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ABSTRACT

Cancer/testis (CT) genes are excellent candidates for cancer immunotherapies 
because of their restrict expression in normal tissues and the capacity to elicit an 
immune response when expressed in tumor cells. In this study, we provide a genome-
wide screen for CT genes with the identification of 745 putative CT genes. Comparison 
with a set of known CT genes shows that 201 new CT genes were identified. Integration 
of gene expression and clinical data led us to identify dozens of CT genes associated 
with either good or poor prognosis. For the CT genes related to good prognosis, we 
show that there is a direct relationship between CT gene expression and a signal for 
CD8+ cells infiltration for some tumor types, especially melanoma.

INTRODUCTION

Genes with a restricted pattern of expression in 
normal tissues and expression in tumors cells are excellent 
candidates for biomarkers and therapeutic targets. Among 
these genes, cancer/testis (CT) genes are the most 
promising with several clinical trials under way [1]. These 
CT genes are exclusive or predominantly expressed in 
testis among normal tissues but are also expressed in a 
variety of tumor types [2]. Few authors have suggested 
that these genes may be considered as cancer-germline 
(CG) genes, as they can also present regular expression 
in ovary and placenta [3, 4]. When protein products of 
CT genes elicit an immune response, they are called CT 
antigens [3]. Methodologies, like SEREX and protein 
arrays, have identified several CT genes as CT antigens. 

Cellular and humoral immune responses have been 
observed for many CT antigens in patients bearing a 
variety of tumor types [5-7], making them good candidate 
targets for cancer immunotherapy, like cancer vaccination, 
adoptive T-cell transfer with chimeric T-cell receptors or in 
combination with conventional cytotoxic therapies [8-12].

Although there is a lack of consensual classification 
of CT genes, authors have divided them into two distinct 
groups [13]. The first one is organized in multigene families 
generally located on the X chromosome, where they comprise 
approximately 10% of the genes on that chromosome (CT-X 
genes) and show heterogeneous expression in cancer tissues 
that increase during tumor evolution and can elicit immune 
responses in cancer patients. The other group comprises 
the non-X CT genes since they are located on autosomal 
chromosomes. This last class does not appear to exist as 
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multigene families and are often expressed during meiosis 
[14]. In 2009, data from about 70 families of cancer testis 
antigen, with more than 200 members, were gathered into 
a database (http://www.cta.lncc.br/). This CT Database 
provides information about CT genes including names 
and aliases, genomic location among others, but has not 
incorporated data from new technologies and contains less 
than 250 CT genes [15]. Moreover, several other genome-
wide analyses have been reported. Hofmann et al. [14], for 
example, used a combination of CAGE, MPSS and RT-PCR 
to perform a survey of cancer/testis genes. They identified 
more than 30 candidate CT genes. More recently, our 
group characterized the human surfaceome and identified 
14 putative CT genes coding for cell surface proteins [16]. 
Using public microarray data, two genes FMR1NB and 
TMEM31 were characterized as CT genes coding for cell 
surface proteins, which render them excellent candidates for 
targeted therapies [16]. One of them, FMR1NB, was found 
to elicit immune response in sarcoma patients [17]. While the 
project reported here was underway, Wang et al. [5] reported 
a systematic identification of CT genes in 19 tumor types.

The development of next-generation sequencing 
(NGS) technologies catalyzed a series of projects whose 
primary objective was to genetically characterize a cohort 
of cancer patients and associate that information with 
clinical data. The most successful of these projects was 
“The Cancer Genome Atlas” (TCGA) that integrated 
information for more than 11,000 patients from a variety 
of tumor types. NGS technologies have also allowed a 
better characterization of the human transcriptome derived 
from healthy cells and tissues. Projects like the Human 
Body Map (HBM) (GEO accession: GSE30611), the 
Genotype-Tissue Expression (GTEx) [18] and the Human 
Protein Atlas (HPA) [19] have deep sequenced the human 
transcriptome of dozens of cell types.

