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Krüpple-like-factor 4 Attenuates 
Lung Fibrosis via Inhibiting 
Epithelial-mesenchymal Transition
Lianjun Lin1, Qian Han1, Yan Xiong2, Ting Li2, Zhonghui Liu1, Huiying Xu1, Yanping Wu1, 
Nanping Wang3 & Xinmin Liu1

Epithelial-mesenchymal transition (EMT) plays an important role in the pathogenesis of idiopathic 
pulmonary fibrosis (IPF). Krüpple-like-factor 4 (KLF4), has been suggested to play an important role 
in the phenotype transition. However, its function in pulmonary fibrosis and EMT of human alveolar 
epithelial cells (AECs) remains unclear. This study aimed to examine the role of KLF4 in pulmonary 
fibrosis and EMT. Decreased expression of KLF4 was first observed in human IPF lung tissues and 
models of bleomycin-induced pulmonary fibrosis. Transgenic mice with overexpression of KLF4 were 
subjected to bleomycin-induced pulmonary fibrosis model and showed attenuated lung fibrosis 
and EMT compared to wild type group. Furthermore, the effects overexpression and knockdown of 
KLF4 on TGF-β1-induced EMT were examined in AECs. Adenovirus-mediated overexpression of KLF4 
attenuated TGF-β1-induced EMT and activation of Smad2/3 and Dvl in AECs. Conversely, knockdown 
of KLF4 promoted the activation of pathways above mentioned and TGF-β1-induced EMT. Our results 
demonstrates that KLF4 plays an important role in bleomycin-induced lung fibrosis through suppressing 
TGFβ1-induced EMT. Thus, it may serve as a potential target for the treatment of pulmonary fibrosis.

Idiopathic pulmonary fibrosis (IPF), a progressive and lethal disease with poor prognosis, lacks effective therapy 
strategies1. Although the pathogenesis of IPF remains poorly understood, it is widely accepted that aberrant 
injury-repair of epithelial cells plays a role in IPF2,3. The formation of fibrotic foci is a pathological hallmark of 
IPF in which activated fibroblasts and myofibroblasts are believed to be the main effector cells by secreting extra-
cellular matrix proteins and undergoing structure remodeling4–6. Of the several potential origins of activated 
fibroblasts and myofibroblasts, injured epithelial cells contribute to the formation of pulmonary fibrosis through 
epithelial-mesenchymal transition (EMT)7–9.

EMT is a process in which fully differentiated epithelial cells are transformed into a mesenchymal pheno-
type, with the loss of epithelial markers, acquisition of mesenchymal property, reassembly of cytoskeleton with 
enhanced migratory. EMT is involved in embryogenesis physiologically and carcinogenesis pathologically10. 
Moreover, EMT has been implicated in the pathogenesis of organ fibrosis such as kidney11 and lung8,9,12,13. There 
is evidence of EMT in fibroblastic foci in IPF, indicating that EMT is involved in fibrosis development8,9,13. 
Furthermore, approximately one third of fibroblasts are of epithelial origin in bleomycin-induced pulmonary 
fibrosis12. Of multiple stimuli involved in lung fibrosis, TGF-β1 is an important pro-fibrotic factor that has been 
shown to induce EMT both in vitro and in vivo8,10,14 and signaling pathways either through the canonical pathway 
involving downstream phosphorylation of Smad 2/3 or through other non-Smad pathways such as Wnt/β-catenin 
pathway15.

Krüpple-like family is a group of transcription factors containing of evolutionarily conserved zinc-finger 
DNA binding domain16,17 and regulates diverse cell processes18. A family of 17 mammalian KLFs have been 
discovered19,20. Among them, KLF4 performs multiple functions in a number of physiological and pathological 
processes. Recent studies have shown that KLF4 expression is decreased in lung cancer21 and pulmonary arterial 
hypertension22. However, its expression in lung fibrosis is not known. A recent study demonstrated that KLF4 was 
down-regulated in TGF-β-induced EMT in human renal proximal tubule epithelial cells (HK-2 cells) and in mice 
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subjected to unilateral ureteral obstruction (UUO) which is a model of kidney fibrosis23. KLF4 inhibited EMT 
in renal epithelial cells23, hepatocellular carcinoma cells24, and mouse lung epithelial LA-4 cells25. However, the 
expression and function of KLF4 in pulmonary fibrosis and EMT of human lung alveolar epithelial cells (AECs) 
remains unclear. Thus, we hypothesized that epithelial KLF4 may modulate EMT and lung fibrosis.

