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Structural basis for the assembly of the Ragulator-
Rag GTPase complex
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Atsushi Nakagawa 1 & Masato Okada2

The mechanistic target of rapamycin complex 1 (mTORC1) plays a central role in regulating

cell growth and metabolism by responding to cellular nutrient conditions. The activity of

mTORC1 is controlled by Rag GTPases, which are anchored to lysosomes via Ragulator, a

pentameric protein complex consisting of membrane-anchored p18/LAMTOR1 and two

roadblock heterodimers. Here we report the crystal structure of Ragulator in complex with

the roadblock domains of RagA-C, which helps to elucidate the molecular basis for the

regulation of Rag GTPases. In the structure, p18 wraps around the three pairs of roadblock

heterodimers to tandemly assemble them onto lysosomes. Cellular and in vitro analyses

further demonstrate that p18 is required for Ragulator-Rag GTPase assembly and amino acid-

dependent activation of mTORC1. These results establish p18 as a critical organizing scaffold

for the Ragulator-Rag GTPase complex, which may provide a platform for nutrient sensing on

lysosomes.
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The mechanistic target of rapamycin complex 1 (mTORC1)
serves as a master regulator of cell growth and metabolism
by controlling biomaterial synthesis, lysosome biogenesis,

and autophagy1–3 (Supplementary Fig. 1). mTORC1 is a multi-
protein complex consisting of mTOR, RAPTOR, DEPTOR,
PRAS40, and mLST84. mTOR is a highly conserved serine/
threonine kinase that belongs to the family of phosphoinositide 3-
kinase (PI3K)-related kinases and phosphorylates downstream
substrates, such as S6 kinase, 4E-BP1, TFEB, and ULK1, to induce
differential cellular responses depending upon nutrient condi-
tions4. Dysregulation of critical components in the mTORC1
pathway is implicated in various human diseases such as cancer
and diabetes-related complications. The mTORC1 pathway is
therefore considered a promising therapeutic target for such
diseases5,6.

The kinase activity of mTORC1 is regulated through multiple
signals including nutrient amino acids, extracellular growth fac-
tors (e.g., insulin and insulin-like growth factors), and the
intracellular energy status7–11. The sensing of nutrient amino
acids by specific factors, such as SESTRIN2 and CASTOR1, leads
to inactivation of GATOR1, a GTPase-activating protein (GAP)
for Rag GTPase, resulting in the activation of Rag GTPase. Signals
from other types of nutrient-sensing factors, such as LRS, FLCN-
FNIP2, SLC38A9, and V-ATPase, also converge on Rag
GTPase11. Activated Rag GTPase binds to mTORC1 and pro-
motes its translocation to the surface of lysosomes12,13, where-
upon mTORC1 is directly activated through interaction with
another small GTPase, RHEB. The activity of RHEB is regulated

by signals from growth factor receptors and by the cellular energy
status. Activation of the PI3K-AKT pathway downstream of
growth factor receptors induces inactivation of TSC1-2, a GAP
for RHEB, leading to the activation of RHEB. By contrast, a
decrease in cellular energy levels (i.e., a high AMP/ATP ratio) is
sensed by AMP kinase14, which phosphorylates and activates
TSC1-2 to suppress RHEB.

Rag GTPase is tethered to the surface of lysosomes via Ragu-
lator15,16, a heteropentameric protein complex consisting of a
membrane-anchored scaffold protein p18/LAMTOR117–20 and
two heterodimers composed of roadblock domains21,22: p14-
MP1/LAMTOR2-323,24 and p10-HBXIP/LAMTOR4-525. Rag
GTPase is a heterodimeric complex formed by RagA/B and RagC/
D, both of which consist of nucleotide-binding domains and
roadblock domains21,26. Interaction between Ragulator and Rag
GTPase is required for mTORC1 activation on lysosomes, and
Ragulator has been proposed to act as a guanine nucleotide
exchange factor (GEF) for Rag GTPase15,25,26. However, the
molecular basis for the function and nutrient-dependent regula-
tion of Ragulator and Rag GTPase remains elusive owing to a lack
of structural information.

Herein, we present crystal structures of Ragulator and Ragu-
lator in complex with the roadblock domains of RagA-C [RagA
(RD)-C(RD)]. These structures reveal that p18 functions as a
flexible scaffold by wrapping around the three pairs of roadblock
heterodimers [i.e., p14-MP1, p10-HBXIP, and RagA(RD)-C(RD)]
to tandemly assemble them via head-to-tail interactions. Cellular
and in vitro reconstitution assays demonstrated that p18 is
required for the functional assembly of the Ragulator-Rag GTPase
complex and amino acid-dependent activation of mTORC1.
These results suggest that the module built from the three
roadblock heterodimers may serve as a platform for additional
factors involved in the nutrient-dependent regulation of
mTORC1 on lysosomes.