While the genome-wide screens performed so far 
were necessary for a better characterization of the universe 
of CT genes, most of them were executed at a time in 
which these NGS technologies were not widely available. 
Yao [20] have recently used TCGA data to explore CT 
genes. They, however, restricted their analysis to a subset 
of known CT genes. On the other hand, Wang et al. [5] 
used TCGA data to perform a genome-wide screen 
for CT genes. In the present paper, we have integrated 
information derived from both HBM/GTEx/HPA and 
TCGA to provide a complete genome survey of CT genes 
with the characterization of 201 new putative CT genes. 
By using mass-spectrometry data, it is shown that several 
of our putative CT genes exist at the protein level in some 
tumor types. Finally, CT genes associated with either a 
good or poor outcome are identified. For some CT genes 
associated to good prognosis, an association to CD8+ cells 
infiltration is observed. We propose that CT genes whose 
expression is related to a good outcome are excellent 
candidates for immunotherapeutic approaches.

RESULTS

Identification of genes predominantly (or 
exclusively) expressed in testis

Assuming that CT genes are predominant or 
exclusively expressed in testis when compared to the 
remaining tissues, we used RNA-Seq data from three 
different sources to identify genes with expression bias 
to the testis. Absolute transcript level in each tissue 
was converted to a proportional score (transcript level 
in a tissue divided by the sum of levels in all tissues), 
and a threshold of at least 0.9 was used to select genes 
preferentially or exclusively expressed in testis. A 
threshold of 0.9 would imply that at least 90% of all 
expression of that gene in all analyzed tissues was derived 
from testis. HBM (GEO accession: GSE30611), GTEx 
[18] and the HPA [19] datasets, all reporting RNA-
Seq data from a variety of normal tissues, were used to 
select genes preferentially (or exclusively) expressed 
in testis. The resulting selection, detailed in Figure 1A, 
contained a set of 1,103 non-redundant genes based on 
the three sources used in our analysis (Figure 1B and 
Supplementary Table 1 for a complete list of testis-biased 
genes). A gene ontology analysis in this gene set showed, 
as expected, a strong bias towards biological processes 
related to germline cells (Figure 1C).

To make available a set of putative CT genes 
identified using more stringent criteria, we modified our 
pipeline to select genes with a proportion score of at least 
0.99. This selection generated a list of 793 genes with 
an exclusive expression in testis. While we have used 
the set of 1,103 genes in the remaining analysis, one can 
identify the more restricted set of testis-specific genes in 
Supplementary Table 1.

Identification of putative CT genes

The expression pattern in tumors of the 1,103 
genes predominantly expressed in testis was evaluated 
using the TCGA dataset. RNA-Seq data from 6,221 
tumor samples were collected from the TCGA data 
repository comprising 15 tumor types. To identify 
genes significantly expressed in a given tumor, we 
used statistics provided by TCGA itself. A gene was 
considered a putative CT gene if it had a level of 
expression (cutoff threshold of RSEM >1) in at least 
10% of all informative samples for a given tumor. These 
two criteria identified 745 putative CT genes (201 as 
new CT genes by comparing to the CT Database and 
data from Wang et al. [5]) significantly expressed in at 
least one tumor type (Figure 2A). If a more stringent 
threshold is used (15% of all samples for a given 
tumor type), we found 678 putative CT genes (176 as 
new CT genes) (Figure 2A). The same procedure was 
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applied to the list of testis-biased genes identified using 
the more stringent 0.99 proportional score giving 478 
(155 new) and 418 (132 new) putative CT genes using 
the 10% and 15% thresholds, respectively (Figure 
2A). Supplementary Table 2 lists all genes with their 
corresponding expression in all analyzed tumor types. A 
comparative analysis between all tumor types, shown in 
Figure 2B, reveals that among the putative CT genes one 
can find several that are tumor-specific. In several cases, 
a particular CT gene showed a significant expression in 
only one tumor (17% of all CT genes). For example, 32 
CT genes were expressed exclusively in leukemia, 11 in 
melanoma, and 14 in ovarian cancer (Figure 2B). This 
finding demonstrated the potential of our strategy for 
proposing particular biomarkers and targets for different 
types of tumors.

