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Abstract

The intestinal mucosa provides a selective barrier between the anaerobic lumen and a highly 

metabolic lamina propria. A number of recent studies indicate that acute inflammation of the 

mucosa can result in tissue hypoxia and associated shifts in tissue metabolism. The activation of 

hypoxia-inducible factor (HIF) under these conditions has been demonstrated to function as an 

endogenous molecular cue to promote resolution of inflammation, particularly through the 

orchestration of barrier repair toward homeostasis. Given the central role of oxygen in tissue 

metabolism, ongoing studies have defined metabolic endpoints of HIF stabilization as important 

biomarkers of disease activity. Such findings make HIF and HIF-associated metabolic pathways 

particularly attractive therapeutic targets in inflammatory bowel disease (IBD). Here we review the 

recent literature related to tissue metabolism in IBD.
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Introduction

The inflammatory bowel diseases (IBD), comprising Crohn's disease (CD) and ulcerative 

colitis (UC), affect approximately 1-2 per 1000 people in developed countries and result in 

significant morbidity and mortality. The current concept of IBD etiology denotes 

dysregulated intracellular sensing of low-level invasive bacteria and inappropriate 

propagation of intestinal immune responses in genetically susceptible individuals [1].

Tissues lined by epithelial cells, termed mucosal tissues, provide a selective barrier to the 

outside world. Of the mucosal tissues, the gastrointestinal (GI) tract constitutes the largest 

surface area found in multicellular organisms, covering an area of nearly 300m2 in adult 

humans. This epithelium comprises a highly dynamic barrier that is intricately regulated to 

both accommodate nutrient and fluid transport and to selectively exclude antigenic material 

from the luminal interface [2, 3]. As a result of this multidimensional functionality, the 
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intestinal mucosa exhibits a unique metabolic profile that is regulated by a plethora of 

stimuli ranging from shifts in enteric microbiota to changes in intestinal perfusion, even 

under steady-state conditions [4]. It is also notable that this metabolic profile is prodigiously 

altered under conditions of active inflammation, such as those associated with inflammatory 

bowel disease (IBD), and has become an area of significant research interest. Work in the 

past decade has revealed that hypoxia-regulated pathways are strongly associated with 

barrier function in IBD, and may contribute to the resolution of ongoing mucosal 

inflammation [5]. In this mini-review, we highlight recent studies focused on the role tissue 

metabolism in mucosal inflammatory responses.

Energy metabolism within the intestinal mucosa

Even in the basal state, epithelial cells lining the mucosa exist in a relatively low oxygen 

tension environment, termed “physiologic hypoxia” [6]. This low basal pO2 has been 

attributed to a countercurrent oxygen exchange mechanism, where oxygen from arterial 

blood supplying the villi diffuses to adjacent venules, travelling from villous tip to base, 

resulting in graded hypoxia [6]. As a result, the intestinal epithelium has proven to be 

remarkably resistant to hypoxia, and even very low levels of oxygenation within this cell 

layer may be provide a regulatory adaptation for maintenance of barrier function and 

integrity[7].

It is likely that a shift in tissue metabolism and barrier maintenance contributes to the 

perpetuation of disease. For example, a role for epithelial barrier dysregulation in IBD is 

supported by observations of increased intestinal permeability in a subset of first-degree 

relatives of patients with Crohn's disease (CD) [8]. Likewise, studies with gnotobiotic mice 

have shown that enteric microbiota themselves influence epithelial cell metabolism, barrier 

function and survival [9]. As increased epithelial permeability and resultant mucosal 

inflammation and injury underpin the pathology of IBD, a fundamental understanding of 

microenvironmental metabolic factors that influence initiation, perpetuation and resolution 

of overt disease is central to defining potential therapeutic targets.