Results
The structure of Ragulator. We first analyzed the crystal struc-
ture of Ragulator, a heteropentameric protein complex. To enable
its crystallization, we identified the minimum region of p18
essential for Ragulator formation. Immunofluorescence analysis
showed that the C-terminal 120 amino acid residues of p18
(Ser42–Pro161) were required for the assembly of a functional
Ragulator on lysosomes (Supplementary Fig. 2a, b). Thus, this
p18 fragment was N-terminally His-tagged and coexpressed with
other components of Ragulator in Escherichia coli (Supplemen-
tary Fig. 2c). The heteropentameric complex was purified by
sequential column chromatography, followed by crystallization
(Supplementary Fig. 2d). X-ray diffraction data were collected to
2.40 Å resolution, and the structure of Ragulator was determined
by molecular replacement (Table 1 and Supplementary Fig. 3).

The overall structure of Ragulator revealed that the central
region of p18 (Gln78–Ala150) wraps around two roadblock
heterodimers: p14-MP1 and p10-HBXIP (Fig. 1a, b). Electron
density for the N- and C-terminal regions (Ser42–Glu77 and
Lys151–Pro161, respectively) was not visible, suggesting that
these segments are flexible and disordered. These features of p18
indicate that it is an intrinsically disordered protein that adopts
the observed structure by specifically interacting with the two
heterodimers.

In the presence of roadblock domains, p18 adopts various
secondary structural elements: it forms two long α-helices at the
N- and C-terminal ends (helices α2 and α4, respectively), a short
α-helix (α3), and a 310 helix in the middle loop (M-loop) between
the α2 and α3 helices (Fig. 1a). The α2 helix (His79–Val94)
mainly interacts with the hydrophobic groove of MP1, and the

Table 1 Data collection and refinement statistics

Ragulator Ragulator-RagA(RD)-C(RD)

PDB ID 5X6U 5X6V
Data collection
Space group P4122 P212121
Cell dimensions
a, b, c (Å) 133.04, 133.04, 75.15 74.10, 93.48, 125.45
α, β, γ (°) 90.0, 90.0, 90.0 90.0, 90.0, 90.0

Resolution (Å) 133.04–2.40
(2.44–2.40)*

125.45–2.02 (2.06–2.02)

Rmerge 0.060 (1.116) 0.069 (0.856)
I/σ (I) 23.9 (2.2) 13.6 (2.1)
CC1/2 1.000 (0.771) 0.998 (0.818)
Completeness (%) 100.0 (99.5) 99.4 (99.3)
Redundancy 10.9 (11.3) 5.5 (5.6)

Refinement
Resolution (Å) 133.04–2.40

(2.44–2.40)
19.67–2.02 (2.06–2.02)

No. of reflections 26,910 57,304
Rwork/Rfree 18.60/23.16 19.25/24.34
No. of atoms
Protein 3,799 6,064
Ligand/ion 0 5
Water 130 348

B factors (Å2)
Protein 76.1 59.8
Ligand/ion N/A 41.2
Water 81.1 63.2

R.m.s. deviations
Bond lengths (Å) 0.010 0.010
Bond angles (°) 1.18 1.11

Ramachandran plot
Favored (%) 97.1 98.0
Allowed (%) 2.5 2.0
Outliers (%) 0.4 0

*Values in parentheses are for the highest-resolution shell
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M-loop is elongated and also interacts with the hydrophobic
groove formed by p10 and MP1 (Supplementary Fig. 4a). In
particular, the side chains of Leu108 and Leu111 in the proline-
rich region of the M-loop (Pro106, Pro107, and Pro109) are
buried in the hydrophobic pocket of p10 (Supplementary Fig. 4a).
The α3 helix (Pro115–Leu119) of p18 extensively interacts with
the β-sheets of p10, and is supported by multiple hydrogen bonds
and hydrophobic interactions (Fig. 1a, b and Supplementary
Figs. 4a and 5a). Ser121 and Glu122 of p18 form hydrogen bonds
with Arg65 and Arg89 of p10, creating an Arg bridge that forms
further hydrogen bonds with Val118 and Leu119 of p18
(Supplementary Fig. 5a). The α4 helix (Phe126–Leu143) of p18
tightly interacts with HBXIP to assemble a stable trimer (p18-
p10-HBXIP) that provides a platform for p14-MP1 (Fig. 1a). The
binding interface between p18 and HBXIP is composed of
hydrophobic interactions and hydrogen bonds between Asp128,
Gln131, Ser133, and Ile135 of p18, and Lys88, Asn15, Gln77, and
His8 of HBXIP, respectively (Supplementary Figs. 4a and 5b).
The C-terminal region of p18 weakly interacts with helix α1 of
p14 (Fig. 1a, b). Through these interactions, p18 appears to
assemble the two roadblock heterodimers into a stable tetramer.