CT genes as cancer genes?

Much has been discussed on the role of CT genes in 
driving tumorigenesis [12]. Based on that, we decided to 
explore our set of putative CT genes regarding their status 
as cancer genes in the TCGA dataset used here. A method 
recently developed by us, the S-score [21], integrates 
information such as mutation screening, methylation 
status, copy-number variation and expression profiling 
and was used to infer whether our CT candidates showed 
a pattern of either an oncogene or tumor suppressor. The 
S-score was calculated for all 1,103 genes preferentially 
expressed in testis for all 15 tumor types studied here. 
When a stringent cut-off was used, as in De Souza et al. 
[21] (S-score >3, indicating an oncogene, or <-3, showing 
a tumor suppressor), we found 313 cancer genes (128 

Figure 1: Identification of putative CT genes in 15 tumor types. (A) Schematic view of the pipeline used to identify CT genes 
with the identification of 1,103 genes predominant or exclusively expressed in testis and 745 putative CT genes. (B) Venn diagram showing 
the intersection of the 1103 genes predominant or exclusively expressed in testis regarding their source. (C) Gene Ontology enrichment 
analysis using the set of 1,103 genes predominant or exclusively expressed in testis.
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oncogenes and 201 tumor suppressors) among the 1,103 
genes preferentially expressed in testis. Few genes behave 
differently in distinct tumor types. Supplementary Table 2 
lists the S-score values for all testis-biased genes in all 15 
tumor types used here.

To evaluate whether the set of putative CT genes is 
enriched or depleted of cancer genes in any tumor type, a 
Monte Carlo simulation was performed using random sets 
of 1,103 genes. As shown in Figure 3, there is an overall 
depletion of oncogenes in this set of testis-biased genes 
(pattern found in 12 out of 15 tumor types). Only five 

tumor types showed a depletion of suppressors while two 
tumor types showed an enrichment of suppressors (LUAD 
and SKCM). No oncogene enrichment was found. The 
same pattern, general depletion of cancer genes in the set 
of CT genes, was also observed when we used the set of 
745 putative CT genes in the simulations (Supplementary 
Figure 1). This finding strongly suggests that, while there 
are several cancer genes within the CT genes dataset, there 
is overall a depletion of cancer genes in that set except for 
SKCM and LUAD, both presenting enrichment for tumor 
suppressors.

Figure 2: Comparative analysis of putative CT genes. (A) Number of testis-biased genes and putative CT genes according to 
different stringent criteria for selection. (B) Matrix reporting the number of shared CT genes for all possible paired tumor type. The list at 
the right is the number of exclusive CT genes per tumor.
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Protein products of CT genes detected in tumor 
samples

To serve either as a biomarker or a therapeutic 
target, a given CT gene should be expressed at the protein 
level. Mass spectrometry-based strategies are becoming 
powerful resources to query the proteome, and the 
golden standards technologies are now able to identify 
around 10,000 proteins per sample. We capitalize on the 
availability of mass spectrometry data from different 
sources for a variety of tumor samples to determine among 
the putative CT genes those expressed at the protein level.

Using a cohort of 209 samples from different 
tumor types (04 melanoma, 95 colorectal tumors, 40 
breast tumors, 36 prostate tumors and 34 ovary tumors), 
we identified 136 putative CT genes at the protein level 
(Supplementary Table 3). Although this is a significant 
number, it should be emphasized that a high rate of 
false-negatives is expected in this analysis due to the 
non-exhaustive nature of mass spectrometry-based 
approaches. By plotting the sum of the area under curve 
measurements of all identified proteins in each sample 
group (Supplementary Figure 2), it is possible to observe 
that many of these CT gene products belong to the top 

50% of the most abundant proteins in the detectable 
proteome of the sample.

