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Abstract

A genome-wide association study (GWAS) correlates marker and trait variation in a study sample. 

Each subject is genotyped at a multitude of SNPs (single nucleotide polymorphisms) spanning the 

genome. Here we assume that subjects are randomly collected unrelateds and that trait values are 

normally distributed or can be transformed to normality. Over the past decade, geneticists have 

been remarkably successful in applying GWAS analysis to hundreds of traits. The massive amount 

of data produced in these studies presents unique computational challenges. Penalized regression 

with LASSO or MCP penalties is capable of selecting a handful of associated SNPs from millions 

of potential SNPs. Unfortunately, model selection can be corrupted by false positives and false 

negatives, obscuring the genetic underpinning of a trait. Here we compare LASSO and MCP 

penalized regression to iterative hard thresholding (IHT). On GWAS regression data, IHT is better 

at model selection and comparable in speed to both methods of penalized regression. This 

conclusion holds for both simulated and real GWAS data. IHT fosters parallelization and scales 

well in problems with large numbers of causal markers. Our parallel implementation of IHT 

accommodates SNP genotype compression and exploits multiple CPU cores and graphics 

processing units (GPUs). This allows statistical geneticists to leverage commodity desktop 

computers in GWAS analysis and to avoid supercomputing.
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1 Introduction

Over the past decade, genome-wide association studies (GWASs) have benefitted from 

technological advances in dense genotyping arrays, high-throughput sequencing, and more 

powerful computing resources. Yet researchers still struggle to find the genetic variants that 

account for the missing heritability of many traits. It is now common for consortia studying 

a complex trait such as height to pool results across multiple sites and countries. Meta-

analyses have discovered hundreds of statistically significant SNPs, each of which explains a 

small fraction of the total heritability. A drawback of GWAS meta-analysis is that it relies on 

univariate regression rather than on more informative multivariate regression (J. Yang et al., 

2010). Because the number of SNPs (predictors) in a GWAS vastly exceeds the number of 

study subjects (observations), statistical geneticists have resorted to machine learning 

techniques such as penalized regression (Lange, Papp, Sinsheimer, & Sobel, 2014) for 

model selection.

In the statistical setting of n subjects and p predictors with n ≪ p, penalized regression 

estimates a sparse parameter vector β ∈ Rp by minimizing an appropriate objective function 

f(β) + λp(β), where f(β) is a convex loss, p(β) is a suitable penalty, and λ is a tuning 

constant controlling the sparsity of β. The most popular and mature sparse regression tool is 

LASSO (ℓ1) regression (S. Chen & Donoho, 1994; Tibshirani, 1996). Unfortunately, LASSO 

parameter estimates are biased towards zero (Hastie, Friedman, & Tibshirani, 2009), usually 

severely so. As a consequence of shrinkage, LASSO regression lets too many false positives 

enter a model. Since GWAS is often followed by expensive biological validation studies, 

there is value in reducing false positive rates. To counteract the side effects of shrinkage, 

Zhang (Zhang, 2010) recommends the minimax concave penalty (MCP) as an alternative to 

the ℓ1 penalty. Other nonconvex penalties exist, but MCP is probably the simplest to 

implement. MCP also has provable convergence guarantees. In contrast to the LASSO, 

which admits too many false positives, MCP tends to allow too few predictors to enter a 

model. Thus, its false negative rate is too high. Our subsequent numerical examples confirm 

these tendencies.

Surprisingly few software packages implement efficient penalized regression algorithms for 

GWAS. The R packages glmnet and ncvreg are ideal candidates, given their ease of use, 

maturity of development, and wide acceptance. The former implements LASSO-penalized 

regression (Friedman, Hastie, & Tibshirani, 2010; Lange, 2010; Tibshirani, 1996), while the 

latter implements both LASSO- and MCP-penalized regression (Breheny & Huang, 2011; 

Zhang, 2010). Both packages provide excellent functionality for moderately sized problems. 

However, R’s poor memory management hinders the scalability of both algorithms. In fact, 

analysis on a typical workstation is limited to at most a handful of chromosomes at a time. 

Larger problems must appeal to cluster or cloud computing. Neither glmnet nor ncvreg 

natively support the compressed PLINK binary genotype file (BED file) format so effective 

in storing and distributing GWAS data (Purcell et al., 2007). Scalable implementations of 

LASSO for GWAS with PLINK files appear in the packages Mendel, gpu-lasso, SparSNP, 

and the beta version of PLINK 1.9 (Abraham, Kowalczyk, Zobel, & Inouye, 2012; Chang et 

al., 2015; G. K. Chen, 2012; Lange et al., 2013; Wu & Lange, 2008). All of these packages 

include parallel computing capabilities for large GWAS datasets. Mendel, gpu-lasso, and 
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PLINK 1.9 beta have multicore acceleration capabilities, while SparSNP can be run on 

compute clusters. To our knowledge, only Mendel supports MCP regression with PLINK 

files.

As an alternative to penalized regression, one can tackle sparsity directly through greedy 

algorithms for sparse reconstruction. The matching pursuit (MP) (Mallat & Zhang, 1993) 

algorithm from the signals processing literature reconstructs a signal by adding predictors 

piecemeal, eventually yielding a sparse representation of the signal. This is a generalization 

of the older statistical procedure of forward stagewise regression (Donoho, Tsaig, Drori, & 

Starck, 2012). Similar algorithms treated in the signal processing literature include hard 

thresholding pursuit (HTP) (Bahmani, Raj, & Boufounos, 2013; Foucart, 2011; Yuan, Li, & 

Zhang, 2014), orthogonal matching pursuit (OMP) (Pati, Rezaiifar, & Krishnaprasad, 1993; 

Tropp & Gilbert, 2007), compresive sample matching pursuit (CoSaMP) (Needell & Tropp, 

2009) and subspace pursuit (SP) (Dai & Milenkovic, 2009).

An alternative approach is to handle sparsity through projection onto sparsity sets 

(Blumensath, 2012; Blumensath & Davies, 2008, 2009, 2010). Iterative hard thresholding 

(IHT) minimizes a loss function f(β) subject to the sparsity constraint ||β||0 ≤ k, where the ℓ0 

“norm” ||β||0 counts the number of nonzero entries of the parameter vector β. The integer k 
serves as a tuning constant analogous to λ in LASSO and MCP regression. IHT can be 

viewed as a version of projected gradient descent tailored to sparse regression. Since these 

algorithms rely solely on gradients, they avoid computing and inverting large Hessian 

matrices and hence scale well to large datasets.

Like matching pursuit algorithms, IHT is fundamentally a greedy selection procedure. 