Assembly of p14-MP1 and p10-HBXIP heterodimers. The core
region of Ragulator consists of two roadblock heterodimers, each
with pseudo 2-fold symmetry, which are assembled tandemly in a
head-to-tail orientation (Fig. 2a). HBXIP interacts with both p14
and MP1 (buried surface area [BSA] ~440 Å2 and ~360 Å2,
respectively), while p10 contacts only with MP1 (BSA ~240 Å2;
Fig. 2a and Supplementary Table 1). These BSAs are smaller than
those between p14 and MP1, or between p10 and HBXIP (BSA
~1250 Å2 and ~830 Å2, respectively), suggesting that the inter-
actions between the two heterodimers are weaker than those
within each heterodimer, and indicating that wrapping by p18 is
necessary to stabilize the interaction between the two hetero-
dimers. The narrow binding interface between HBXIP and p14-
MP1 is mediated by hydrogen bonds and by three salt bridges
formed by Glu2, Asp39, and Lys54 of HBXIP with Arg80 and
Lys107 of p14 and Glu17 of MP1 (Fig. 2b). These interactions
may also contribute to the assembly of Ragulator.

The p10 subunit forms a heterodimer with HBXIP in
essentially the same way as p14-MP127,28 (Fig. 2c, left). In the
p10-HBXIP heterodimer, the α2 helices of each component
interact in an antiparallel fashion, and the β3 strands form an
antiparallel β-sheet. However, in contrast to the p14-MP1
heterodimer, both components lack helix α3 (Fig. 2c, right),
thereby leaving a hydrophobic groove along the outer face of the
β-sheet, which facilitates interaction with the α3 and α4 helices of
p18 (Fig. 2d).

The structure of Ragulator-RagA-C roadblock domains. To
elucidate the structural basis for the interaction between Ragu-
lator and RagA-C, we next investigated which regions of RagA-C
interact with Ragulator. For this, we coexpressed Ragulator with
full-length RagA-C, the GTP-binding domains of RagA-C or the
C-terminal roadblock dimers of RagA-C [RagA(RD)-C(RD)].
Pull-down assays with HisTrap beads revealed that RagA(RD)-C
(RD) was sufficient to bind to Ragulator in vitro. Therefore, we
used the full Ragulator along with RagA(RD)-C(RD) to determine
the core structure of the Ragulator–RagA-C complex. All com-
ponents of Ragulator and RagA(RD)-C(RD) were coexpressed in
E. coli, and the purified heptameric complex was crystallized
(Supplementary Fig. 2c, e). X-ray diffraction data were collected
to 2.02-Å resolution, and the structure was determined by
molecular replacement using structures of Ragulator and
Gtr1p–Gtr2p29, a yeast ortholog of RagA-C (PDB: 4ARZ), as
templates (Table 1 and Supplementary Fig. 6).

The overall structure of the Ragulator-RagA(RD)-C(RD)
complex revealed that the N-terminal region of p18, which was
disordered in the Ragulator structure, becomes ordered and
clearly visible in the heptameric complex and forms a helix (α1:
Glu50–Asn60), while the loop located between α1 and α2 remains
disordered (Fig. 3a, b). The α1 helix interacts with the antiparallel
pair of N- and C-terminal α helices of RagC(RD) through
hydrophobic contacts (Supplementary Fig. 4b). This interaction is
further stabilized by multiple hydrogen bonds between p18
(Ser63, Asn64, Ile65, Ile66, and Val68) and RagC (Asn252,
Arg347, Tyr353, and Asn354) or MP1 (Lys62) (Supplementary
Fig. 7a).
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The C-terminal tail of p18 (Lys151–Pro161) is also visible, and
is stabilized by hydrophobic contacts with p14 and RagA(RD)
(Fig. 3a and c, Supplementary Fig. 4b). Furthermore, Glu152,
Glu153, Leu154, and Val156 of p18 interact with Met1 and Arg3
of p14 through antiparallel β-strand-like interactions and the
formation of multiple hydrogen bonds (Supplementary Fig. 7b).
These interactions are observed only in the structure of Ragulator-
RagA(RD)-C(RC), indicating a crucial role of the C-terminal tail
of p18 for the assembly of Ragulator-RagA(RD)-C(RD).

The roadblock domains of RagA-C form a heterodimer with a
pseudo 2-fold symmetry in a similar manner to that observed in
the p14-MP1 and p10-HBXIP dimers. The binding mode between
RagA(RD)-C(RD) and p14-MP1 is similar to that between p14-
MP1 and p10-HBXIP: the β1–β2 loop between the β1 and
β2 strands of p14 docks into the groove formed by the α3 helices
of the roadblock domains of RagA-C (Fig. 3c and Supplementary
Fig. 8). These structural features imply that the roadblock
heterodimers might serve as a structural module that interacts
with other related molecules via a conserved head-to-tail mode of
interaction to bring about further multimerization.

