chains as 

covariates’, Ho used discrete-time Markov chains (DTMCs) in a logistic regression model to 

predict a binary outcome. In his model, the transition probabilities that characterize the 

discrete process were included as covariates. This method was applied to a lung cancer case-

control study to assess the effects of DNA damage/non-damage processes after carcinogenic 

exposure on lung cancer incidence. Unlike DTMCs where a system evolves through discrete 

time steps, in continuous-time Markov chains (CTMCs) changes to the system can happen at 

any time on a continuous interval.

In this study, we propose a novel approach based on Markov chains to model a cross- 

sectional binary response as a function of a longitudinal covariate process. The model 

proposed here is a joint logistic regression and Markov chain model based on CTMCs. The 

applicability of this model is particularly appealing to longitudinal data where changes can 

occur rapidly and unexpectedly at any time, such as physiological dynamics in the ICU. The 

joint model developed in this manuscript is applied to a cohort of patients with traumatic 

brain injury, where physiological data collected after injury and other baseline data are used 

as predictors of a 6-month binary outcome. We expect that this model makes an important 

contribution in the clinical setting as a guide for clinical management of patients, and in 

research studies, in the design of adaptive clinical trials, where cumulative longitudinal data 

would allow to update model-based risk scores in interim analyses.

The organization of this manuscript is as follows. Section 2 describes the joint proposed 

model, likelihood function, estimation and determination of initial values. In section 3 we 

perform simulations to validate the estimation procedure, giving some explanation on how 

the data were simulated. The TBI dataset where the joint model is applied (section 4) is used 

to determine the simulation parameters in section 3. This paper concludes with a discussion 

of our findings in the last section.

2. Methods

2.1 The joint logistic regression and two-state CTMC model with covariates

The joint logistic regression and two-state CTMC model with covariates is a model where a 

longitudinal covariate process that depends on non-dynamic variables and is bounded by two 

Rubin et al. Page 3

Stat Med. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



possible values is jointly modeled with other non-dynamic covariates in a logistic regression 

model.

Let Y be a binary outcome (Y = 0,1) and Z(t) a homogeneous CTMC with a state space S = 

{1,2} characterized by the transition intensities q21 and q12, where qUrepresents the 

transition rate from state i to state j, with i, j = 1,2. The theory of CTMC can be found 

elsewhere [20-22]. Assume that, xT = (x1, x2, …, x(p–1)) is a vector of p–1 covariates directly 

related to Y; vT = (v1, v2, …, v(r–1)) are r–1 covariates related to Y through the transition 

rate q21; wT = (w1, w2, …, w(s–1)) are s–1 covariates related to Y through q12; and π(x, q12, 

q21) is the probability of Y = 1 given the covariates x and the transition rates q12 and q21.

The joint logistic regression and two-state CTMC model with covariates can be written as

(1)

where β = (β0, β1, …, βp)T is the effect of x* = (1,xT)T on the outcome; α1 and α2 are the 

overall effects of the transition intensities q21 and q12, respectively, on the outcome; δ1 = 

(δ10, δ11, …, δ1(r–1))T is the effect of v* = (1,vT)T on the transition from state 2 to state 1; 

and δ2 = (δ20, δ21, …, δ2(s–1))T is the effect of w* = (1,wT)T on the transition from state 1 to 

state 2. Because we assume a stationary process, the probability of moving from one state to 

another in t units of time is the same at any time point. Therefore, α1 and α2 are constant 

effects of the transition rates at any time point. The vectors v, w, and x could consist of the 

same covariates or at least one covariate could be different.

This model can be thought as a two-component model where the Markov chain submodel 

given by q21 = ev*Tδ1and q12 = ew*Tδ2 is embedded in the main outcome model that contains 

x, q12, and q21 as covariates.

Interpretation of the parameters α1 and α2 in the main outcome model—The 

association of the covariates q21 and q12 with the outcome Y can be interpreted as follows: 

for each unit increment in the hazard rate of leaving state 2, the odds of Y = is expected to 

change by a multiplicity of eα1, and for each unit increment in the hazard rate of leaving 

state 1 the odds of Y = 1 is expected to change by a multiplicity of eα2, holding other 

covariates x constant. This means that a higher hazard rate of moving from state 2 to state 1 

will increase the probability of Y = 1 for a positive value of α1, and similarly, the probability 

of Y = 1 will increase with a higher rate of change from state 1 to state 2 for a positive value 

of α2.