Hypoxia-inducible factor and mucosal tissue metabolism

Hypoxia-inducible factor (HIF) is a member of the Per-ARNT-Sim family of basic helix-

loop-helix transcription factors that recognizes hypoxia response elements (HREs) at target 

gene loci under low oxygen conditions [10]. Functional HIF exists as an α/β heterodimer, 

comprised of both a constitutive subunit (HIF-1β), and a hypoxia-inducible ‘α’ component, 

stabilization of which is regulated in part by a family of oxygen- and iron-dependent prolyl 

hydroxylase (PHD) enzymes [11]. To date, three regulatory subunits have been identified, 

namely HIF-1α, HIF-2α, and HIF-3α. with the highest level of sequence homology 

conserved between HIF-1α and HIF-2α [12]. Evidence to date from genetic mouse models 

implies that HIF-1 and HIF-2 play non-redundant roles [10] despite their expression in many 

cell types, including intestinal epithelial cells [13].

In the context of mucosal inflammation, a protective role for HIF in regulation of intestinal 

epithelial barrier function has been strongly implicated [7]. Originally guided by microarray 
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analysis of differentially expressed mRNA in cultured epithelial cells subjected to 

hypoxia[14], these studies have withstood the test of time and proven robust in a number of 

animal models and in human patients. Further interrogation of mechanisms related to HIF-

dependent barrier protection has identified a number of target genes central to epithelial 

barrier properties, including mucin gene expression, tight junction genes and adherens 

junction gene regulation[7]. It is also notable that HIF-2α may preferentially regulate 

duodenal iron uptake via discrete regulation of DMT1 and Dcytb, rather than through 

basolateral iron transport [15]. These findings implicate HIF-2 as a significant molecular 

mechanism for communication of local changes in enterocyte iron or oxygen availability to 

altered duodenal iron absorption. Given that anemia one of the most prevalent extraintestinal 

manifestations of IBD [16], further elucidation of this mechanism may be warranted.

Tissue metabolism and acute inflammation

Sites of active mucosal inflammation are associated with profound metabolic shifts, wherein 

nutrients and local oxygen become rapidly depleted, resulting in hypoxia, hypoglycemia, 

lactate accumulation and acidosis [17]. Over the past decade, much work has focused on 

establishing the micro environmental metabolic cues for leukocyte recruitment to these sites, 

and the metabolic consequences therein. Adaptive immune responses to gut inflammation 

are characterized by high rates of local T- and B-cell proliferation, with marked demands for 

glucose, amino acids and lipids to fuel oxidative phosphorylation [18, 19]. Unlike resident 

lymphocytes, myeloid cells such as neutrophils (PMN), macrophages and dendritic cells are 

actively recruited to inflammatory lesions [20]. Cell migration to these lesions is triggered 

by orchestrated cytokine, chemokine and adhesion molecule expression.

A key effector of myeloid function is the generation of reactive oxygen species (ROS) in 

response to bacterial engulfment [21]. ROS are short-lived reactive molecules derived from 

the incomplete reduction of oxygen, such as superoxide anion, hydrogen peroxide and 

hydroxyl radical. Rapid generation of ROS by PMN and macrophages is mediated by a 

powerful respiratory or oxidative burst, commensurate with large increases in oxygen and 

glucose consumption that in turn trigger further ROS production [22]. Upon activation, it is 

estimated that PMN oxygen demands increase by as much as 50-fold and such profound 

oxygen consumption may be “sensed” as hypoxia by the surrounding parenchymal tissues. 

One study, for example, examined the impact of oxygen metabolism during PMN 

transepithelial migration across colonic epithelial cells [23]. In this study, the authors 

attributed gene expression changes within the epithelium to the massive consumption of 

local oxygen by PMN NADPH oxidase. These studies revealed that oxygen consumption by 

activated PMN resulted in the stabilization of HIF within the epithelium. In parallel, murine 

models of colitis demonstrated that both the presence of PMNs as well as PMN-elicited 

hypoxia were necessary for mucosal protection during inflammation. Depletion of PMNs led 

to exacerbated tissue destruction during colitis, providing an important link between 

antimicrobial defenses and parenchymal transcriptional signaling during ongoing 

inflammation. It is noteworthy that such signaling by NADPH oxidase may well extend 

beyond myeloid cells. For example, Bai, et al recently demonstrated that knockdown of 

NADPH oxidase in CD8+ T cells directly regulates signaling pathways that diminish IFNy 

production through the local generation of adenosine[24].
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These findings that PMN generate a local hypoxic niche were also translated into human 

patients. Human IBD specimens containing crypt abscesses were assessed for the expression 

of the quintessential HIF gene target gene Glut-1. In this analysis, areas adjacent to the 

human crypt abscess revealed marked up regulation of Glut-1, indicative of stabilized HIF-1. 