These findings clearly demonstrate that p18 directly interacts
with the RagA(RD)-C(RD) heterodimer via its N- and C-terminal
regions through an induced fit mechanism to bind six roadblock
proteins. Since p18 interacts with all other components of
Ragulator and RagA(RD)-C(RD) (Supplementary Table 2) and
most of the functional regions of p18 (Ser42–P161) are occupied
in the final assembly (Fig. 3d and Supplementary Movie 1), it is
likely that the primary function p18 is to stably anchor RagA-C
onto Ragulator.

Structural comparison between the two complexes. To examine
whether the binding of RagA(RD)-C(RD) affects the structure of
Ragulator, the structure of the Ragulator-RagA(RD)-C(RD)
complex was superimposed on that of Ragulator. Local con-
formational changes occur upon assembly, specifically at the α2
and α4 helices of p18 and the β2–α2 loop of p14 (Supplementary
Fig. 9). In the β2–α2 loop of p14, the binding of RagA(RD)-C
(RD) induces a conformational change in Arg43 and hydrogen
bond formation with Ser280 of RagA, generating a new hydrogen
bond with Tyr94 of p14 (Supplementary Fig. 9a). The α2 and α4
helices of p18 undergo positional and conformational shifts to fit
tighter into the grooves formed by MP1 and HBXIP, respectively
(Supplementary Fig. 9b, c). The α4 helix of p18 forms new π-
stacking interactions with His8 of HBXIP, and new hydrogen
bonds between Asp11 and Asp80 of HBXIP (Supplementary
Fig. 9c). Nevertheless, the overall structures of p18 within
Ragulator and Ragulator-RagA(RD)-C(RD) align well with each
other and have a similar topology (Supplementary Fig. 9d). These
observations indicate that the conformational flexibility of p18
allows it to specifically wrap the subunits of Ragulator and Rag
GTPase into a functional complex through an induced fit
mechanism.

p18 is essential for Ragulator-RagA-C assembly on lysosomes.
To investigate the structure–function relationship between p18
and the Ragulator-Rag GTPase complex, we examined the effects
of p18 mutations on the function of mTORC1 by reexpressing
various p18 mutants (Supplementary Fig. 10) in p18 KO cells,
which were established from p18 KO mouse embryos17. The
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function of mTORC1 was assessed by the punctate distribution of
mTOR to perinuclear lysosomes (Supplementary Fig. 11). Among
the mutations examined, multiple substitutions in the α2 and α4
helices (α2A and α4E) and deletion of the C-terminal 10–40
residues (CΔ10–40) caused a suppression of punctate lysosomal
distribution of mTORC1. These observations suggest that these
regions of p18 are important for the assembly of the Ragulator-
Rag GTPase complex, which is required for mTORC1 activation
on lysosomes.

To verify the roles of these regions, we conducted detailed
analysis of CΔ5, CΔ10, CΔ15, α2A, and α4E mutants (Fig. 4a, b).
Immunofluorescence analysis revealed that mTOR was deloca-
lized from LAMP1-positive lysosomes in cells expressing CΔ10,
CΔ15, and α4E mutants (critical mutant cells), although
subpopulations were detectable at lysosomes in cells expressing
CΔ5 and α2A mutants (moderate mutant cells) (Fig. 4c).
Consistently, the activity of mTORC1 toward S6 kinase and
TFEB was dramatically reduced in critical mutant cells, while
moderate mutant cells retained substantial activity (Fig. 4d and
Supplementary Fig. 12a).

We next examined the effects of p18 mutations on the
nutrient-dependent activity of mTORC1 (Supplementary Fig. 13).

Although insulin-dependent activation of S6 kinase phosphoryla-
tion was observed even in p18 KO cells, the levels of activation in
critical mutant cells were almost comparable with those in p18
KO cells (Supplementary Fig. 13a). By contrast, amino acid-
dependent S6 kinase phosphorylation was exclusively dependent
on the presence of functional p18, and it was not activated in
critical mutant cells or p18 KO cells, while moderate mutant cells
showed some activation. Furthermore, TFEB phosphorylation,
which was more strictly dependent on amino acids, even in
WT cells, was not activated by amino acids in critical mutant
cells. Time-course analyses of amino acid-dependent activities
toward S6 kinase and TFEB confirmed that both activities were
indeed activated in an amino acid-dependent manner, although
phosphorylation of S6 kinase occurred transiently due to some
negative feedback mechanisms (Supplementary Fig. 13b). These
findings demonstrate that the C-terminal tail and α4 helix of p18
are crucial for amino acid-dependent activation of mTORC1.