2.2 The Likelihood function

The likelihood function for a regular logistic regression model [23, 24] and the likelihood 

function for a two-state homogeneous CTMC, where the transition probabilities can be 

stated explicitly by solving a system of differential equations [22], can be considered 
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simultaneously in a single equation to build the likelihood function for the joint proposed 

model.

For a total of N subjects with Tn observations for subject n, the joint likelihood function can 

be written as,

where Zn(tn,k) is the observed value of the Markov chain Z(t) for subject n at its kth 

observation time tn,k, characterized by the transition rates  and ; 

PZn(tn,k–1)=i,Zn(tn,k)=j(tn,k–tn,k–1) is the probability of changing from state “i” at time tn,k–1 to 

state “j” at time tn,k for subject n, where i, j = 1,2 and k = 2, …, Tn; P[Zn(0) = i] is the 

probability that the initial state of the chain is equal to i; and for i = 1,2, Ii[Zn(tn,k)] is an 

indicator function of whether Zn(tn,k) is equal to i.

In the proposed joint model, problems of identifiability and estimability of parameters may 

occur due to the presence of a CTMC. As noted in Benoit et al. [25], a CTMC model may be 

non-identifiable (i.e., two or more set of parameters could result in a very close likelihood) 

when outcomes are recorded at pre-specified times. This is because the sojourn time and 

state of change for a subject are not fully recorded, that is, their Markov chain observations 

do not record the exact duration of the sojourn time. In general, if the mean sojourn time is 

much longer than the inter-observation interval the identifiability problem will be almost 

negligible because the total observation time where a state does not change will be very 
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close to the sojourn time. However, in this case, unless the prespecified duration of 

observation is long, an estimability problem may occur because we may not observe a 

sufficient number of state changes. On the other hand, when the mean sojourn time interval 

(1/qii) is much shorter than the inter-observational time interval, several state changes 

between two observational time points could be missed and an observed transition could be 

reached by at least two different paths. In this situation, non-identifiability of parameters 

may occur.

In our model, the information contained in the covariates of the joint model may help reduce 

or avoid problems of identifiability. If changes of state for a subject occur much more often 

than what is observed, other subjects that have similar characteristics and observed transition 

times close to exact times of transition will dominate in the estimation process and hence 

reduce non-identifiability of parameters. At the same time, the covariates as well as the 

sequence of states observed for all subjects make the model estimable. First, the Markov 

chain of a subject that consists of the same state in their entire observational period is pooled 

with that of subjects who change their state many times, which makes possible the 

estimation of the Markov chain submodel. Simultaneously, the variability introduced by the 

covariates of the Markov chain submodel allows the estimation of the parameters associated 

with the transition rates and with the rest of covariates of the main outcome model.

2.3 Estimation and initial values

The method of maximum likelihood can be used to maximize (2) with respect to the 

parameters β, α1, α2, and δ in a one-stage procedure. This is a nonlinear optimization 

problem where there is no closed-form solution for the parameter estimators. The Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm is a quasi-Newton method that uses function 

values and gradients to build up a picture of the objective to be optimized [26]. In this study, 

we use the BFGS numerical method to find the maximum likelihood estimators (more 

details in the Appendix). To conduct inference, variance estimates are obtained from the 

final value of the inverse of the Hessian matrix in the BFGS algorithm (A.1).

The initial values for the BFGS algorithm of the estimation procedure can be determined in 

a two-stage procedure as described below.1- A usual two-state continuous-time Markov 

chain model with covariates v and w is fitted to find parameter values δ1 and δ2. At this 

stage, the covariates x and the outcome Y are ignored. The initial values for this model can 

be chosen based on the method proposed by Mhoon et al. [27].2- The transition rates q12 and 

q21 are computed for each subject based on the estimates δ̂1 and δ̂2 obtained in the first stage 

and a regular logistic regression model is fitted to the data x, q̂21, q̂12, and the outcome Y to 

obtain initial values for the parameters α1, α2, and β.