It is notable that patients which lack a functional NADPH oxidase (i.e. chronic 

granulomatous disease, CGD) often present with an IBD-like syndrome [25]. CGD patients 

harbor congenital mutations in genes coding the subunits comprising the neutrophil NADPH 

oxidase complex (e.g. mutations in CYBA, CYBB, RAC1 and RAC2). Approximately 40% 

of CGD patients develop IBD-like symptoms [26].

There is also a body of literature implicating microvascular deficits in IBD that potentially 

contribute to mucosal hypoxia through diminished intestinal oxygen delivery. Notably, 

surgical specimens of inflamed colon from IBD patients revealed prominent immuno 

histochemical staining of the HIF-1 and HIF-2 [27]. Some staining differences were noted 

between HIF-1 and HIF-2 in CD and ulcerative colitis (UC). For example, while HIF-1 was 

expressed focally within various stromal cells, HIF-2 appeared to be expressed more 

diffusely in CD. These authors also noted that vascular density was significantly higher in 

CD and UC compared to normal tissue and that increased vascular density correlated with 

the expression of VEGF, a well-established HIF target gene [28].

Adenosine Metabolism and Intestinal Inflammation

One of the most prominent pathways regulated by HIF is extracellular nucleotide 

metabolism and signaling [29, 30]. The metabolism of extracellular adenine nucleotides to 

adenosine is fundamental to the regulation of inflammation in the intestinal 

microenvironment in IBD. During intestinal inflammation, adenosine 5′-triphosphate (ATP) 

is released continuously into the extracellular space non-specifically as a result of direct 

cellular injury and specifically through hemi channels expressed by infiltrating inflammatory 

cells such as neutrophils (Fig. 1) [31]. The individual influences of extracellular ATP are 

specific to the tissue microenvironment in which they are released, acting through autocrine 

and paracrine mechanisms to respond to perceived injury. ATP acts as a classical damage-

associated molecular pattern signal and is important for inflammasome activation by 

signaling through purinergic receptors such as P2X7 expressed on intestinal epithelial cells 

and lymphocytes [32]. In Crohn's Disease (CD) patients, P2X7 receptor expression is 

increased and P2X7 signaling contributes to elevated levels pro-inflammatory cytokines 

such as IL-1β, TNFα, and IL-17 in the tissue microenvironment [32].

While ATP potently promotes inflammation in the intestinal mucosa, its downstream 

metabolite, adenosine, initiates resolution of inflammation and tissue repair. As previously 

stated ATP acts as a local signal of tissue injury Metabolism of extracellular ATP in the 

microenvironment, therefore, is important to prevent unchecked inflammation and occurs 

through the sequential activities of the ecto-enzymes CD39 and CD73 [33], both of which 

are abundantly expressed on the apical surface of intestinal epithelial cells (Fig. 1) [34-36]as 

well as by lymphocytes [37] in the intestinal mucosa. CD39, or ectonucleo side triphosphate 

diphosphohydrolase-1, catalyzes the conversion of ATP to adenosine-5′-monophosphate 

(5′-AMP) through two sequential phosphohydrolysis reactions. From animal models, CD39 
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expression is protective against chemically-induced colitis likely due to depletion of the 

proinflammatory ATP signaling [38]. In the same study, a polymorphism was identified in 

humans that correlates to CD39 expression. The allele associate with low CD39 expression 

was more prevalent in CD patients than controls, again suggesting CD39 is protective 

against IBD.

CD73, or ecto-5′-nucleotidase, is the terminal enzyme in the production of extracellular 

adenosine. In animal models, CD73 knockout or pharmacological inhibition of CD73 

activity results in increased susceptibility to chemically-induced colitis and impaired 

resolution of colitis [39, 40]. Notably, in an experimental colitis model, CD73-/- mice were 

defective in the induction of IL-10 mRNA expression that is vital for the resolution of 

colitis, consistent with the known anti-inflammatory activity of adenosine. In human IBD, 

CD73 is upregulated and its expression appears to influence the expression of numerous 

genes involved in purine metabolism and purinergic signaling [41].