Distinguishing which greedy algorithm demonstrates superior performance is no simple 

task. Typical performance metrics include computational speed, signal recovery behavior, 

and convergence guarantees in noisy environments. Although from a theoretical point of 

view, no greedy algorithm is uniformly superior to the others, IHT demonstrates the best 

balance of these three criteria among greedy algorithms (Blanchard, Cartis, Tanner, & 

Thompson, 2011; Blanchard & Tanner, 2015). Implementation details such as memory 

management, hardware platform, and choice of computing environment can complicate this 

picture. In light of established results with greedy algorithms, we believe that a careful 

implementation of IHT can provide sparse approximation performance that is competitive or 

superior to current penalized regression procedures.

Our implementation of IHT addresses some of the specific concerns of GWAS. First, it 

accommodates genotypes presented in compressed PLINK format. Second, our version of 

IHT allows the user to choose the sparsity level k of a model. In contrast, LASSO and MCP 

penalized regression must choose model size indirectly by adjusting the tuning constant λ to 

match a given k. Third, our version of IHT is implemented in the package IHT.jl in the 

free Julia programming language. Julia works on a variety of hardware platforms, 

encourages prudent control of memory, exploits all available CPU cores, and interfaces with 

massively parallel graphics processing unit (GPU) devices. Finally, IHT performs more 

precise model selection than either LASSO or MCP penalized regression. We use “precise” 

in the information theoretic sense: given the sets of markers selected by each of the three 
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algorithm, the set that IHT selects contains a higher proportion of causal markers than those 

of LASSO and MCP. While this does not mean that IHT consistently recovers all causal 

markers, the markers it does recover are more credible than the markers that LASSO and 

MCP recover. All of these advantages can be realized on a modern desktop computer. 

Although our current IHT implementation is limited to ordinary linear least squares, the 

literature suggests that logistic regression is within reach (Bahmani et al., 2013; Yuan et al., 

2014).

It worth stressing that our focus is on parameter estimation and model selection. Historically 

IHT lacked a coherent inference framework for constructing valid post-selection confidence 

intervals and P-values. A recent paper (F. Yang, Barber, Jain, & Lafferty, 2016) tries to fill 

this gap for group IHT; its applicability to this work is tenuous. Post-selection inference 

theory for the LASSO (Lockhart, Taylor, Tibshirani, & Tibshirani, 2014; Taylor & 

Tibshirani, 2015; Lee, Sun, Sun, & Taylor, 2016) is implemented in the R package 

selectiveInference. Because this package lacks PLINK file support and parallel 

processing capabilities, its scalability to GWAS is problematic.

Before moving onto the rest of the paper, let us sketch its main contents. Section 2 describes 

penalized regression and greedy algorithms, including IHT. We dwell in particular on the 

tactics necessary for parallelization of IHT. Section 3 records our numerical experiments. 

The performance of IHT, LASSO, and MCP regression algorithms is evaluated by several 

metrics: computation time, precision, recall, prediction error, and heritability. The sparsity 

level k for a given dataset is chosen by cross-validation on both real and simulated genetic 

data. Our discussion in Section 4 summarizes results, limitations, and precautions.

2 Methods

2.1 Penalized regression

Consider a statistical design matrix X ∈ Rn×p, a noisy n-dimensional response vector y, and a 

sparse parameter vector β of regression coefficients. When y represents a continuous 

phenotype, then the residual sum of squares loss

(1)

is appropriate for a linear model y = Xβ*+ε with a Gaussian error vector ε with independent 

components. The goal of penalized regression is to recover the true vector β* of regression 

coefficients.

LASSO penalized regression imposes the convex ℓ1 penalty . In 

most applications, the intercept contribution |β1| is omitted from the penalty. Various 

approaches exist to minimize the objective f(β) + λ||β||1, including least angle regression 

(LARS) (Efron, Hastie, Johnstone, & Tibshirani, 2004), cyclic coordinate descent 

(Friedman, Hastie, Höfling, & Tibshirani, 2007; Wu, Chen, Hastie, Sobel, & Lange, 2009; 
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Wu & Lange, 2008), and the fast iterative shrinkage and thresholding algorithm (FISTA) 

(Beck & Teboulle, 2009). The ℓ1 norm penalty induces both sparsity and shrinkage. 

Shrinkage per se is not an issue because selected parameters can be re-estimated omitting 

the non-selected parameters and the penalty. However, the severe shrinkage induced by the 

LASSO inflates false positive rates. In effect, spurious predictors enter the model to absorb 

the unexplained variance left by the shrinkage imposed on the true predictors.

The MCP penalty takes the form  with

(2)

for positive tuning constants λ and γ. The penalty (2) attenuates penalization for large 

parameter values. Indeed, beyond βi = γλ, MCP does not subject βi to further shrinkage. 

Relaxing penalization of large entries of β ameliorates LASSO’s shrinkage. If one majorizes 

the MCP function q(βi) by a scaled absolute value function, then cyclic coordinate descent 

parameter updates resemble the corresponding LASSO updates (Jiang & Huang, 2011).

2.2 Greedy pursuit algorithms

The ℓ1 penalty is the smallest convex relaxation of the ℓ0 penalty. As mentioned earlier, one 

can obtain sparsity without shrinkage by directly minimizing f(β) subject to ||β||0 ≤ k. This 

subset selection problem is known to be NP-hard (Golub, Klema, & Stewart, 1976; 

Natarajan, 1995). Greedy pursuit algorithms (MP, OMP, CoSaMP, SP, HTP, IHT) can at best 

approximate the solution of the subset selection problem. Here we sketch the main idea of 

each approach and describe some subtle differences between them.

MP and OMP, which build β stagewise, are easy to describe. At stage k with reduced 

predictor matrix Xk and reduced parameter vector βk, OMP computes the least squares 

solution

(3)

to the normal equations, where  denotes the pseudoinverse of Xk. Note that βk can be 

computed algebraically when k is small or iteratively when k is large. The next predictor to 

add is determined by the largest entry in magnitude of the gradient

(4)
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The main difference between MP and OMP is that OMP re-estimates all currently selected 

regression coefficients once a new predictor is added. In contrast, MP fixes a regression 

coefficient once it is estimated. The more complex strategy of OMP gives it a slight edge in 

recovery performance at the cost of additional computation.