3. Validation of the estimation procedure

3.1 Description of the simulation study

We conducted simulations in order to validate the estimation procedure of the joint model 

(1). The “true” parameters in this simulation study were obtained from an application of the 

proposed model to a database of patients with TBI [28].
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The data simulation procedure can be thought as a two-stage process, where covariates of 

the exponential functions in model (1) are simulated first to be able to obtain transition rates 

for each subject that will act as covariates in the main outcome model. The motivation 

behind this simulation process is that a two-stage procedure of this type needs to be applied 

when the joint models are used to make predictions. A complete description of the 

simulation mechanism is presented below.

3.1.1 Simulation of covariates—Because we are particularly interested in applying this 

model to a dataset of TBI patients, the type of covariates and distributions chosen for this 

simulation mimicked this type of data. However, covariates and their distributions could be 

chosen differently without loss of generality.1- Two covariates, one continuous (v1) and one 

binary (v2), were simulated as predictors directly associated with the transition rate q21, 

where v1 followed a truncated standard normal distribution and v2 a Bernoulli distribution. 

Similarly, a continuous variable w1 and a binary variable w2 were predictors associated with 

q12 and were simulated using the same distributions as in the transition rate q21. For the 

binary predictors, v2 and w2, the parameters p that characterize the Bernoulli distributions 

were chosen differently.2- The “true” parameters δ11, δ12, δ21, and δ22, associated with the 

covariates v1, v2, w1, and w2, respectively, together with the covariates values and the “true” 

intercepts δ10 and δ20 were used to calculate transition rates q12 and q21 for each subject.3- 

An additional pair of covariates, x1 and x2 were simulated as predictors directly associated 

with the outcome Y, where x1 followed a Bernoulli distribution and represented the initial 

state of the chain, and x2/10 followed a beta distribution. The parameters used in the 

Bernoulli and beta distributions simulations were empirically chosen from selected 

covariates in the TBI dataset. For the beta distribution, the parameters that characterize the 

distribution were determined using the method of moments estimator.

3.1.2 Simulation of the Markov chain—We used the transition rates q12 and q21 

simulated for each subject as parameters of exponential distributions to simulate individual 

Markov chains. The length of the chains was set to 120 time points per subject and the initial 

states of the chains were chosen as described above.

3.1.3 Simulation of the outcome Y—The logit of the probability of Y = 1 given the 

covariates (x, q21, and q12) was computed based on the “true” parameters β0, β1, and β2 

associated with the intercept and covariates directly related to the outcome (x1 and x2), and 

based on the “true” parameters α1 and α2 of the transition rates q21 and q12. Then, the 

inverse function of the logit was used to calculate the probability of Y = 1 given the 

covariates for each subject (π̂
n), and a Bernoulli distribution with parameter π̂

n was used to 

simulate the outcomes.

3.2 Implementation

We generated R=1,000 datasets with N=178 subjects under two scenarios: (i) assuming that 

the transition rates are associated with the outcome (the joint proposed model, where β ≠ 0, 

α1 ≠ 0, α2 ≠ 0, δ1 ≠ 0, δ2 ≠ 0); (ii) assuming that the effect of the transition rates on the 

outcome is null (β ≠ 0, α1 = 0, α2 = 0, δ1 ≠ 0, δ2 ≠ 0). The joint proposed model was then 

fitted to the simulated datasets of both scenarios to assess its performance in each case. 
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Table 1 contains summarized information of the 1,000 simulations under scenario (i). All 

estimated coefficients are very close to their true values and the coverage probability for 

each coefficient is about 95%. At the same time the standard deviations (SDs) of the point 

estimates across the simulation runs are very close to the squared root of the average of the 

estimated variance for each run (standard errors, SEs), which indicates that our number of 

runs is adequate.

To assess the performance of our method in a situation where the transition rates do not 

affect the response (scenario (ii)), we set the parameters α2 = α1 = 0 and the true values for 

β0, β1, and β2 were chosen as the estimates obtained by fitting a regular logistic regression 

model to the TBI study data; we separately fit a two-state CTMC to the longitudinal data to 

choose true values for δ1 and δ2. In this case, the algorithm did not converge for 1 simulated 

data set, and therefore its performance was evaluated based on 999 datasets. The bias is still 

negligible for all the parameter estimates and the coverage probabilities range from 0.94 to 

0.97 (Table 2). Therefore, if there is not really an effect of the transition rates on the 

outcome, the estimates of our main outcome model will approximate those of a regular 

logistic regression model.