A comparison of the Top 15 most abundant CT 
genes in the proteomic dataset shows that some genes are 
more globally present in most or all tumors represented 
here, such as PBK, SPATA22, IL4I1, HIST1H1A, among 
other. Some genes seem to show a more specific profile 
depending on the tumor type, such as C17ORF104, only 
highly-abundant in the melanoma samples, FUT5 in colon, 
PAGE1 in ovarian tumor and CSNK1A1L in prostate.

CT signature for cancer prognosis

Clinical data regarding overall survival from TCGA 
patients was used to evaluate the impact of expression of 
a putative CT gene in the outcome of the corresponding 
patients. A computer program evaluated all putative CT 
genes (745) for all 15 tumor types regarding any survival 
difference between samples expressing (FPKM or RSEM 
>1) or not expressing a given CT gene. Supplementary 
Table 4 provides the raw data for this survival analysis 
for all tumor types. Genes reporting a q-value < 0.05 
(as defined by a log-rank test) for the difference in 
survival between the groups of patients expressing or 

Figure 3: Enrichment analysis of CT genes for oncogenes and tumor suppressors. Box plots represent the distribution of the 
number of cancer genes in the 10,000 Monte Carlo simulations. Red star indicates the true number of cancer genes in the set of CT genes 
for each respective tumor type. Upper, middle and lower panels correspond to the real and simulated sets for oncogenes and suppressors 
together, oncogenes and suppressors, respectively.
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not expressing a given CT gene were selected for further 
analysis. Overall we found 207 CT genes (non-redundant) 
whose expression affected the outcome of patients in at 
least one tumor type. Expression of CT genes was more 
associated with poor prognosis (179 genes) than to better 
prognosis (57 genes). Few genes behave differently 
in distinct tumor types. We confirmed the finding from 
Yao et al. [20] who found a high frequency of CT genes 
affecting prognosis in kidney renal clear cell carcinoma 
(KIRC). Most of the CT genes in KIRC were associated 
with poor prognosis (129 out of 141 genes). A more even 
distribution of CT genes associated to good and poor 
prognosis were found for LGG (30 and 32 CT genes, 
respectively) and SKCM (5 and 5 CT genes, respectively). 
To further select potential candidates, we split samples 
based on the expression of a given CT gene in three 
categories: no expression, expression below the median 
and expression above the median. If the expression of a 
corresponding CT gene was truly associated with patient 
outcome, we would expect that patients expressing more 
of the corresponding CT gene would have a stronger 
survival effect. A manual inspection of the Kaplan-Meyer 
plots for all 236 CT genes (179 and 57 associated to poor 
and good prognosis, respectively) was performed looking 
for the above pattern, and 113 genes were found more 
strongly associated with patient outcome (illustrative plots 
for KIRC and SKCM are shown in Figure 4).

Data from Senbabaoglu et al. [22], who also used 
expression data from TCGA, was then used to assess the 
association between expression of a given CT gene and 
the number of infiltrating CD8+ cells. Senbabaoglu et al. 
[22] developed a method that uses expression data from 
TCGA to estimate the number of imune cells infiltration 
in a given tumor. Our analysis was only possible for four 
tumor types (BLCA, HNSC, LUAD and SKCM) due 
to either the lack of a significant number of CT genes 
associated with good prognosis or the lack of data of 
infiltrating CD8+ cells for some tumors. For two tumor 
types, LGG and KIRC, the high number of CT genes 
associated to both, good and poor prognosis, rendered 
the comparison impossible since both groups of samples 
were almost identical (since they comprised the totality 
of the samples). Figure 5A shows that samples with high 
expression of CT genes associated with good prognosis 
have a significantly higher number of CD8+ cells in 
BLCA (p < 9.9e-5), HNSC (p<9.5e-4) and SKCM (1.1e-6). 
When we split the samples according to the expression of 
a given CT gene, for most of the genes associated with 
good prognosis there is a significant association between 
the CT gene expression and infiltration of CD8+ cells for 
SKCM (Figure 5B), HNSC (Figure 5C) and BLCA (Figure 
5D). A scatchard plot (showing the association between 
expression and CD8+ infiltration) for the same genes is 
shown in Supplementary Figure 3. Stronger associations 
were obtained for ZNF683 in BLCA, GPR31 in HNSC 
and C5ORF58, GTSF1L, HSF5 and HEATR9 in SKCM.