One potentially detrimental feature of OMP is that indices added to the active set remain 

there. CoSaMP and SP extend OMP by adding a debiasing step, thus permitting predictors 

to enter and exit during the model building process. At stage k debiasing is accomplished by 

taking the estimate βk derived from equation (3), computing its gradient ∇f(βk), and 

identifying the k largest components in magnitude of ∇f(βk). The identified components are 

then appended to the nonzero components of βk, and all 2k components are refit. The largest 

k components of β2k in magnitude then populate the revised k-sparse approximation βk. 

Once debiasing is complete, the sparsity level k is increased to k + 1, and the process is 

repeated.

IHT and HTP approximate the solution to the subset selection problem by taking the 

projected gradient steps

(5)

where μ denotes the step size of the algorithm, and PSk (β) denotes the projection of β onto 

the sparsity set Sk where at most k components of a vector are nonzero. For sufficiently 

small μ, the projected gradient update (5) is guaranteed to reduce the loss, but it forfeits 

stronger convergence properties because Sk is nonconvex. Projection is achieved by setting 

all but the k largest components of β in magnitude equal to 0. HTP projects by solving the 

normal equations in the form (3) on the active set supp(βk).

The pure gradient nature of IHT explains its the speed and scalability advantages over other 

greedy algorithms as k grows. Although the method of conjugate gradients can quickly 

compute the solution vector (3) when k is large and X is sparse, typical GWAS datasets 

involve dense predictor matrices X. Direct solution of the normal equations then has 

computational complexity (k3). In contrast, the projection PSk in IHT succumbs to fast 

sorting algorithms with computational complexity of just (k log p). For small k, IHT is not 

intrinsically faster than other greedy pursuit algorithms, but the performance gap increases 

quickly as k grows. This advantage is particularly relevant in heritability estimation since 

many complex traits depend on hundreds or thousands of SNPs with small individual effect.

2.3 Convergence of IHT

Convergence guarantees for IHT revolve around three criteria. Let β* denote the parameter 

vector under the true model, and let βk be the current estimate of β*. Convergence 

guarantees consider any or all of the following quantities: (a) ||f(βk) − f(β*) ||2, (b) ||βk − β* 

||2, and (c) || supp(βk) − supp(β*)||1, where supp(β) denotes a 0/1 vector conveying the 

support of β. Convergence criteria (a) and (b) are better understood than criterion (c), so we 

first focus on (a) and (b).
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The original convergence guarantees for IHT (Blumensath & Davies, 2008, 2010) relied on 

the restricted isometry property (RIP) (Candés, Romberg, & Tao, 2006) and the mutual 
coherence property (Donoho & Huo, 2001; Tropp, 2006) to show that criteria (a) and (b) 

converge to 0. RIP and mutual coherence together require that the normalized version of X 
approximate an orthonormal matrix whose columns are uncorrelated. However, RIP offers 

pessimistic worst-case bounds. Recent research has derived realistic guarantees of stable 

convergence and model recovery for HTP and by extension to to IHT. A combination of 

restricted strong convexity (RSC) (Dobson & Barnett, 2008; Loh & Wainwright, 2015) and 

restricted strong smoothness (RSS) (Agarwal, Negahban, & Wainwright, 2012; Jain, Tewari, 

& Kar, 2014) places local bounds on the curvature of the loss function. If f(β) satisfies RSC 

and RSS, then HTP converges to a k-sparse minimizer β provided the extreme eigenvalues 

of the Hessian matrix ∇2f(β♯) are bounded for any k-sparse approximation β ♯ near β. The 

adaptation of RSC and RSS to IHT was made by Bahmani, Raj, and Boufounos (Bahmani et 

al., 2013). They invoke the stable restricted Hessian (SRH) and the stable restricted 
linearization (SRL) conditions to bound the curvature of f(β) over a restricted subset of the 

domain. A key difference is that SRH and SRL relax RSC and RSS. Indeed, the former pair 

of conditions entail only local constraints, while the latter pair entail global constraints.

The case of criterion (c), which ensures the stability of the support, is more complicated. 

One can easily concoct a scenario in which ||β* ||0 = ||βk||0 and ||βk − β*||2 can be made 

arbitrarily small, but supp(β*) ≠ supp(βk). Recent research (Yuan, Li, & Zhang, 2016) 

directly addresses criterion (c) by requiring that the smallest nonzero entry βmin of β* exceed 

||∇f(β*) ||∞. While a notable achievement, this result is of mainly academic interest since β* 

is rarely known in advance. Taken together, the results for the three convergence criteria 

suggest that IHT convergence is reasonably reliable for GWAS. In this context, we expect 

that IHT will recover the true model provided that the SNP markers are not in strong linkage 

disequilibrium and the magnitudes of the true regression coefficients are not too small.

2.3.1 IHT step sizes—Computing a reasonable step size μ is important for ensuring stable 

descent in projected gradient schemes. For the case of least squares regression, our 

implementation of IHT uses the “normalized” update of Blumensath and Davies 

(Blumensath & Davies, 2010). At each iteration m, this amounts to employing the step size

Convergence is guaranteed provided that μm < ωm, where

(6)
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for some constant 0 < c ≪ 1. One can interpret ω as the normed ratio of the difference 

between successive iterates versus the difference between successive estimated responses.

2.3.2 Bandwidth optimization of IHT—Analysis of large GWAS datasets requires 

intelligent handling of memory and read/write operations. Our software reads datasets in 

PLINK binary format. The PLINK compression protocol stores each genotype in two bits of 

a 64-bit float, thus achieving 32× compression. Although PLINK compression facilitates 

storage and transport of data, it complicates linear algebra operations. On small datasets, we 

store the design matrix X in floating point. On large datasets, we store both a compressed X 
and a compressed transpose XT. The transpose XT is used to compute the gradient (4), while 

X is used to compute the predicted response Xβ. The counterintuitive tactic of storing both X 
and XT roughly doubles the memory required to store genotypes. However, it facilitates 

accessing all data in column-major and unit stride order, thereby ensuring that all linear 

algebra operations maintain full memory caches.

Good statistical practice dictates standardizing all predictors; otherwise, parameters are 

penalized non-uniformly. Standardizing nongenetic covariates is trivial. However, one 

cannot store standardized genotypes in PLINK binary format. The remedy is to precompute 

and cache vectors u and v containing the mean and inverse standard deviation, respectively, 

of each of the p SNPs. The product Xstβ invoking the standardized predictor matrix Xst can 

be recovered via the formula

where 1 is an n-vector of ones and diag(v) is a diagonal matrix with v on the main diagonal. 

Thus, there is no need to explicitly store Xst.

On-the-fly standardization is a costly operation and must be employed judiciously. For 

example, to calculate Xβ we exploit the structural sparsity of β by decompressing and 

standardizing just the submatrix Xk of X corresponding to the k nonzero values in β. We 

then use Xk for parameter updates until we observe a change in the support of β. 