The roles of the critical regions of p18 in the assembly of the
Ragulator-Rag GTPase complex were confirmed by in vitro
reconstitution analyses. Pull-down assays of recombinant pro-
teins expressed in E. coli revealed that the C-terminal 10 residues
(Glu152–Pro161) of p18 are dispensable for the assembly of
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Ragulator (Fig. 4e), but they are critical for stably anchoring
RagA-C on Ragulator (Fig. 4f). The additional five residues at the
C-terminus (Arg147–Lys151) are required for the binding of p14-
MP1 (Fig. 4e). The α2 helix of p18 can contribute to the assembly
of p14-MP1, and helix α4 is essential for the total assembly of
Ragulator (Fig. 4e). These results demonstrate that the C-terminal
tail and α2/α4 helices of p18 contribute to a stable assembly of the
Ragulator-Rag GTPase complex.

We also analyzed the contribution of N-terminal regions of
p18 to the regulation of mTORC1. Cellular and in vitro
reconstitution analyses showed that the N-terminal 10 residues
(His41–Glu50), which are disordered in the structure of the
Ragulator-RagA(RD)-C(RD) complex, are dispensable for mTOR
activation, while the following region (Gln51–Lys60) in the N-
terminal α1 helix (Glu50–Asn64) is required for amino acid-

dependent activation of mTORC1 (Fig. 5a–e and Supplementary
Figs. 12b and 13a, b). These results indicate that, in addition to
the C-terminal tail of p18, the N-terminal helix α1 is also crucial
for stabilizing the interaction between RagA-C and Ragulator,
which is required for amino acid-dependent activation of
mTORC1. Taken together, the functional and structural informa-
tion suggest that full assembly of the Ragulator-Rag GTPase
complex via p18 is required to ensure the amino acid-dependent
regulation of mTORC1 activity on lysosomes.

Discussion
In this study, we determined crystal structures of Ragulator and
the Ragulator-RagA(RD)-C(RD) complex, which are composed
of roadblock heterodimers wrapped in an orderly fashion by p18.
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During purification of Ragulator, we noticed the presence of a
pre-Ragulator complex (p18-p10-HBXIP; Supplementary
Fig. 2d). Furthermore, in vitro reconstitution assays in E. coli
show that p18 is able to form a complex with p10-HBXIP alone,
but p14-MP1 requires p10-HBXIP for complex formation with
p18, and p18 is required for the assembly of p14-MP1 and p10-
HBXIP (Supplementary Fig. 14). These findings suggest a step-
wise assembly mechanism for Ragulator formation, in which p18
first specifically captures p10-HBXIP through multiple interac-
tions with its middle region, including the M-loop, α3, and α4
helices, and then assembles p14-MP1 mainly via interactions
between MP1 and the N-terminal α2 helix of p18, which is
consistent with a previous report that the C-terminal region of

p18 is not needed for interaction with p14-MP130. The assembled
Ragulator then anchors Rag GTPases by clipping their roadblock
domains with the C-terminal tail and α1 helix of p18 (Figs. 3d
and 6a). Through this stepwise process, the Ragulator-Rag
GTPase complex is precisely assembled on the surface of
lysosomes.

To assess the complete structure of the Ragulator-RagA-C
complex containing the GTP-binding domains, we superimposed
the previously determined structure of the Gtr1p–Gtr2p com-
plex29 onto that of human RagA(RD)-C(RD) in our structure
(Fig. 6a). The superimposition suggests that the full Ragulator-
RagA-C complex lying on the surface of the lysosomal membrane
has its RAPTOR-binding region31 (RagA nucleotide-binding
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domain) located on the side of the molecule opposite to the
lysosomal membrane (Fig. 6b). This orientation may be advan-
tageous to capture mTORC1 via RAPTOR on the surface of the
lysosomal membrane and allows close contact with RHEB, which
directly activates mTORC1. The structure also reveals that the C-
terminal tail of p18 does not reach the nucleotide-binding
domain of RagA, and that the N-terminal domain does not
interact with the nucleotide-binding domain of RagC (Fig. 6a).
Furthermore, structural comparison between RagA(RD)-C(RD)
and the roadblock domains of Gtr1p–Gtr2p indicates that the
binding of Ragulator does not induce a dramatic conformational
change in RagA(RD)-C(RD). These in vitro observations suggest
that the binding of Ragulator may not directly affect the activity
of RagA-C, although it is likely that Ragulator requires additional
factors to regulate Rag GTPases in vivo.

Analysis of the structure–function relationship between p18
and the Ragulator-Rag GTPase complex suggests that the C-
terminal tail and the N-terminal α1 helix of p18 are crucial for
amino acid-dependent activation of mTORC1. Since these
regions are required for holding RagA-C onto Ragulator, p18-
mediated full assembly of the Ragulator-Rag GTPase complex
may be a prerequisite for amino acid-dependent regulation of

mTORC1. In this study, we also found that insulin-dependent
activity of mTORC1 toward S6 kinase was retained to some
extent even in p18 KO cells, while mTORC1 activity toward
TFEB was largely dependent on amino acids and substantially
attenuated by the loss of p18 function. These results underscore
the crucial role of the Ragulator-Rag GTPase complex in amino
acid-dependent regulation of mTORC1, and suggest that the
insulin pathway might activate S6 kinase independently of the
Ragulator-Rag GTPase complex on lysosomes.