In this study, we demonstrated that the expression of KLF4 was decreased in lung tissues of human IPF and 
mouse models of bleomycin-induced pulmonary fibrosis. Overexpressing of KLF4 inhibited bleomycin-induced 
pulmonary fibrosis and EMT in vivo and attenuate TGF-β1-induced EMT in AECs in vitro. These results provide 
novel evidence that KLF4 represents a potential therapeutic target in IPF.

Some of the results of this study have been previously reported in the form of an abstract26.

Results
The Expression of KLF4 Was Decreased in Fibrotic Tissues of IPF Patients and mouse models 
of Bleomycin-induced pulmonary fibrosis.  To determine KLF4 expression in IPF, lung tissue sections 
from 5 IPF patients and 5 lung cancer adjacent normal tissues were acquired to undergo immunohistochemistry 
staining. IPF biopsy samples exhibited typical hallmarks of IPF with temporal and spatial heterogeneity and the 
presence of fibrotic foci (Fig. 1A,b). In normal lung tissues, KLF4 was mainly expressed in the nucleus and cyto-
plasm in alveoli epithelial cells, endothelial cells and epithelium of bronchiole (Fig. 1Aa,c,e). In contrast, in lung 
biopsies from IPF patients, expression of KLF4 was significantly decreased, especially in the more severe fibrotic 
tissue. Only sporadic expressions of KLF4 in nucleus or cytoplasm of epithelium of bronchiole and endothelial 
cells of vessel (Fig. 1A,d,f) were observed. The percentage and intensity of KLF4 expression in IPF lung tissue was 
prominently decreased (Fig. 1C).

To further investigate the expression of KLF4 in pulmonary fibrosis (Fig. 1B,D), FVB mice were subjected 
to bleomycin-induced pulmonary fibrosis model (Fig. 2C,D). Consistent with the results in human lung tis-
sues, the expression of KLF4 was mainly in nucleus and sporadically in cytoplasm in mouse lung tissues as 
well. It was mainly expressed in the epithelium of bronchus, alveoli epithelium, and endothelium (Fig. 1B). In 
bleomycin-induced pulmonary fibrosis, the expression of KLF4 was decreased, especially in the fibrotic area 
(Fig. 1B,b,d and f). KLF4 expression area and intensity was quantified by immunoreactive system (IRS) (Fig. 1D) 
and it showed that expression of KLF4 was decreased in bleomycin-induced pulmonary fibrosis, compared with 
controls. Moreover, qRT-PCR and western blotting were performed and confirmed that expression of KLF4 was 
down-regulated in bleomycin-induced pulmonary fibrosis tissues at both mRNA and protein levels (Fig. 1E,F).

Overexpression of KLF4 Attenuated Lung Fibrosis in Bleomycin-induced Pulmonary Fibrosis 
Model.  To investigate the effect of KLF4 on pulmonary fibrosis in vivo, transgenic mice with overexpression 
of KLF4 were constructed. The expression of KLF4 at mRNA and protein levels was observed to be significantly 
up-regulated (Fig. 2A,B). The transgenic mice was administrated with intratracheal instillation of bleomycin in 
both KLF4-overexpressing mice and wild-type group. Severe lung fibrosis was present in bleomycin-administered 
wild-type mice (Fig. 2C). The severity of lung fibrosis and collagen fiber accumulation were decreased in 
KLF4-overexpressing transgenic mice as shown by H&E, Masson staining, the Aschoff score and hydroxypro-
line analysis (Fig. 2C–F). Additionally, the expression of E-cadherin was down-regulated and fibronectin was 
up-regulated in bleomycin-induced pulmonary fibrosis model, compared with the saline group (Fig. 2G). In 
KLF4-overexpressing group, the down-regulation of E-cadherin was attenuated and up-regulation of fibronection 
was inhibited, compared with wild-type group. These results suggested that EMT may be inhibited in the overex-
pressing KLF4 transgenic mice (Fig. 2G).

Overexpression of KLF4 Attenuated EMT in Bleomycin-induced Pulmonary Fibrosis.  To assess 
the presence and extent of EMT in bleomycin induced pulmonary fibrosis model, expression levels of E-cadherin 
and fibronectin were analyzed in sections of lung tissues from mice administrated with saline or bleomycin in 
wild-type group and KLF4-overexpressing transgenic group with double-label immunofluorescent staining 
method. Double stained cells were detected in the fibrotic areas (Fig. 3A). Very few double positive cells were 
observed in saline group (Fig. 3A). It is estimated that approximately 10% of cells undergoing EMT, character-
ized by positive staining of both epithelial and mesenchymal phenotype markers colocalized in the lungs from 
bleomycin-induced pulmonary fibrosis model. Overexpression of KLF4 significantly decreased the percentage of 
cells undergoing EMT in pulmonary fibrosis model (Fig. 3A,B). The proportion of cells undergoing EMT in lungs 
of bleomycin-induced pulmonary fibrosis model with overexpression of KLF4 was about 3.8%. Moreover, dual 
staining positive cells for E-cadherin and α-smooth muscle actin (α-SMA) were observed in bleomycin-induced 
pulmonary fibrosis (Fig. 3C), indicating that there were cells transited from an epithelial to myofibroblast phe-
notype in this model.