Unfortunately, calculation of the gradient ∇f(β) offers no such optimization because it 

requires a fully decompressed matrix XT. Since we cannot store all n × p standardized 

genotypes in floating point format, the best that we can achieve is standardization on the fly 

every time we update the gradient.

2.3.3 Parallelization of IHT—Our implementation of IHT for PLINK files relies on two 

parallel computing schemes. The first makes heavy use of multicore computing with shared 

memory arrays to distribute computations over all cores in a CPU. For example, suppose that 

we wish to compute in parallel the column means of X stored in a shared memory array. The 

mean of each column is independent of the others, so the computations distribute naturally 

across multiple cores. If a CPU contains four available cores, then we enlist four cores for 

our computations, one master and three workers. Each worker can see the entirety of X but 

only works on a subset of its columns. The workers compute the column means for the three 
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chunks of X in parallel. Column-wise operations, vector arithmetic, and matrix-vector 

operations fit within this paradigm.

The two most expensive operations are the matrix-vector multiplications Xβ and XT (y − 

Xβ). We previously discussed intelligent computation of Xβ via Xkβk. Dense multithreaded 

linear algebra libraries such as BLAS facilitate efficient computation of Xkβk. Consequently, 

we obtain Xβ in (nk) total operations. In contrast, the gradient criterion (4) requires a 

completely dense matrix-vector multiplication with a run-time complexity of (np). We 

could lighten the computational burden by cluster computing, but communication between 

the different nodes then takes excessive time.

A reasonable alternative for acceleration is to calculate the gradient on a GPU running the 

OpenCL kernel code. An optimal GPU implementation must minimize memory transactions 

between the device GPU and the host CPU. Our solution is to push the compressed PLINK 

matrix X and its column means and precisions onto the device at the start of the algorithm. 

We also cache device buffers for the residuals and the gradient. Whenever we calculate the 

gradient, we compute the n residuals on the host and then push the residuals onto the device. 

At this stage, the device executes two kernels. The first kernel initializes many workgroups 

of threads and distributes a block of XT (y − Xβ) to each workgroup. Each thread handles the 

decompression, standardization, and computation of the inner product of one column of X 
with the residuals. The second kernel reduces across all thread blocks and returns the p-

dimensional gradient. Finally, the host pulls the p-dimensional gradient from the device. 

Thus, after the initialization of the data, our GPU implementation only requires the host and 

device to exchange p + n floating point numbers per iteration.

2.4 Model selection

Given a regularization path computed by IHT, the obvious way to choose the best model 

along the path is to resort to simple q-fold cross-validation with mean squared error (MSE) 

as selection criterion. For a path of user-supplied model sizes k1, k2, . . . , kr, our 

implementation of IHT fits the entire path on the q−1 training partitions. We then view the 

qth partition as a testing set and compute its mean squared error (MSE). Finally, we 

determine the model size k with minimum MSE and refit the data subject to ||β||0 ≤ k.

3 Results

We tested IHT against LASSO and MCP on data from the Northern Finland Birth Cohort 

1966 (NFBC1966) (Sabatti et al., 2009). These data contain several biometric phenotypes 

for 5402 patients genotyped at 370,404 SNPs. We imputed the missing genotypes in X with 

Mendel (Ayers & Lange, 2008) and performed quality control with PLINK 1.9 beta (Chang 

et al., 2015). Our numerical experiments include both simulated and measured phenotypes. 

For our simulated phenotype, we benchmarked the model recovery and predictive 

performance of our software against glmnet v2.0.5 and ncvreg v3.6.0 (Breheny & Huang, 

2011; Friedman et al., 2010) in R v3.2.4. The statistical analysis summarized in Sections 3.2 

and 3.3 includes as nongenetic covariates the SexOCPG factor, which we calculated per 

Sabatti et al., and the first two principal components of X, which we calculated with PLINK 

1.9. All numerical experiments were run on a single compute node equipped with four 6-

Keys et al. Page 9

Genet Epidemiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



core 2.67Ghz Intel Xeon CPUs and two NVIDIA Tesla C2050 GPUs, each with 6Gb of 

memory. To simulate performance on a workstation, the experiment only used one GPU and 

one CPU. The computing environment consisted of 64-bit Julia v0.5.0 with the 

corresponding OpenBLAS library and LLVM v3.3 compiler.

3.1 Simulation

The goal of our first numerical experiment was to demonstrate the superior model selection 

performance of IHT versus LASSO and MCP. Here we used only the matrix Xchr1 of 23,695 

SNPs from chromosome 1 of the NFBC1966 dataset. This matrix is sufficiently small to 

render PLINK compression and GPU acceleration unnecessary. Xchr1 uses the 5289 cases 

with observed BMI. Note that this number is larger than what we will use in Sections 3.2 

and 3.3; no exclusion criteria were applied here since the phenotype was simulated. We 

standardized observed genotype dosages and then set unobserved dosages to 0. We 

simulated βtrue for true model sizes ktrue ∈ {100, 200, 300} and effect sizes independently 

drawn from the normal distribution N(0, 0.01). The simulated phenotypes were then formed 

by taking y = Xchr1βtrue +ε, where each component εi ~ N(0, 0.01). We will refer to this 

simulation scenario as having a signal-to-noise ratio (SNR) of 100%. To test more noisy 

scenarios, we simulated βtrue under three additional SNRs of 50%, 10%, and 5%. These 

successively lower SNRs were obtained by drawing each causal βj from N(0, 0.01/s), where 

s = 2, 10, 20, respectively. We approximated the (narrow-sense) heritability h2 for each 

combination of y and βtrue by taking the ratio of the sample variance of the predicted vector 

Xchr1βtrue to the sample variance of the response vector y. To assess predictive performance, 

we separated 289 individuals as a testing set and used the remaining 5000 individuals for 5-

fold cross-validation. We generated 10 different models for each ktrue. For each replicate, we 

ran regularization paths of 100 model sizes k0, k0 +2, . . . , ktrue, ktrue +2, . . . , k0 +200 

straddling ktrue and chose the model with minimum MSE.

The cross-validation choice of model size is straightforward under IHT. For cross-validation 

with LASSO and MCP, we used the cross-validation and response prediction routines in 

glmnet and ncvreg. To ensure roughly comparable lengths of regularization paths and 

therefore commensurate compute times, we capped the maximum permissible degrees of 

freedom at ktrue + 100 for both LASSO and MCP regression routines. The case of MCP 

regression is peculiar since ncvreg does not cross-validate the γ parameter. We modified 

the approach of (Breheny & Huang, 2011) to obtain a suitable γ for each model. Their 

protocol entails cross-validating λ once with the default γ = 3 and checking if the optimal λ, 

which we call λbest, exceeds the minimum lambda λmin guaranteeing a convex objective. 