DISCUSSION

We have capitalized on the availability of NGS data 
to perform one the largest screening for CT genes so far. 
One first critical issue, as discussed by [5] and [14], is the 
classification of CT genes based on its expression pattern 
in normal tissues. These genes exhibit different expression 
profiles and can be categorized into testis-restricted, testis/
brain-restricted, or testis-selective group. This pattern 
imposes a challenge to identify the CT genes that are most 
suitable for the development of cancer therapies. Hofmann 
et al. [14], for example, performed an expression survey 
of 153 known CT genes and showed that only 39 had an 
exclusive expression in testis while the remaining had at 
least some expression in other tissues. Our screening of 
genes with a testis-biased expression involved the use of 
two proportional scores with different levels of stringency 
(0.9 and 0.99). While we used the less stringent dataset in 
most of the remaining analysis, the more stringent dataset 
is available to the community (Supplementary Table 1).

Several reports in the literature have indicated that 
CTs are mainly expressed in lung, ovarian, bladder, breast 
tumors and especially melanoma [3]. Most of the studies 
so far have used approaches based on the interrogation of 
few genes although Hofmann [14] used a series of high-
throughput gene expression analyses to validate putative 
CT genes and Wang et al. [5] have used TCGA data from 
19 tumor types. TCGA has provided a unique opportunity 
to screen for putative CT genes in a large panel of samples 
from many different tumor types and associated clinical 
features. Yao [20] have used TCGA data to explore the 
pan-cancer expression landscape of CT genes restricting 
their analysis to a subset of the CT database. Here, again, 
we used two thresholds with different levels of stringency 
(expression in at least 10% or 15% of samples in a given 
tumor) to identify putative CT genes. This allowed us to 
identify 745 putative CT genes (using the 10% threshold). 
By comparing this set of CT genes with the catalogs from 
the CT database and from Wang et al. [5] we found 201 
new CT genes in our dataset. Several CT genes showed 
expression in only one tumor, which demonstrate the 
potential of our analysis for proposing biomarkers and 
targets for particular types of tumor.

The CT gene catalog generated by this study 
allowed us to evaluate some questions regarding CT 
genes. For example, much has been discussed on the 
role of CT genes in driving tumorigenesis [12]. One 
of the arguments that support a more important role of 
CT genes in tumorigenesis is related to their functions, 
many of which are related to tumorigeneses, like signal 
transduction and gene regulation. Another indirect support 
comes from an apparent similarity between germ cell 
and tumor developments [12, 23, 24]. In that line, some 
authors [25, 26] proposed that the expression of CT 
genes, usually restricted to germline cells, would trigger 
a gametogenic program in other somatic cells that would 
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contribute to the tumorigenesis. Furthermore, some CT 
genes seem to be associated with the maintenance of an 
undifferentiated state of stem cells as reported by Cheng 
et al. [27] and Lifantsenva et al. [28]. Nevertheless, few 

CT genes have been shown to act as an oncogene (which 
would be expected based on their expression pattern). 
CT45A1 was shown to work as an oncogene and drive 
tumorigenesis in breast cancer [29]. Deletion of SSX2 in 

