Skip to main content
. Author manuscript; available in PMC: 2018 Dec 10.
Published in final edited form as: Stat Med. 2017 Jul 10;36(28):4570–4582. doi: 10.1002/sim.7387

Table 2.

Simulation results using the proposed model to analyze the data generated from a model with no effects of Markov chains on the outcome (N=178 subjects; R=999 runs).

Covariate in the joint model Parameter and true value Estimate Bias SDa SEb Coverage probability
Intercept β0 = -1.45 -1.49 -0.04 1.88 1.90 0.97

x1 (continuous) β1 = 0.57 0.60 0.03 0.10 0.10 0.96

x2 (binary, initial state) β2 = -0.26 -0.27 -0.01 0.42 0.42 0.95

q12 α2 = 0.00 -0.04 -0.04 1.69 1.72 0.97
w0 δ20= -0.02 -0.02 0.00 0.03 0.03 0.95
w1 (binary) δ21= 0.22 0.22 0.00 0.04 0.04 0.95
w2 (continuous) δ22= 0.04 0.04 0.00 0.03 0.03 0.95

q21 α1= 0.00 0.00 0.00 0.09 0.09 0.94
v0 δ10= 1.87 1.87 0.00 0.04 0.04 0.94
v1 (binary) δ11= -1.11 -1.11 0.00 0.04 0.04 0.96
v2 (continuous) δ12= -0.09 -0.09 0.00 0.03 0.03 0.95
a

Standard deviation of the point estimates.

b

Standard error, obtained from the squared root of the average of the estimated variance for each run.