Whenever λbest ≤ λmin, we incremented γ by 1 and cross-validated λ again. We repeated 

this process until λbest > λmin. The larger final γ then became the default for the next 

simulation, thereby amortizing the selection of a proper value of γ across all 10 simulations 

for a given ktrue. This procedure for selecting γ ensured model selection stability while 

simultaneously avoiding expensive cross-validation over a full grid of γ and λ values. The 

reported compute times for MCP reflect this procedure, though we never needed to 

increment γ in our simulations.
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Figure 1 shows simulation results for precision, recall, prediction error (MSE), and compute 

time for each SNR and each model size ktrue. Here we compute precision as the ratio 

krecovered/k of recovered causal markers krecovered to the number of recovered markers k. 

Recall is computed as the ratio krecovered/ktrue of recovered causal markers to the true 

number ktrue of causal markers. We see that IHT consistently maintains good precision and 

superior prediction error (MSE), even with decreasing SNR. At high SNR, its precision is 

better than that of LASSO, while its recall is better than MCP. As SNR decreases, IHT cedes 

its advantage in recall. Despite these benefits, IHT pays only a modest price in 

computational speed versus LASSO and MCP. For example, IHT is only 4–6 times slower 

than LASSO, and it is often competitive with MCP in speed. We note that glmnet often 

exited before testing all 100 values of λ on its regularization path, so the timing values do 

not constitute truly rigorous performance comparisons.

Careful readers may observe that the precision of IHT suddenly declines for k = 200 and k = 

300 for SNR 5%. In these scenarios, IHT returns the minimum model size of the 

regularization path; for k = 200, the minimum is 100, while for k = 300 the minimum is 200. 

We suspected that this behavior was an artifact of our simulation scenario. Indeed, by testing 

every model k = 1, 2, . . . , ktrue +100, for these scenarios, we found that IHT estimated 

models sizes smaller than our simulation setup originally allowed. These results appear in 

Figure 1 for SNR 5% and k = 200, 300 as “cIHT” for “corrected IHT”. We discarded the 

timing results in this case since they are not comparable to our previous results. The 

corrected IHT results show IHT regaining its edge in precision over the other algorithms.

As noted previously, the heritability of the true model is given by 

. For each model β* selected by IHT, LASSO, or MCP, we 

obtain the estimated heritability  similarly by substituting β* for βtrue. Figure 2 

shows the heritability estimates from our simulation. In each case, we average the estimated 

heritability over all 10 simulation runs for each algorithm, model size, and SNR. A dotted 

line demarcates  for each scenario, also averaged over all 10 simulation runs. We can 

see that as SNR decreases, IHT consistently estimates heritability better than either LASSO 

or MCP. For SNR 5% and k = 200, 300, the IHT estimates of h2 exceed  and are 

obviously unrealistic. Over-estimation stems from our failure to allow for sufficiently small 

model sizes. Correcting this mistake eliminates the anomalies in estimated h2 and shows that 

IHT still estimates h2 better than the two competing algorithms in noisy scenarios.

3.2 Analysis of compressed data with IHT

Our next numerical experiment highlights the sacrifice in computational speed that IHT 

incurs with compressed genotypes. The genotype matrixXchr1 is now limited to patients with 

both BMI and weight directly observed, a condition imposed by (Sabatti et al., 2009). The 

response vector y is the log body mass index (BMI) from NFBC1966. As mentioned 

previously, we included the SexOCPG factor and the first two principal components as 

nongenetic covariates. We then ran three different schemes on a single compute node. The 

first used the floating point version of Xchr1. We did not explicitly enable any multicore 

calculations. For the second run, we used a compressed copy of Xchr1 with multicore options 
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enabled, but we disabled the GPU acceleration. The third run used the compressedXchr1 data 

with both multicore and GPU acceleration. We ran each algorithm over a regularization path 

of model sizes k = 5, 10, 15, . . . , 100 and averaged compute times over 10 runs. For all 

uncompressed arrays, we used double precision arithmetic.

Table I shows the compute time statistics. The floating point variant is clearly the fastest, 

requiring about 8 seconds to compute all models. The analysis using PLINK compression 

with a multicore CPU suffers a 17× slowdown, clearly demonstrating the deleterious effects 

of repeated decompression and on-the-fly standardization. Enabling GPU acceleration leads 

to an 8× slowdown and fails to entirely bridge the performance gap imposed by compressed 

data. In defense of GPU computing, it is helpful to make a few remarks. First, the 

computational burden of analyzing just a single chromosome does not fully exploit GPU 

capabilities; hence, Table I does not demonstrate the full potential of GPU acceleration. 

Second, the value of GPU acceleration becomes more evident in cross-validation: a 5-fold 

cross-validation on one machine requires either five hexcore CPUs or one hexcore CPU and 

one GPU. The latter configuration lies within modern workstation capabilities. Third, our 

insistence on the use of double precision arithmetic dims the luster of GPU acceleration. 

Indeed, in our experience using compressed arrays and a GPU with single precision 

arithmetic is only 1.7× slower than the corresponding floating point compute times. 

Furthermore, while we limit our computations to one CPU with six physical cores, including 

additional physical cores improves compute times even for compressed data without a GPU.

3.3 Application of IHT to lipid phenotypes

For our final numerical experiment, we embarked on a genome-wide search for associations 

based on the full n × p NFBC1966 genotype matrix X. In addition to BMI, this analysis 

considered three additional phenotypes from (Sabatti et al., 2009): HDL cholesterol (HDL), 

LDL cholesterol (LDL), and triglycerides (TG). HDL, LDL, and TG all rely on SexOCPG 

and the first two principal components as nongenetic covariates. Quality control on SNPs 

included filters for minor allele frequencies below 0.01 and Hardy-Weinberg P-values below 

10−5. Subjects with missing traits were excluded from analysis. We applied further exclusion 

criteria per Sabatti et al. (Sabatti et al., 2009); for analysis with BMI, we excluded subjects 

without direct weight measurements, and for analysis of TG, HDL, and BMI, we excluded 

subjects with nonfasting blood samples and subjects on diabetes medication. These filters 

yield different values of n and p for each trait. Table II records problem dimensions and trait 

transforms. To select the best model size, we performed 5-fold cross-validation over a path 

of sparsity levels k = 1, 2, . . . , 50. Refitting the best model size yielded effect sizes. Table II 

records the compute times and best model sizes, while Table III shows the SNPs recovered 

by IHT.