Adenosine is the ultimate product of the extracellular metabolism of adenine nucleotides in 

the intestinal microenvironment and possesses potent anti-inflammatory and tissue 

protective effects [42]. Multiple adenosine receptors are expressed by the intestinal 

epithelium, most prominently the G-protein coupled receptors, Adora2A and Adora2B. 

Through Adora2B signaling, adenosine is critical to restitution of intestinal barrier through a 

mechanism that involves activation of vasodilator-stimulated phosphoprotein (VASP) and 

ultimately tight-junction assembly [43, 44]. Adenosine also alters the intestinal 

microenvironment through the induction of electrogenic chloride secretion. Again, through a 

mechanism involving Adora2B signaling, cAMP-dependent chloride channels located in the 

apical membrane are activated resulting in chloride secretion [45]. The resulting osmotic 

gradient results in paracellular water transport across the epithelium in a basolateral to apical 

direction, which is thought to be an important flushing mechanism for the clearance of 

enteric pathogens as well as transmigrated inflammatory cells. Activation of Adora2b 

receptors also inhibits NF-κB-mediated signaling by reducing proteasomal degradation of 

IκB through a mechanism involving deneddylation of cullin-1 [46]. These actions result in 

diminished pro-inflammatory cytokine expression.

Previous studies have clearly demonstrated a role for adenosine signaling in adaptive 

immunity. Many of these responses have been mapped to HIF-1 signaling and the T cell 

Adora2A receptor [47, 48]. These studies have indicated that in addition to suppression of 

immune responses, adenosine signals as a “metabokine” to functionally re-direct the 

immune response through the T cell Adora2A receptors. Multiple lines of evidence are 

provided that elevations in intracellular cyclic AMP in coordination with HIF-1 stabilization 

are necessary to drive such re-direction of the immune response[49]. Adenosine signaling by 

T cells has been demonstrated to significantly influence intestinal inflammatory responses. 

Targeted deletion of the ENTPDase7 member of the CD39 family of enzymes was shown to 

increase small intestinal ATP levels that resulted in the selective increase in Th17 cells and 

resistance to Citrobacter rodentium infection [50]. Likewise, studies in RAG1-deficient T 

cell transfer models have indicated that Adora2A expression on both CD45RBhi and 

CD45RBlo cells are essential for control of colitic responses [51] and that Adora2A 

signaling by multiple cell types contribute to appropriate inflammatory resolution [52]. 
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Collectively, these studies point to purine nucleotide metabolism as a key metabolic pathway 

in the regulation of inflammation in the intestinal microenvironment.

Tryptophan Metabolism and Intestinal Inflammation

Tryptophan metabolism in the GI tract is a major source of immunosuppressive signaling, 

promoting tolerance and tissue homeostasis. As an essential amino acid, humans must obtain 

all tryptophan from the diet for synthesis into protein or conversion to a number of critical 

signaling metabolites. Tryptophan is the precursor of three distinct metabolic pathways 

within the gut: kynurenine, serotonin, and indole (exclusively mediated by the resident gut 

microbes) (Fig. 2). The metabolic pathway leading to kynurenine is the most prevalent, 

accounting for up to 90% of tryptophan catabolism [53].

Within the intestine, indoleamine 2,3 dioxygenase-1 (IDO1) is the predominant enzyme that 

catalyzes the degradation of tryptophan (Trp) into kynurenine (Kyn). IDO1 is widely 

expressed throughout the gut, in the mucosa as well as mononuclear cells, and expression 

levels are sensitive to inflammatory stimuli such as IFN-γ signaling. Intestinal levels of 

IDO1 are high in patients with IBD, and localized Trp depletion inhibits T-cell proliferation 

and causes growth arrest of Trp-dependent microorganisms. This increase in IDO1 

expression is most prominent around areas of ulceration suggesting that IDO1 expression 

may be important in wound healing. The expression of IDO1 in intestinal epithelial cells 

also correlates with anti-inflammatory properties of dendritic cells, inducing colonic 

lymphocytes to secrete IFN-γ, triggering IDO1 expression in intestinal epithelial cells 