In the structure of the Ragulator-RagA-C complex, the road-
block domains [α1–β1–β2–α2–β3–β4–β5–(α3)], which were ori-
ginally identified in the Drosophila roadblock gene that encodes a
dynein-associated protein22, are present in all components except
p18. This domain is also shared in several small GTPase-related
molecules and functions as a platform for small GTPase signal-
ing21. Furthermore, our structure shows that the three pairs of
roadblock domains assemble via head-to-tail interactions, form-
ing a unique molecular surface that may facilitate further inter-
actions with additional molecules that have related-modules, such
as roadblock and/or longin domains21,32. Therefore, it is possible
that p18 functions to create a platform for regulators of Rag
GTPase, such as GEFs25 and GAPs (Fig. 6c). Since several known
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regulators of Rag GTPases, including GATOR133, FLCN34, and
c17orf5735, contain longin-related domains, these factors may
specifically interact with the Ragulator-Rag GTPase platform to
regulate the activity of Rag GTPases on lysosomal membranes.

Recently, a crystal structure of the Ego1–Ego2–Ego3 ternary
complex (Ego-TC), a yeast ortholog of Ragulator, was reported36.
The Ego-TC structure differs from that of human Ragulator,
consisting of a heterotrimer of Ego2, Ego3, and a C-terminal
short region of Ego1 (Leu146–Phe184). However, the mode of
interaction between Ego1 and Ego2-3 is somewhat similar to that
between p18 and HBXIP-p14; the C-terminal α-helix and tail
region of Ego1 and p18 interact with the surface of Ego2-3 and
HBXIP-p14, respectively. Furthermore, the structure of Ego-TC
was aligned with that of the p18-HBXIP-p14 complex in our
structure with an overall root mean square deviation of 2.14 Å for
all Cα atoms of across both components (Supplementary Fig. 15).
Although the interaction sites between Ego-TC and Gtr1p–Gtr2p
GTPases remain unknown, these findings suggest that the func-
tion of Ego1/p18 may be, at least in part, conserved during
evolution. Since the Ego-TC complex was shown to be crucial for
promoting Rag GTPase-dependent TORC1 signaling in yeast36,
comparative analysis of the overall structures of the Ragulator-
Rag GTPase complex in human beings and yeast will likely prove
informative for understanding the basic mechanisms of its
regulation.

During the review process of this paper, de Araujo et al.
reported crystal structures of human Ragulator and Ragulator in
complex with the roadblock domains of RagA-C37. The overall
views of their structures are basically identical to ours, although
there are some minor differences in the N- and C-terminus of
each component and M-loop region of p18. Particularly, the
critical interaction between RagA(RD) and the C-terminal tail of
p18 is significantly perturbed in their structure, potentially due to
extra amino acids at the N-terminus of p14 (Supplementary
Table 3 and Supplementary Fig. 16). These structural features
together with our data on the structure–function relationship
underscore the crucial role of p18-mediated assembly of the
Ragulator-Rag GTPase complex as a key regulatory platform for
amino acid-dependent mTORC1 signaling. Identification of the
critical regulatory sites on the surface of this complex may pro-
vide new chemotherapeutic targets for small molecules to treat
human diseases, such as cancer and diabetes mellitus, which are
associated with the dysregulation of mTORC1 signaling.

Methods
Expression and purification of Ragulator and RagA-C. To increase the solubility
of the p18 protein in E. coli, substitution of Ser98 to Asp, which mimics the
potential phosphorylation at this site, was introduced, although this substitution
did not affect the function of Ragulator (Supplementary Figs. 2c and 11). The
mutated cDNA fragment of the C-terminal region of human p18 (Ser42–Pro161)
was cloned into the EcoRI-NotI sites of the pETDuet1 vector (Novagen), in which a
tobacco etch virus (TEV) protease recognition site was introduced. PCR primers
used in this study are listed in Supplementary Table 4. Full-length cDNAs of MP1
(Ala2–Ser124) and p14 (Met1–Ser125) were cloned into the NcoI-HindIII site and
the NdeI-XhoI sites of the pACYCDuet1 vector (Novagen), respectively. The C-
terminal half of HBXIP (Glu83–Ser173), which is a well-conserved short form, and
the full-length cDNA of p10 (Met1–Val99) were cloned into the NcoI-HindIII site
and the NdeI-XhoI sites of the pRSFDuet1 vector (Novagen), respectively.
Expression vectors were simultaneously transfected into E. coli BL21(DE3) cells
(Novagen), and the cells were cultured in the presence of the recommended
amounts of ampicillin, kanamycin, and chloramphenicol in 2-l flasks at 37 °C.
Protein expression was induced by 0.5 mM isopropyl-β-D-1-thiogalactoside
(IPTG) at 30 °C for 1.5 h, and cells were collected by centrifugation and stored at
−30 °C until needed. Cells were lysed in 50 ml of Lysis buffer consisting of 20 mM
Tris-HCl (pH 8.0), 0.5 M NaCl, 40 mM imidazole, 0.2% Nonidet-P40 (NP-40),
1 mM phenylmethylsulfonyl fluoride (PMSF), and 1 mg/ml lysozyme. Lysates were
sonicated five times for 1 min each time, and centrifuged at 30,000 × g for 10 min.
Protein was purified from the cleared supernatant using a HisTrap HR column
(5ml) with a linear gradient of 40–200 mM imidazole, followed by a Superdex 200
Increase 10/300GL column (GE Healthcare). Peak fractions containing the eluted