One can immediately see that IHT does not collapse causative SNPs in strong linkage 

disequilibrium. IHT finds the adjacent pair of SNPs rs6917603 and rs9261256 for HDL. For 

TG, rs11974409 is one SNP separated from rs2286276, while SNP rs676210 is one SNP 

separated from rs673548. Note that rs673548 is not in Table II since IHT does not flag 

rs673548. However, its association with TG in NFBC1966 is known. (Sabatti et al., 2009) 

Common sense suggests treating each associated pair of SNPs as a single predictor.
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Our analysis not only replicates several associations from the literature but also finds new 

ones as well. For example, Sabatti et al. found associations between TG and the SNPs 

rs1260326 and rs10096633, while rs2286276 was identified elsewhere. The SNPs rs676210, 

rs7743187, rs6917603, and rs3010965 are new associations with TG. We find that SNP 

rs6917603 is associated with all four traits; the BMI connection was missed by Sabatti et al..

The association of SNP rs6917603 with BMI may be secondary to its association to lipid 

levels. Indeed, a multivariate analysis of the combined traits BMI, HDL, LDL, and TG 

reveals a much stronger association to rs6917603 than BMI alone does. In the former case P 
= 9.88 × 10−105 while in the latter case P = 1.19 × 10−15. The four traits exhibit fairly high 

correlations, with the correlation coefficient ρ ranging between 0.25 and 0.35. We conjecture 

that some of the observed pleiotropic effect of rs6917603 may be explained by these trait 

correlations. A more extensive analysis that incorporates nearby genetic markers in LD may 

clarify the association pattern displayed by these correlated traits (Fan et al., 2013, 2015; 

Wang et al., 2015). Note that the aforementioned P-values are meant to be compared to each 

other, not to previous GWAS associations. Our pleiotropic analysis of rs6917603 makes no 

assertion of a genome-wide significant association for any of the phenotypes since the P-

values reported here are likely inflated by selection bias (Taylor & Tibshirani, 2015).

IHT flags an association between SNP rs2304130 and TG. This association was validated in 

a large meta-analysis of 3,540 cases and 15,657 controls performed after (Sabatti et al., 

2009) was published. Finally, some of the effect sizes in Table III are difficult to interpret. 

For example, IHT estimates effects for rs10096633 (β = 0.03781) and rs1260326 (β = 

−0.04088) that are both smaller and in opposite sign to the estimates in (Sabatti et al., 2009).

The potential new associations of TG with SNPs rs7743187 and rs3010965 are absent from 

the literature. Furthermore, our analysis misses borderline significant associations identified 

by Sabatti et al (Sabatti et al., 2009), such as rs2624265 for TG and rs9891572 for HDL; 

these SNP associations went unreplicated in later studies. In this regard it is worth 

emphasizing that the best model size kbest delivered by cross-validation is a guide rather than 

definitive truth. Figure 3 shows that the difference in MSE between kbest and adjacent model 

sizes can be quite small. Models of a few SNPs more or less than kbest predict trait values 

about as well. Thus, TG with ktrue = 10 has MSE = 0.2310, while TG with ktrue = 4has MSE 

= 0.2315. Refitting the TG phenotype with k = 4 yields only three significant SNPs: 

rs1260326, rs6917603, and rs10096633. The SNPs rs7743187 and rs3010965 are absent 

from this smaller model, so we should be cautious in declaring new associations. This 

example also highlights the value in computing many model sizes, which univariate 

regression schemes typically overlook.

In light of the simulation results from Section 3.1, an obvious question is how our IHT 

results on real data compare to those from LASSO and MCP. To this end, we ran LASSO 

and MCP on each of the four phenotypes and the full genotype matrix. For LASSO, we used 

PLINK 1.9 (Chang et al., 2015) after tuning the regularization path using heritability 

estimates from GCTA (J. Yang et al., 2010; J. Yang, Lee, Goddard, & Visscher, 2011). For 

MCP, we used the GWAS module in Mendel (Lange et al., 2013; Wu et al., 2009; Wu & 

Lange, 2008; Zhou, Sehl, Sinsheimer, & Lange, 2010). Since Mendel requires the user to 
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specify the desired model size k, we simply used the best cross-validated k from IHT for 

each phenotype. A rigorous comparison of model selection performance would use a 

predictive measure such as out-of-sample predictive accuracy. Unfortunately, neither PLINK 

or Mendel return MSEs, so we cannot compare predictive power directly. Instead, we 

compare to which extent the marker sets selected by IHT agree with corresponding sets 

selected by LASSO or MCP, similar in spirit to our previous validation of IHT results with 

the literature. Tables showing the markers recovered by LASSO and MCP appear as 

supplementary material. In general, LASSO returns a superset of the markers selected by 

IHT, as expected from our simulations. MCP and IHT usually but not always select similar 

markers. Given our limited ability to compare the three methods, the set of markers selected 

by IHT seems reasonable in light of results from LASSO and MCP, but we refrain from 

drawing conclusions about comparative predictive performance among the three methods.

Finally, we comment on compute times. IHT requires about 1.5 hours to cross-validate the 

best model size over 50 possible models using double precision arithmetic. Obviously, 

computing fewer models can decrease this compute time substantially. If the phenotype in 

question is scaled correctly, then analysis with IHT may be feasible with single precision 

arithmetic, which yields an additional speedup as suggested in Section 3.2. Analyses 

requiring better accuracy will benefit from the addition of double precision registers in 

newer GPU models. Thus, there is further room for speedups without sacrificing model 

selection performance.

4 Discussion

The mathematical literature on big data analysis is arcane to the point of being nearly 

inaccessible to geneticists. In addition to absorbing the obvious mathematical subtleties, 

readers must be wary of the hype that infects many papers. This manuscript represents our 

best effort to sort through the big data literature and identify advances most pertinent to the 

analysis of GWAS data. Once we decided that the iterative hard thresholding (IHT) 

algorithm had the greatest potential, we set about adapting it to the needs of geneticists and 

comparing it to existing methods. This paper is a synopsis of our experience in carrying out 

these tasks.

Our experiments clearly demonstrate the utility of IHT in large-scale GWAS analysis. It 

exhibits better model selection than more popular and mature tools such as LASSO- and 

MCP-regression. Despite its nonconvex nature, IHT enjoys provable convergence guarantees 

under ideal regularity conditions. We prefer IHT to other greedy algorithms because it 

provides the best balance of computational speed, model recovery, and convergence 

behavior (Blanchard et al., 2011; Blanchard & Tanner, 2015). Our software directly and 

intelligently handles the PLINK compression protocol widely used to store GWAS 

genotypes. Finally, IHT can be accelerated by exploiting shared-memory and massively 

parallel processing hardware. As a rule of thumb, computation times with IHT scale as 

(np) or somewhat worse if more predictors with small effect sizes come into play.