Figure 4: Kaplan-Meyer plots for representative CT genes. (A) Most representative plots for SKCM including four genes 
associated to good prognosis. (B) Most representative plots for KIRC including four genes associated to poor prognosis.
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melanoma cells significantly reduced cell proliferation 
[30]. Members of the MAGE family have been implicated 
in cancer cell survival, frequently acting in the p53 
pathway [31, 32]. Involvement with cancer progression, 

especially metastasis formation, has also been shown for 
some CT genes [29, 31, 33]. Our list of CT genes was 
evaluated for any potential enrichment of oncogenes and 
tumor suppressor, using the S-score method developed 

Figure 5: Correlation between expression of CT genes and the number of infiltrating CD8+ cells. (A) Samples with higher 
expression for CT genes associated to good prognosis have a higher rate of infiltrating CD8+ cells for BLCA, HNSC and SKCM. (B) Rate 
of infiltrating CD8+ cells for samples with no, low or high expression for the respective CT genes associated to good prognosis in SKCM. 
(C) Rate of infiltrating CD8+ cells for samples with no, low or high expression for the respective CT genes associated to good prognosis 
in HNSC. (D) Rate of infiltrating CD8+ cells for samples with no, low or high expression for the respective CT gene associated to good 
prognosis in BLCA.
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by us previously [21]. We found that in general there is 
a depletion of cancer genes in the set of CT genes. This 
finding strongly suggests that, while there are several 
cancer genes within the CT genes dataset, there is overall a 
depletion of cancer genes in that set except for melanoma 
and lung adenocarcinoma, both presenting enrichment for 
tumor suppressors.

Although few CT genes have been associated 
with either poor or good prognosis in a variety of 
tumor types [34-37], no large-scale analysis has been 
performed with a complete set of putative CT genes. 
Djureinovic et al. [38] generated a wide list of putative 
CT genes in non-small-cell lung cancer and found 
no gene associated to prognosis. Yao et al. [20] have 
recently shown that although some CT genes from the 
CT Database are associated with patient outcome, not 
many are independent prognostic markers. We explore 
this issue in a systematic way through an exhaustive 
analysis on the association between the expression of 
CT genes and cancer prognosis. Dozens of CT genes 
were associated with either good or poor prognosis. The 
robustness of our method is shown by the identification 
of genes clearly associated with disease progression 
among the set of 113 CT genes more strongly related to 
patient outcome by our analysis. Included in this set of 
genes are TEX101 [39], HORMAD2 [40], OTP [41] and 
TEX19 [42]. It is interesting to notice that CT genes 
are not significantly enriched for genes associated to 
prognosis (data not shown).

It is tempting to speculate that the CT genes 
associated to a better prognosis are eliciting an immune 
response against the tumor, which could be the reason 
for a better outcome in such patients. ROPN1 has been 
demonstrated to induce autoantibodies in patients 
with prostate cancer [43] and multiple myeloma 
[44]. Spontaneous tumor immune response was also 
detected for SPAG6 in sera from patients with gastric 
cancer, melanoma and prostate cancer [45]. CTAGE1 
antibodies were also found in sera of colorectal cancer 
patients [46].

The finding that expression of several CT genes 
is associated with good prognosis led us to hypothesize 
that this effect could be the result of infiltrating CD8+ 
cells driven by the CT gene expression. Several methods 
have been developed that evaluate the intra-tumor 
immune landscape based on gene expression analysis of 
the bulk tumor [22, 47, 48]. Data from Senbabaoglu et 
al. [22] is quite suitable for our analysis since they used 
their method in most of the tumor types evaluated by 
us in this report. We found several CT genes, especially 
in SKCM, whose expression is significantly associated 
to both good prognosis and CD8+ cell infiltration. We 
suggest that these CT genes be considered for further 
studies that would evaluate their immunotherapeutic 
potential.