We also evaluated the performance of a regular logistic regression model on the simulated 

data from scenarios (i) and (ii). Table 3 shows a summary of the logistic regression model 

fitted to the simulated datasets under each scenario. If there is really a joint effect of the 

main outcome model with the longitudinal covariate process, a regular logistic regression 

model will not perform as well compared to a joint logistic regression and Markov model 

(bias is in general larger and coverage probabilities lower). As expected, the performance of 

a logistic regression model on datasets where the Markov chain submodel is independent of 

the main outcome model is very good.

4. Application

4.1 Study population and description of the joint proposed model

The EPO TBI study was a clinical trial funded by the National Institute of Neurological 

Disorders and Stroke (NINDS) to study the effects of erythropoietin on cerebral vascular 

dysfunction and anemia on neurological recovery [28]. In this trial, 200 participants with 

severe TBI were randomly assigned to administration of erythropoietin or placebo and to 

hemoglobin transfusion thresholds of 7 or 10 g/dl in a 2 × 2 factorial design. The primary 

endpoint was the Glasgow Outcome Scale score dichotomized as favorable (good recovery 

and moderate disability) or unfavorable (severe disability, vegetative, or dead) at 6 months 

post-injury. Baseline information including demographic characteristics and type and 

severity of injury was obtained on admission. When patients were admitted to the ICU, 

nurses collected physiological data every hour that the patient was in the ICU.

We applied the joint logistic and Markov chain model to the EPO TBI study data with the 

aim of assessing the added value of physiological dynamics and treatment variables in 

predicting unfavorable 6-month GOS. Because information on the 6-month GOS outcome 

was not available for some patients, our analysis was based on 178 patients of which 62% 

had unfavorable GOS. For the physiological data, we considered hourly information 
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recorded during the first 120 hours after ICU admission, where missingness of data was not 

substantial (24%).

Markov chain submodel—For the Markov chain submodel, we dichotomized 

intracranial pressure (ICP) following the Brain Trauma Foundation (BTF) guidelines [29] in 

less than or equal to 20mmHg and greater than 20mmHg and used the transition rates that 

characterize the ICP process as covariates in the main outcome model. Out of a total of 

20,866 ICP transitions between two consecutive hours, about 11% were from ICP ≤20 

mmHg to >20 mmHg and vice versa, 63% ICP values remained ≤20 mmHg in two 

consecutive hours, and 15% remained >20 mmHg. Before dichotomization of ICP and to 

minimize informative missing ICP data, we applied an imputation procedure on the raw 

continuous data that is similar to the procedure applied by Yamal et al. [30]; we were left 

with a total of 316 ICP values missing post-imputation. After consultation with an expert 

clinician, the transition rates were modeled as dependent variables of the following 

physiological variables: PaO2, hemoglobin, MAP, PaCO2, temperature, delayed intracranial 

hematoma (DICH), and brain tissue hypoxia (BTH). For PaO2, hemoglobin, MAP, PaCO2, 

and temperature, we calculated a summary measure per patient defined as the number of 

times in 120 hours that the variable was outside a prespecified threshold, i.e., that had an 

abnormal value. For DICH and BTH we created indicator variables of whether the patient 

had adverse events of this type during the study time. For the transition rate from high (>20 

mmHg) to normal or low ICP (≤20 mmHg), q21, we also considered whether the patient had 

surgery for increased ICP and whether the drugs mannitol or barbiturates were given to 

decrease intracranial pressure.

Main outcome model—In the main outcome model we included as predictors the 

IMPACT prognostic score of unfavorable outcome (a score that contains information on 

baseline characteristics built by Steyerberg et al. [31]), that was multiplied by 10 for ease of 

interpretation; the Injury Severity Score (a score to assess trauma severity); the first ICP 

value recorded; and the transition rates q12 and q21 that characterize the ICP process of 

moving from a normal or low ICP state (≤20 mmHg, state 1) to a high ICP state (>20 

mmHg, state 2).

Statistical analyses for the EPO TBI study data were carried out using R version 3.3.1 (R 

Foundation for Statistical Computing). The optim function from the R package stats was 

applied to the coded joint likelihood function to obtain the parameters estimates and 

variance estimates of the proposed model.