Lack of general support for PLINK binary genotype data, poor memory management, and 

primitive parallel capabilities limit the use of software such as glmnet and ncvreg in 
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GWAS. Our IHT package IHT.jl enables analysis of models of any sparsity. In contrast, 

gpu-lasso is designed solely for very sparse models. Both IHT.jl and gpu-lasso cross-

validate for the best model size over a range of possible models. IHT.jl has the edge in 

scalability and model selection. Despite these advantages, IHT is hardly a panacea for 

GWAS. Geneticists must still deal with perennial statistical issues such as correlated 

predictors, sufficient sample sizes, and population stratification. IHT can handle population 

stratification by inclusion of principal components as nongenetic covariates, but the onus 

falls upon the analyst to decide the appropriate number of PCs to use. Furthermore, while 

the estimation properties of greedy pursuit algorithms are well understood, the theory of 

inference with IHT is immature (F. Yang et al., 2016). More progress has been made in 

understanding postselection inference with LASSO penalties (Lockhart et al., 2014; Taylor 

& Tibshirani, 2015; Lee et al., 2016; Loftus & Taylor, 2015; Loftus, 2016). The rapid pace 

of research in selective inference makes us hopeful that inference with IHT will soon 

become routine.

Our analysis framework neglects the wealth of data available from whole genome 

sequencing. As sketched in Section 2.1, the mutual coherence condition for convergence of 

IHT discourages the use of IHT on strongly correlated predictors such as those that arise 

from analyzing genome sequences base-by-base. Users interested in rare variant analysis 

could feasibly put IHT to their advantage by lumping correlated rare SNPs into univariate 

predictors and performing model selection on these measures of genetic burden (Li & Leal, 

2008).

As formulated here, the scope of application for IHT is limited to linear least squares 

regression. Researchers have begun to extend IHT to generalized linear models, particularly 

logistic regression (Bahmani et al., 2013; Yuan et al., 2014). We anticipate that IHT will 

eventually join LASSO and MCP in the standard toolbox for sparse linear regression and 

sparse generalized linear regression. In our opinion, gene mapping efforts clearly stand to 

benefit from application of the IHT algorithm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding

This work was supported by grants from the National Human Genome Research Institute [HG006139] and the 
National Institute of General Medical Sciences [GM053275] to K.L. and fellowship support from the National 
Human Genome Research Institute [HG002536] and the National Science Foundation [DGE-0707424] to K.L.K.

The authors are grateful to Aditya Ramdas for his guidance on IHT and to Dennis Sun for discussions about general 
model selection. We benefited from discussions about IHT at the American Institute of Mathematics. The authors 
thank the two anonymous reviewers whose comments substantially improved the quality of the manuscript. Finally, 
we thank the Stanford University Statistics Department for hosting us as sabbatical guests during the 2014–2015 
academic year.

Keys et al. Page 15

Genet Epidemiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Abraham G, Kowalczyk A, Zobel J, Inouye M. SparSNP: Fast and memory-efficient analysis of all 
SNPs for phenotype prediction. BMC Bioinformatics. 2012; 13(1):88. [PubMed: 22574887] 

Agarwal A, Negahban S, Wainwright MJ. Fast global convergence rates of gradient methods for high-
dimensional statistical recovery. The Annals of Statistics. 2012; 40(5):2452–2482.

Ayers K, Lange K. Penalized estimation of haplotype frequencies. Bioinformatics. 2008; 24:1596–
1602. [PubMed: 18487240] 

Bahmani S, Raj B, Boufounos PT. Greedy sparsity-constrained optimization. Journal of Machine 
Learning Research. 2013; 14(3):807–841.

Beck A, Teboulle M. A fast iterative shrinkage thresholding algorithm for linear inverse problems. 
SIAM Journal of Imaging Sciences. 2009; 2(1):183–202.

Blanchard JD, Cartis C, Tanner J, Thompson A. Phase transitions for greedy sparse approximation 
algorithms. Applied and Computational Harmonic Analysis. 2011; 30(2):188–203.

Blanchard JD, Tanner J. Performance comparisons of greedy algorithms in compressed sensing. 
Numerical Linear Algebra with Applications. 2015; 22(2):254–282.

Blumensath T. Accelerated iterative hard thresholding. Signal Processing. 2012; 2(1):183–202.

Blumensath T, Davies ME. Iterative hard thresholding for sparse approximation. Journal of Fourier 
Analysis and Applications. 2008; 14:629–654.

Blumensath T, Davies ME. Iterative hard thresholding for compressed sensing. Applications of 
Computational and Harmonic Analysis. 2009; 27:265–274.

Blumensath T, Davies ME. Normalized iterative hard thresholding: Guaranteed stability and 
performance. IEEE Journal of Selected Topics in Signal Processing. 2010; 4(2):298–309.

Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with 
applications to biological feature selection. Annals of Applied Statistics. 2011; 5(1):232–253. 
[PubMed: 22081779] 

Candés E, Romberg JK, Tao T. Stable signal recovery from incomplete and inaccurate measurements. 
Communications on Pure and Applied Mathematics. 2006; 59(8):1207–1223.

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to 
the challenge of larger and richer datasets. GigaScience. 2015; 4(7)

Chen GK. A scalable and portable framework for massively parallel variable selection in genetic 
association studies. Bioinformatics. 2012; 28:719–720. [PubMed: 22238272] 

Chen, S., Donoho, DL. Basis pursuit. Stanford, CA: Department of Statistics, Stanford University; 
1994. (Tech. Rep.)

Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE 
Transactions on Information Theory. 2009; 55(5):2230–2249.

Dobson, AJ., Barnett, AG. An introduction to generalized linear models. Vol. 3. Chapman and 
Hall/CRC Press; 2008. 

Donoho DL, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on 
Information Theory. 2001; 47(7):2845–2862.

Donoho DL, Tsaig Y, Drori I, Starck JL. Sparse solution of underdetermined systems of linear 
equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory. 
2012; 58(2):1094–1121.

Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. The Annals of Statistics. 2004; 
32(2):407–499.