MATERIALS AND METHODS

RNA-Seq data source

Four datasets were used for the identification of 
CT genes, including three from normal tissues, obtained 
from the Expression Atlas Portal [18]: the Human Body 
Map (GEO accession: GSE30611), GTEx [18] and 
Human Protein Atlas (HPA) [19]. The 16 samples from 
the Human Body Map were processed using our pipeline 
[49]. Expression values for GTEx and HPA datasets were 
obtained directly from the projects web page as FPKM and 
TPM values, respectively. Data from 15 tumor types from 
the TCGA consortium was used for the identification of 
putative CT genes. Expression, methylation and GISTIC 
CNV data were obtained from the cBIO portal by using 
the CGDS-R package, which provides processed data 
for each tumor type. Furthermore, somatic mutation data 
from COSMIC [50] and a local compilation of all somatic 
mutations found in the literature [49, 50] were used. For 
each sample in each tumor type, an expression threshold 
equal to 1 RSEM was applied to separate samples based 
on the expression of the putative CTs. Only genes with 
expression in more than 10% or 15% of samples were 
considered CTs for a particular tumor.

Enrichment ontology analysis

The R package “clusterProfiler” version 3.3 [51] 
was used to perform the ontology enrichment analysis 
based on Gene Ontology (GO) with a hyper-geometric test 
and correction method of Benjamini-Hochberg (BH), with 
cutoff parameters of p-value < 0.05 and q-value < 0.05. 
To remove redundancy of enriched GO terms the function 
“simplify” with default parameters was used.

Proteomic analysis of public cancer datasets

The following MS raw file datasets were 
downloaded from ProteomeXchange: ovarian cancer 
dataset PXD003668 [52]; breast cancer dataset 
PXD002619 [53]; melanoma dataset PXD001724 [54]; 
colon cancer dataset PXD002041-50 [55]; prostate 
cancer dataset (PXD003430, PXD003452, PXD003515, 
PXD004132, PXD003615, PXD003636, PXD004159) 
[56]. All datasets were submitted to MaxQuant software 
version 1.5.2.8 [57] for protein identification. Parameters 
were set as follows: protein N-acetylation and methionine 
oxidation as variable modifications; carbamidomethylation 
of cysteine as fixed modification; first search error 
window of 20 ppm and main search error of 6 ppm at 
MS level. Furthermore, trypsin without proline restriction 
enzyme option was used, with two allowed mis-cleavages. 
Minimal unique peptides were set to 1, and FDR allowed 
was 0.01 (1%) for peptide and protein identification. The 
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Uniprot human database was used (download from August 
2016). Generation of reversed sequences was selected to 
assign FDR rates. A contaminants filter was performed, 
removing all occurrences presents on columns “Reverse” 
or “Potential contaminant” from the output of MaxQuant.

S-score simulation

Identification of cancer genes was performed using 
the S-score metric [21] in both the set of testis-enriched 
genes (1103) and the set of 745 putative CTs. The Monte 
Carlo simulation was performed against each tumor type 
(with extreme S-score), where 10.000 simulated sets were 
compared to the real sets. In this step, three different tests 
were carried out: enrichment for oncogenes (genes with 
S-score ≥ 3), enrichment for tumor suppressor (genes with 
S-score ≤ -3) and enrichment for cancer genes (including 
both oncogenes and tumor suppressors).

Survival signatures and patients prognosis

To test the association of CT genes with patient 
outcome in a given tumor type all putative CTs expressed 
in at least 30 samples were used. All putative CTs were 
tested individually using a log-rank test and genes 
were selected based on a threshold (q-value ≤ 0.05), as 
defined by the “qvalue” R package [58], and classified 
as associated with “Good” or “Poor” prognosis. Next, 
samples expressing a given CT associated with prognosis 
were separated in two subsets based on a median 
expression of the corresponding CT gene. Kaplan-
Meyer curves were plotted using the ggplot2 (from the R 
package). CD8+ profiling for TCGA samples was obtained 
from Senbabaoglu et al. [22].
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