4.2 Results of the joint proposed model

For our final analysis, in order to remove correlated covariates from the joint model, we 

applied a backward model selection based on the AIC (Akaike Information Criteria) strategy 

in two steps: first, we fitted the joint model and applied the backward selection in the ICP 

submodel only and secondly, we fitted the joint model using the reduced ICP submodel and 

selected covariates from the main outcome model only. Because the effect of the transition 

rate q12 on the 6-month GOS was quite large when using hourly ICP data, we rescaled the 
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time variable to have 15-minutes increments. Also, we standardized the continuous 

physiological variables in the Markov chain submodel to avoid computational issues.

Interpretation of the transition rate effects on the outcome—Table 4 contains the 

results of the joint proposed model after the model selection. It can be observed that for each 

unit increment in the hazard rate of moving from high to normal or low ICP, the odds of 

unfavorable 6-month GOS is expected to change by a multiplicity of e−0.16 = 0.85, and for 

each unit increment in the hazard rate of moving from normal or low to high ICP the odds of 

unfavorable outcome is expected to change by a multiplicity of e1.87 = 6.49, holding the 

IMPACT prognostic score constant. While there is a borderline significant decrease in the 

probability of unfavorable outcome for a higher hazard rate of moving from high to normal 

or low ICP (p=0.0502), the increase in the probability of unfavorable outcome with a higher 

rate of change from normal or low to high ICP is not statistically significant (p=0.12) despite 

the large effect of the covariate q12. A possible explanation for this last result is that subjects 

remained longer in a normal or low ICP state than in a high ICP state, and therefore the 

standard error associated with the transition rate q12 is larger than the standard error for q21. 

We would expect to see a statistically significant effect of q12 if ICP was observed for a 

longer period of time. A simulation study using chains of different lengths confirmed our 

hypothesis.

Interpretation of the physiological covariates effects of the Markov chain 
submodel on the outcome—Many physiological variables were significantly associated 

with the 6-month GOS (Table 4). The change in the odds of unfavorable outcome is not 

constant throughout each hour increment that the physiological variable was outside the 

prespecified threshold, that is, it depends on the time when we are assessing the change. For 

example, for PaCO2 in the transition rate q12, the odds ratio for one extra hour that PaCO2 

was outside the threshold is exp[1.87 × exp(0.11 × PaCO2) × (exp(0.11)-1)]. If PaCO2 was 

abnormal for 1 hour in 120 hours after ICU admission, then the odds of unfavorable 

outcome would be 27% higher in the second hour of abnormal PaCO2.

Interpretation of the physiological covariates effects of the Markov chain 
submodel on the transition rates—In the ICP submodel, interpretation of the covariate 

effects requires some caution because the physiological variables and treatment variables are 

post-baseline summary measures and there could be temporality issues of whether the ICP 

transition occurred before or after there was a change in another vital sign or treatment 

variable. For example, in the q12 transition rate MAP has a positive sign and we would say 

that an additional hour of abnormal MAP is associated with a higher hazard of moving from 

ICP≤20 mmHg to ICP>20 mmHg. However, for the variable drug in q21 the negative sign 

would indicate that giving a drug to a patient to decrease their ICP is associated with lower 

risk of moving to a normal or low ICP level, or in other words, those patients who are given 

the drug remain longer in a high ICP level compared to those that are not given the drug. 

While we would expect that the drug would decrease ICP quickly, we are observing the 

opposite effect because the drug is given after the patient has had sustained increased ICP.
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4.3 Results of the joint proposed model vs. a prognostic score of baseline data only

Compared to a prognostic score of unfavorable outcome that contains baseline information 

only (IMPACT prognostic score), the joint logistic Markov model with baseline data and 

longitudinal data collected in the ICU 120 hours post-injury had higher discrimination 

power. The area under the ROC curve was 0.824 for the joint logistic Markov model and 

0.799 for the IMPACT prognostic score (p=0.052) (Figure 1).