[54-58], and reducing the severity of colitis in mice [57]. The role of IDO1 in colitis is 

somewhat controversial; studies using pharmacological inhibitors of IDO1 or whole body 

Ido1 knockout mice indicate that IDO1 is necessary for protection from murine TNBS 

colitis [59, 60], yet Ido1 gene deficiency seems to play a protective role in both DSS and 

Citrobacter rodentium induced colitis [61, 62]. Stimulation of IDO1 through TLR-9, 

however, lessens disease severity in both TNBS and DSS colitis.

The primary pathway of IDO1 induced immune suppression is through the production of 

Kyn, which functions as an endogenous ligand of the aryl hydrocarbon receptor (AHR) [63, 

64] which shares the p-chain signaling component with HIF, namely HIF-1β (also called 

ARNT). The AHR is a ligand activated transcription factor of the PER-ARNT-SIM class 1 

basic helix loop helix family of transcription factors that has been historically studied in the 

context of the synthetic dioxin based compound TCDD [65, 66]. In this context, exposure to 

TCDD and other polycyclic hydrocarbons bind AHR, which controls the expression of 

genes in the cytochrome P oxidase family such as Cyp1A1 [67, 68]. While AHR response to 

dioxin is known as a toxic response, AHR is also responsive to endogenous ligands such as 

Kyn in order to internally regulate systemic inflammation and tolerance [64].

Within the gut, AHR stimulation by Kyn and other Trp metabolites can promote the 

differentiation of Tregs[69, 70], down regulate IL-7 production by epithelial cells[71], and 

regulate Th17 development[72-74]. Th17 cells are pro-inflammatory T helper cells that 

produce IL-17 and are associated with many autoimmune disorders such as systemic lupus 

erythematosus, rheumatoid arthritis, multiple sclerosis, and IBD. However, Th17 cells also 
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contribute to bacterial clearance at mucosal surfaces and help maintain mucosal barriers 

through epithelial proliferation and mucus production via IL-22. In colitis, these 

lymphocytes can then be transdifferentiated back toward Th1 cell types by Kyn signaling 

through AHR and contribute to the resolution of inflammation [75, 76]. Further contributing 

to resolution is the AHR induced expression of the IL-10 receptor (IL-10R1) on colonic 

epithelial cells [77]. IL-10 signaling is critical for colonic homeostasis and IL-10R1 

expression on colonic epithelial cells helps regulate barrier formation [78]. Recent evidence 

demonstrates that exogenous Kyn enhances wound healing in an IL-10 dependent manner in 
vitro and alleviates DSS colitis in vivo [77].

Host-microbial metabolism and intestinal inflammation

The GI tract of mammals is host to trillions of microbes. This finely tuned host-microbe 

relationship exists on the surface of the intestinal mucosa, where microbes are essential for 

host health, and under some circumstances serve to initiate disease [79]. Collectively termed 

the microbiota, these microbes aid in digestion, produce a number of vitamins and benefit 

the host through the local synthesis of 2, 3 and 4 carbon short-chain fatty acids (SCFAs), 

namely acetate, propionate and butyrate, respectively.

Primarily derived from digestion resistant starches, SCFAs are end products of bacterial 

fermentation [80]. Members of the anaerobic phylum Firmicutes, [81] produce butyrate at 

high levels through the conversion of microbial acetyl-CoA to the butyryl-CoA via fatty acid 

β-oxidation. The final conversion from butyryl-CoA to butyrate is either catalyzed by 

butyryl-CoA:acetate CoA transferase or butyrate kinase. Due the presence of highly 

conserved regions these enzymes can be used for the identification of butyrate-producing 

bacterial communities in molecular analyses [82-84]. In the healthy gut, butyrate 

concentrations can exceed 30mM [85], where it serves as a primary metabolic fuel for 

colonic epithelial cell metabolism. For this reason, shifts in microbial compositions can 

result in abnormal colonocyte function. It is recently appreciated, for example, that the 

dysbiosis in IBD is characterized by reduced abundance of butyrate-producing organisms 

(e.g., certain Faecalibacterium and Roseburia genera) and lower concentrations of luminal 

SCFA, particularly butyrate [86].