protein were digested with Ac TEV protease (Invitrogen) at 4 °C for 7 h. After
passing the TEV protease reaction through a HisTrap HR column, Ragulator was
purified by MonoQ 10/100 GL column chromatography with a linear gradient of
0.1–0.35 M NaCl.

For expression of full-length human RagA and mouse RagC, the appropriate
cDNAs were cloned into the BamHI-NotI sites and the BglII-XhoI sites of the
pETDuet1 vector, respectively. The resultant constructs were transformed into E.
coli BL21 (DE3) cells, and cells were cultured in the presence of ampicillin in 2-l
flasks at 37 °C. Protein expression was induced by the addition of 0.5 mM IPTG,
and culturing continued at 30 °C for 1.5 h. Cells were collected by centrifugation
and lysed in the Lysis buffer consisting of 20 mM Tris-HCl (pH 8.0), 0.5 M NaCl,
40 mM imidazole, 0.2% NP-40, 5% glycerol, 5 mMMgCl2, 10 µMGTP/GDP, 4 mM
β-mercaptoethanol, 1 mM PMSF, and 1 mg/ml lysozyme. Protein was purified
from the cleared lysates using a HisTrap HR column (5 ml) followed by a Superdex
200 Increase 10/300GL column, and peak fractions containing the target protein
were digested with Ac TEV protease at 4 °C for 7 h. After passing the reaction
through a HisTrap column, the RagA/C complex was purified by HiTrap Q HR
(5 ml) column chromatography with a linear gradient of 0.1–0.4 M NaCl. To form
the heteroheptamer, purified Ragulator and RagA/C were mixed and subjected to
gel filtration on a Superdex 200 increase 10/300GL column.

For coexpression of Ragulator with the roadblock domains (RD) of RagA-C,
RagA(RD) consisting of residues Asn183–Arg313 and RagC(RD) consisting of
residues Gln238–Ser375 were cloned into the BamHI-NotI sites and the NdeI-XhoI
sites in the pETDuet1 vector, respectively, and the resulting BamH1-XhoI fragment
was then cloned into the BglII-XhoI sites in the pETDuet1 vector harboring the p18
gene. The vector was transformed along with pACYCDuet1-MP1/p14 and
pRSFDuet1-p10/HBXIP into E. coli BL21(DE3) cells, and cells were cultured in the
presence of ampicillin, kanamycin, and chloramphenicol in 2-l flasks at 37 °C.
Protein expression was induced by the addition of 0.5 mM IPTG, and culturing
continued at 20 °C overnight. Cells were collected by centrifugation and lysed in
50 ml of Lysis buffer consisting of 20 mM Tris-HCl (pH 8.0), 0.5 M NaCl, 50 mM
imidazole, 0.2% NP-40, 5% glycerol, 4 mM β-mercaptoethanol, 1 mM PMSF, and
1 mg/ml lysozyme. Protein was purified from cleared lysates using a HisTrap HR
column (5 ml) with a linear gradient of 50–200 mM imidazole, followed by a
Superdex 200 Increase 10/300GL column. Peak fractions containing the target
protein were digested with Ac TEV protease at 4 °C for 7 h. After passing the TEV
protease reaction through a HisTrap column, the Ragulator-RagA(RD)-C(RD)
complex was purified by a second passage through the Superdex 200 Increase 10/
300GL column.

Crystallization. Purified proteins were concentrated to ~10 mg/ml for Ragulator
and ~12 mg/ml for the Ragulator-RagA(RD)-C(RD) complex, and crystallization
screening was performed with a TTP Labtech Mosquito crystallization robot by
sitting drop vapor diffusion at 20 °C. After optimization of the crystallization
conditions, the best crystals were grown from 100 mM Tris-HCl (pH 9.0), 20 mM
alcohol mix (2-propanol, 1,6-hexanediol, 1,4-butanediol, 1-butanol, and 1,3-pro-
panediol), 13.75% PEG1000, 13.75% PEG3350, and 13.75% 2-methyl-2,4-penta-
nediol (MPD) for Ragulator, and 100 mM sodium citrate (pH 6.0), 200 mM
ammonium acetate, and 15% PEG4000 for Ragulator-RagA(RD)-C(RD). Crystals
were flash-frozen in liquid nitrogen after cryoprotection in mother liquor sup-
plemented with 15% PEG1000, 15% PEG3350, and 15% MPD for Ragulator, and
30% glycerol for Ragulator-RagA(RD)-C(RD).