5. Discussion

We have proposed a joint logistic regression and Markov model to assess the effect of a 

longitudinal covariate process on a binary outcome measured cross-sectionally. In the model, 

the process is represented by transition rates of a two-state CTMC, which in combination 

with baseline covariates are used to describe the response. Previous studies that used a 

similar idea based on Markov chains, either modeled a longitudinal outcome or used a 

discrete-time Markov chain approach. Specifically, in Hubbard et al.'s study [5], one 

component of a time-dependent transition probability matrix of a multistate CTMC model 

was used as a covariate process to describe a longitudinal binary outcome. While in Hubbard 

et al.'s method two processes are modeled simultaneously (the outcome and the covariate 

processes), we propose a method where the elements of one process (transition rates of the 

CTMC covariate process) are modeled as a function of a response measured at a single time 

point. Therefore, Hubbard et al.'s model cannot be simplified to our model with a single 

outcome measurement; if we attempted to do so, the covariate process would also reduce to 

the baseline observation. Our model also differs from Hubbard et al.'s in how the covariate 

process is included in the model. While they use one transition probability to represent a 

five-state CTMC at each time point, we use two transition rates to represent a two-state 

CTMC across time. That is, the process is fully identified in our model using the 

fundamental elements of a CTMC, as opposed to a partial representation of the process in 

their model given by one sequence of approximated transition probabilities. This, together 

with the fact that the transition rates in our model are adjusted by several key covariates, 

makes our model more appropriate for our targeted data example. The dissertation study by 

Ho used discrete time Markov chains instead of CTMC to jointly model the association 

between a longitudinal covariate process and a binary cross-sectional outcome using a two-

stage estimation procedure. In his model, transition probabilities of the discrete process were 

included as predictors. Since transition probabilities of a DTMC are based only on observed 

changes at pre-specified time points, they do not represent the true force of transition given 

by transition rates of a CTMC, which are based not only on data that are observed but also 

on unobserved changes between time points. Hence, a CTMC approach, as was adopted in 

our study, may be more appropriate to describe the longitudinal covariate process.

Our simulation studies showed good performance of our method, even if the longitudinal 

covariate process does not influence the outcome. We showed that ignoring the longitudinal 

covariate effects in a regular logistic regression model when they actually exist will 

introduce some bias in the parameter estimates and the logistic regression model will not 

capture the true values as often as the joint model does.
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The application of this model was in a dataset of patients with severe traumatic brain injury, 

where we used quarter-hour longitudinal physiological data in addition to other non-

dynamic covariates to predict 6-month GOS. The rationale of using a continuous-time 

Markov chain approach to model the ICP data measured discretely at each hour post-injury 

is that ICP changes may not occur exactly during the observation time. Prognostic models 

for 6-month GOS in patients with TBI have been developed on admission hospital only and 

are currently considered useful tools in the clinical setting [31, 32]. However, the predictive 

value of physiological data collected during the acute phase of injury seems promising 

[33-35], particularly the value of elevated intracranial pressure that can lead to ischemia, 

cerebral herniation and death. Our joint model applied to the TBI data showed that neither 

the hazard of moving from ICP>20 mmHg to ICP≤20 mmHg nor the hazard of moving from 

ICP≤20 mmHg to ICP>20 mmHg in the first 120 hours after ICU admission significantly 

affects patient recovery at 6-months post-injury. However, the association between 6-month 

GOS and the hazard of moving from high to normal or low ICP was borderline significant. 

When we compared the joint model versus a prognostic score with baseline data only in 

terms of their classification performance, we observed that the physiological information 

collected post-injury helped improve predictive power. A further increase in prediction 

power may be achieved if automated physiological data instead of hourly data recorded by a 

practitioner were used to fit the joint proposed model [36].

Our proposed model is based on a two-state CTMC and requires dichotomization of the 

longitudinal covariate of interest if this one is measured in a continuous scale. We know that 

dichotomization of continuous predictors may result in some information loss. However, 

when recoding a continuous variable based on a particular threshold measurement error in 

raw and imputed data is reduced and data become more reliable. In our application study, 

ICP was dichotomized as normal or low (≤20 mmHg) versus high (>20 mmHg). The 

rationale for modeling ICP as a two-state process is that we aimed to capture the underlying 

normal or abnormal ICP behavior that characterizes the continuous ICP paths; we consider 

that two ICP values larger than 20mmHg do not provide as much information as one below 

and another above 20mmHg do. In addition, in this case, the population of TBI patients were 

managed based on a threshold of ICP. Other application areas should consider finding 

meaningful cutpoints for the longitudinal covariates or use thresholds based on management 

strategies as we did for the TBI study.