It is likely that butyrate influences HIF expression in the colon. For example, it was recently 

shown that butyrate metabolism directly influences epithelial oxygen consumption and may 

shift intracellular oxygen availability. Intestinal epithelial cell lines stimulated with butyrate 

exhibit increased and sustained rates of oxygen consumption to the extent that HIF is 

stabilized and transactivates a number of HIF target genes (Fig. 3) [87]. Antibiotic depletion 

of the microbiota in vivo resulted in increased detectable pO2 within the colonic epithelium. 

Parallel studies in germ free mice revealed that deficiency of the microbiota results in higher 

pO2 within the colonic epithelium compared with controls [87]. Restoring luminal butyrate 

with tributyrin in antibiotic treated mice reconstituted the physiologic low pO2 of the colonic 

epithelium and HIF-dependent signatures [87]. Such studies provide further rationale for 

responsible antibiotic stewardship and provide potentially new strategies to improve patient 

care. It is interesting to speculate that the promotion of butyrate-producing strains or the 
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selective elimination of butyrate-depleting strains might serve the overall intestinal health of 

IBD patients.

Finally, as mentioned above, the intestinal microbiota plays an important role in the proper 

development and maintenance of the immune system in the GI tract, and patients with IBD 

have profound shifts in the bacterial populations present in the colon [88]. Resident 

microbes are responsible for the production of a variety of indole compounds from the 

catabolism of tryptophan including 3-indoleacetic acid and indole-3-aldehyde. These indole 

metabolites have been shown to activate AHR in the mucosa leading to resolution of 

inflammation (Fig. 3) [89, 90]. Further, treatment of human intestinal epithelial cells with 

indole itself has been shown to increase barrier function and decrease inflammatory markers 

[91]. These studies suggest that microbial tryptophan metabolites provide significant benefit 

to the host.

Conclusions

The microenvironment of the IBD mucosa represents a unique setting to study metabolic 

changes commensurate with disease. In this review, we have summarized recent literature 

related to host and microbial metabolism as important signaling mechanisms within the 

intestinal mucosa. Studies from cultured cell systems, animal models and human IBD 

patients have revealed a plethora of new insight into the role of the inflammatory 

microenvironment is disease progression and resolution. Moreover, studies to date in animal 

models of intestinal inflammation have demonstrated an almost uniformly beneficial 

influence of HIF stabilization on disease outcomes [92]. Ongoing studies to define the 

similarities and differences between innate and adaptive immune responses as well as acute 

and chronic inflammation will be insightful. Continued focus in this area will undoubtedly 

provide new targets as templates for the development of therapies for human IBD.
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Figure 1. Adenine nucleotide metabolism by intestinal epithelial cells
During acute inflammation, PMN transmigration, platelet co-migration and direct cellular 

injury result in the accumulation of extracellular ATP on the luminal aspect of the intestinal 

mucosa. ATP is metabolized to AMP by ecto-nucleotidases (CD39) and then to adenosine 

by ecto-5′-nucleotidase (CD73). Extracellular adenosine then signals in an autocrine and 

paracrine manner through adenosine receptors expressed on the apical membrane of 

intestinal epithelial cells, the most prominent of which is Adora2B.
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Figure 2. Summary of the tryptophan (Trp) metabolism pathway including the enzymes involved 
in the primary metabolism of Trp
From left to right: The enzyme indoleamine 2,3-dioxygenase-1 (IDO1) converts Trp to 

kynurenine (Kyn), host microbes producing tryptophanases catabolize Trp into indole 

metabolites, and Trp hydroxylase produces serotonin from Trp.
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Figure 3. Microbiota derived metabolites act as signaling molecules in colonic epithelial cells
Butyrate produced by anaerobic bacteria increases epithelial oxygen consumption, stabilizes 

HIF, and activates HIF dependent gene transcription. Indole metabolites are produced by a 

variety of enteric bacteria and can alter colonic epithelial cell signaling through activation of 

AHR.
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