Data collection and structure determination. All diffraction data sets were col-
lected on BL44XU38 at SPring-8, and indexed, integrated, and scaled using
HKL200039, autoPROC40 with XDS41, AIMLESS42, and POINTLESS43. Structures
were determined by molecular replacement using Phaser44 within the
CCP4 suite45, with the previously reported crystal structures of p14-MP127 and
HBXIP46 (PDB: 1VET and 3MSH, respectively) as templates for Ragulator, and the
Ragulator and roadblock domains of Gtr1p-2p29 (PDB: 4ARZ) as templates for
Ragulator-RagA(RD)-C(RD). All models were refined by Refmac547, PHENIX48,
and BUSTER49, with manual revision using Coot50. Hydrophobicity was calculated
according to the Eisenberg hydrophobicity scale51. X-ray diffraction and refine-
ment statistics are summarized in Supplementary Table 1. Analysis of interacting
interfaces was performed using PDBePISA52. All figures were made with the
PyMOL Molecular Graphics System, Version 1.7 (Schrödinger, LLC).

Cell culture and transfection. p18 KO cells were established from p18 KO mouse
embryos by immortalizing with SV40 large T antigen17, and cultured at 37°C in a
humidified atmosphere containing 5% CO2 in Dulbecco’s Modified Eagle’s Med-
ium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS) and peni-
cillin/streptomycin. Gene-transfer experiments were carried out using PiggyBac
transposon vector system (System Biosciences). To analyze the amino acid- and
insulin-dependent activity of mTORC1, semiconfluent cell cultures were washed
with PBS and then incubated in DMEM (high glucose) with or without amino acids
for 1 h. Insulin (10 μg/ml) was directly added to the medium. For time-course
analyses, cultured cells were pretreated for 1 h with amino acid-free DMEM (high
glucose), and were further incubated in DMEM (high glucose) with amino acids for
each period.
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Western blotting. Cells were lysed in ODG buffer (20 mM Tris-HCl, pH 7.4,
0.15M NaCl, 1 mM EDTA, 1% NP-40, 2% octyl-β-D-glucoside, 5% glycerol, 1 mM
Na3VO4, 10 mM NaF, and protease inhibitors). Equal amounts of total proteins
were separated by SDS-PAGE and transferred onto polyvinylidene difluoride
(PVDF) membranes. Membranes were blocked and incubated with primary anti-
bodies, followed by incubation with HRP-conjugated secondary antibodies. Signals
were visualized on a WSE6200H LuminoGraph II (ATTO, Tokyo, Japan).
Representative blots obtained from at least three independent experiments are
shown. For pull-down assays in E. coli, cell lysates expressing His-tagged p18 were
incubated with HisTrap beads, and precipitates were subjected to Coomassie
Brilliant Blue staining and western blotting. The following antibodies were used:
anti-p18, anti-p14, anti-MP1, anti-HBXIP, anti-p10, anti-mTOR, and anti-
phospho-S6K (Cell Signaling Technology), anti-actin, anti-LAMP1 and anti-S6K
(Santa Cruz Biotechnology), and anti-TFEB (Bethyl Laboratories Inc). Catolog
numbers and dilutions of these antibodies are listed in Supplementary Table 5. All
experiments were repeated at least three times, and representative blots are dis-
played in all figures. Uncropped images of western blots are shown in Supple-
mentary Figs. 17–20.

Immunofluorescence. Cells were cultured on coverslips and fixed with 1% par-
aformaldehyde in PBS at room temperature for 10 min. For detection of HBXIP,
fixed specimens were incubated in methanol at room temperature for 10 min, and
then treated with 50 μg/ml digitonin in PBS (digitonin-PBS) at room temperature
for 10 min for permeabilization. After 1 h of blocking with Blocking-One (Nacalai
Tesque, Kyoto, Japan), specimens were incubated with primary antibodies at room
temperature for 3 h, washed three times with digitonin-PBS, incubated with
Alexa488 or Alexa594-labeled secondary antibodies at room temperature for 1 h,
and washed four times with digitonin-PBS. Finally, coverslips were immersed in
ProLong Gold antifade reagent and mounted on glass slides. Specimens were then
subjected to observation with a confocal laser-scanning microscope (FV1000,
Olympus). All experiments were repeated at least three times and representative
images are displayed in all figures.

Data availability. Coordinates and structure factors have been deposited in the
Protein Data Bank under accession numbers 5X6U (Ragulator) and 5X6V
(Ragulator-RagA[RD]-C[RD]). Other data are available from the corresponding
authors upon reasonable request.
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