Fan R, Wang Y, Boehnke M, Chen W, Li Y, Ren H, … Xiong M. Gene level meta-analysis of 
quantitative traits by functional linear models. Genetics. 2015; 200:1089–115. [PubMed: 
26058849] 

Fan R, Wang Y, Mills JL, Wilson AF, Bailey-Wilson JE, Xiong M. Functional linear models for 
association analysis of quantitative traits. Genetic Epidemiology. 2013; 37(7):726–742. [PubMed: 
24130119] 

Foucart S. Hard thresholding pursuit: An algorithm for compressive sensing. SIAM Journal on 
Numerical Analysis. 2011; 49(6):2543–2563.

Keys et al. Page 16

Genet Epidemiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Friedman J, Hastie T, Höfling H, Tibshirani R. Pathwise coordinate optimization. Annals of Applied 
Statistics. 2007; 1(2):302–332.

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate 
descent. Journal of Statistical Software. 2010; 33(1):1–22. [PubMed: 20808728] 

Golub, G., Klema, V., Stewart, GW. Rank degeneracy and least squares problems. Stanford, CA: 
Stanford University Department of Computer Science; 1976. (Tech. Rep.)

Hastie, T., Friedman, J., Tibshirani, R. The Elements of Statistical Learning. Vol. 2. Springer; 2009. 

Jain P, Tewari A, Kar P. On iterative hard thresholding methods for high-dimensional Mestimation. 
Advances in Neural Information Processing Systems. 2014:685–693.

Jiang, D., Huang, J. Majorization minimization by coordinate descent for concave penalized 
generalized linear models. Iowa City, IA: Department of Statistics and Actuarial Science, The 
University of Iowa; 2011 Oct. (Tech. Rep. No. 412)

Lange, K. Numerical Analysis for Statisticians. Springer Science & Business Media; 2010. 

Lange K, Papp JC, Sinsheimer JS, Sobel EM. Next generation statistical genetics: Modeling, 
penalization, and optimization in high-dimensional data. Annual Review of Statistics and Its 
Application. 2014; 1(1):279–300.

Lange K, Papp JC, Sinsheimer JS, Sripracha R, Zhou H, Sobel EM. Mendel: The Swiss army knife of 
genetic analysis programs. Bioinformatics. 2013; 29:1568–1570. [PubMed: 23610370] 

Lee JD, Sun DL, Sun Y, Taylor JE. Exact post-selection inference, with application to the lasso. The 
Annals of Statistics. 2016; 44(3):907–927.

Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application 
to analysis of sequence data. The American Journal of Human Genetics. 2008; 83(3):311–321. 
[PubMed: 18691683] 

Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R. A significance test for the lasso. The Annals of 
Statistics. 2014 Apr; 42(2):413–468. [PubMed: 25574062] 

Loftus JR. Selective inference after cross-validation. 2016 arXiv preprint arXiv:1511.08866. 

Loftus JR, Taylor JE. Selective inference in regression models with groups of variables. 2015 arXiv 
preprint arXiv:1511.01478. 

Loh PL, Wainwright MJ. Regularized M-estimators with nonconvexity: statistical and algorithmic 
theory for local optima. The Journal of Machine Learning Research. 2015; 16(1):559–616.

Mallat SG, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal 
Processing. 1993; 41(12):3397–3415.

Natarajan BK. Sparse approximate solutions to linear systems. SIAM Journal on Computing. 1995; 
24(2):227–234.

Needell D, Tropp JA. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. 
Applied and Computational Harmonic Analysis. 2009; 26(3):301–321.

Pati, YC., Rezaiifar, R., Krishnaprasad, P. Orthogonal matching pursuit: Recursive function 
approximation with applications to wavelet decomposition. Proceedings of the 27th Asilomar 
Conference on Signals, Systems, and Computers; 1993. p. 40-44.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, … Sham PC. PLINK: A tool 
set for whole-genome association and population-based linkage analyses. American Journal of 
Human Genetics. 2007; 81(3):559–575. [PubMed: 17701901] 

Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, … Peltonen L. Genome-wide 
association analysis of metabolic traits in a birth cohort from a founder population. Nature 
Genetics. 2009; 41(1):35–46. [PubMed: 19060910] 

Taylor J, Tibshirani RJ. Statistical learning and selective inference. Proceedings of the National 
Academy of Sciences. 2015; 112(25):7629–7634.

Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 
Series B. 1996; 58(1):267–288.

Tropp JA. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE 
Transactions on Information Theory. 2006; 52(3):1030–1051.

Tropp JA, Gilbert AC. Signal recovery from random measurements via orthogonal matching pursuit. 
IEEE Transactions on Information Theory. 2007; 53(12):4655–4666.

Keys et al. Page 17

Genet Epidemiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang Y, Liu A, Mills JL, Boehnke M, Wilson AF, Bailey-Wilson JE, … Fan R. Pleiotropy analysis of 
quantitative traits at gene level by multivariate functional linear models. Genetic Epidemiology. 
2015; 39(4):259–275. [PubMed: 25809955] 

Wu TT, Chen YF, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized 
logistic regression. Bioinformatics. 2009; 25(6):714–721. [PubMed: 19176549] 

Wu TT, Lange K. Coordinate descent algorithms for lasso penalized regression. Annals of Applied 
Statistics. 2008; 2(1):224–244.

Yang F, Barber RF, Jain P, Lafferty J. Selective inference for group-sparse linear models. Advances in 
Neural Information Processing Systems. 2016:2469–2477.

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, … Visscher PM. Common 
SNPs explain a large proportion of the heritability for human height. Nature Genetics. 2010; 42(7):
565–569. [PubMed: 20562875] 

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. 
American Journal of Human Genetics. 2011; 88(1):76. [PubMed: 21167468] 

Yuan X, Li P, Zhang T. Gradient hard thresholding pursuit for sparsity-constrained optimization. 
Journal of Machine Learning Research. 2014:32.

Yuan X, Li P, Zhang T. Exact recovery of hard thresholding pursuit. Advances in Neural Information 
Processing Systems. 2016:3558–3566.

Zhang CH. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics. 
2010; 38(2):894–942.

Zhou H, Sehl ME, Sinsheimer JS, Lange K. Association screening of common and rare genetic 
variants by penalized regression. Bioinformatics. 2010; 26(19):2375. [PubMed: 20693321] 

Keys et al. Page 18

Genet Epidemiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
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Figure 2. 

Keys et al. Page 20

Genet Epidemiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
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Table I

Computational times in seconds on NFBC1966 chromosome 1 data.

Data type Mean Time Standard Deviation

Uncompressed Data 8.27 0.056

Compressed Data, no GPU 141.28 0.998

Compressed Data with CPU + GPU 65.48 0.040
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