In this study, when we applied the joint proposed model to the TBI dataset, the ICP 

transition rates of the Markov chain submodel were modeled as a function of covariates that 

are summary measures of longitudinal data post-baseline. In this case, special attention 

should be paid to the interpretation of these covariates' effects on the transition rates due to 

the lack of temporality between the ICP process and the treatment and physiological 

variables that affect this process. Otherwise, if the Markov process was influenced by 

baseline covariates only, the interpretation of the covariates effects on the transition rates 

would be straightforward. Nevertheless, the effect of the transition rates on the main 

outcome, which is the focus of our study, has a direct and clear interpretation.

We have developed a model where a longitudinal process can be incorporated in a logistic 

regression model to predict a cross-sectional binary outcome. The transition rates that 
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characterize this longitudinal process act as predictors of the main outcome and can be 

jointly modeled with other non-dynamic covariates. This model could be applied to diverse 

public health problems; for instance, it could incorporate longitudinal electroencephalogram 

data to predict episodes of epilepsy in subjects with seizures, or glucose monitoring data to 

predict the risk of kidney failure in patients with diabetes.
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Appendix

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is an iterative method to solve 

unconstrained nonlinear optimization problems that approximates Newton's method. Unlike 

Newton's method, the BFGS does not require the calculation of second derivatives. The 

algorithm is briefly described below.

Let f:ℝn → ℝ be a convex, twice-differentiable function to optimize. Denote the gradient of 

f at a current point xk by ∇fk, and the Hessian matrix or matrix of second partial derivatives 

by Hk, symmetric and positive definite. For any point x define, p = x–xk. The second order 

Taylor expansion around xk is given by

and defines a quadratic model. The gradient of mk(p) with respect to x is ∇mk(p) = ∇fk + 

Hkp, and it is minimized at 

Let . The BFGS algorithm can be described as follows:

1. Obtain a direction pk by solving pk = −Bk∇fk.

2. Perform a line search in the direction of pk to find some α ∈ (0,∞) and then 

update xk#x0002B;1 = xk + αkpk. The step length αk is required to satisfy certain 

conditions to guarantee convergence.

3. Define sk = xk+1–xk = αkPk and yk = ∇fk#+1–∇fk.

4. Compute

(A.1)

This is the solution to the matrix minimization problem, 

 subject to B = BT, Byk = sk, where 
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 and W is the inverse 

 of the average Hessian, .

The initial value for the inverse of the Hessian matrix, B0, can be selected as a scalar 

multiple of the identity matrix or a finite difference approximation at x0, for instance. 

Convergence is achieved when the norm of the gradient |∇f(xk)|<∈, where ∈>0.
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Figure 1. ROC curves for the joint proposed model vs. the IMPACT prognostic score of 
unfavorable outcome
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Table 4

Results of the joint logistic regression and Markov model applied to the EPO TBI study data.

Covariate in the joint modela Parameter estimate Standard error P-valueb

Main logistic regression model for unfavorable GOS

Intercept -2.76 1.38 0.05

IMPACT prognostic score per 10% unit increment 0.54 0.10 <0.01

q12 1.87 1.19 0.12

q21 -0.16 0.08 0.05

Submodel for transition rate from normal or low to high ICP (q12)c

Intercept 0.11 0.03 <0.01

BTH -0.17 0.06 <0.01

PaO2 0.04 0.02 0.10

MAP 0.04 0.03 0.13

PaCO2 0.11 0.03 <0.01

hemoglobin -0.11 0.03 <0.01

Submodel for transition rate from high to normal or low ICP (q21)

Intercept 1.98 0.05 <0.01

BTH -0.14 0.06 0.02

DICH -0.44 0.05 <0.01

temperature 0.12 0.02 <0.01

PaO2 0.08 0.03 <0.01

MAP -0.05 0.03 0.10

PaCO2 -0.06 0.03 0.01

hemoglobin -0.16 0.04 <0.01

drug -0.96 0.05 <0.01

a
PaO2, MAP, PaCO2, temperature, and hemoglobin were defined as the number of times in 120 hours that the variable was outside a prespecified 

threshold, and were standardized; q12 and q21 are the ICP transition rates of changing states in 15-minute increments.

b
P-values rounded to 2 decimal places. For q21, p=0.0502; for the intercept in the main logistic regression model, p=0.045.

c
Normal or low ICP is defined as ICP≤20 mmHg; high ICP is defined as ICP>20 mmHg.
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