Overexpression of KLF4 Attenuated TGF-β1-induced EMT in Alveolar Epithelial Cells.  To 
further confirm the role of KLF4 in EMT of alveolar epithelial cells, we examined the effect of KLF4 on 
TGF-β1-induced EMT in AECs and A549 cells (Supplemental Figures).

Firstly, we examined the expression of KLF4 in AECs and lung tissue samples from normal FVB mice by 
RT-PCR and immunohistochemistry staining. As shown in Fig. 4A, KLF4 was expressed mainly in the nucleus 
but also in the cytoplasm of AECs, epithelium of bronchiole and epithelium of alveoli of normal mouse lung 
tissues.

Secondly, to explore the effect of KLF4 on TGF-β1-induced EMT in AECs, we used a tetracycline-regulated 
adenovirus to overexpress KLF4 (AdKLF4). As shown in Fig. 4B, overexpression of KLF4 was observed in AECs 
upon infection of AdKLF4 and Ad tetracycline transactivator (AdtTA).
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Thirdly, to examine whether induced expression of KLF4 could affect EMT, AECs were infected with AdKLF4 
and AdtTA for 24 h and then stimulated with TGF-β1 for 48 h. TGF-β1 was chosen because of its widely accepted 
pro-fibrotic and EMT function in lung epithelial cells. TGF-β1-induced morphological change in AECs was 
shown in Fig. 4C by staining of F-actin. Western blotting and immunohistochemistry showed that overexpression 
of KLF4 markedly attenuated TGF-β1-induced downregulation of E-cadherin and upregulation of fibronectin 
(Fig. 4E,F). Besides, KLF4 inhibited the morphological change induced by TGF-β1 as shown in Fig. 4D by images 
taken under phase contrast light microscopy. During TGF-β1-induced EMT, overexpression of KLF4 preserved 
the cobble-like epithelial shape and reduced the spindle-shaped mesenchymal cell appearance of AECs.

Figure 1.  KLF4 expression was downregulated in human IPF lung tissues and mouse models of bleomycin-
induced pulmonary fibrosis. Representative microphotographs of immunohistochemistry staining of KLF4 
in cancer adjacent normal lung tissue (A, left column) and fibrotic tissues (A, right column) of IPF patients, 
and mouse models of bleomycin-induced pulmonary fibrosis (B, right column) or control saline group (B, 
left column). KLF4 expression level in sections of IPF patients or control group (C), and bleomycin-induced 
fibrosis model or control group (D) were shown by immunoreactive system (IRS) and analyzed.Scale bar was as 
indicated in the figure. qPCR and western blotting were performed to evaluate the expression of KLF4 in mouse 
lung tissues of bleomycin-induced pulmonary fibrosis and control group (E,F). The values were expressed as 
mean ± SD. N = 4 for each group. ***P < 0.001 by t-test.
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Figure 2.  Overexpression of KLF4 inhibited bleomycin-induced pulmonary fibrosis in vivo. Overexpression of 
KLF4 in the transgenic mice were confirmed with PCR (A) and western-blotting (B). Mice were intratracheally 
intubated and injected with bleomycin to induce pulmonary fibrosis Saline was used as a control, in 
overexpression of KLF4 mice group and wild-type group. H&E staining (C) and Masson staining (D) were 
used to detect collagen depositions. Ashcroft scores showed the degree of fibrosis (E). The lung tissues of mice 
were harvested and assayed for hydroxyproline analysis (F). The expression of E-cadherin and fibronectin was 
evaluated by western blotting (G) in KLF4 overexpressing group and wild-type group. Representative images 
were from five mice per group. Scale bar = 200 μm. The values were expressed as mean ± SD from N = 5 in each 
group. *P < 0.05 and **P < 0.01 by t-test.



www.nature.com/scientificreports/

5SCiENTiFiC Reports | 7: 15847  | DOI:10.1038/s41598-017-14602-7

To demonstrate EMT-associated cytoskeletal rearrangement, F-actin staining by phalloidin was performed. 
After stimulation of TGF-β1, reorganization of cortical filaments occurred. AECs acquired a more fibroblast-like 
morphology together with formation of elongated F-actin stress fibers. Overexpression of KLF4 preserved the 
cortical actin architectures in cells stimulated with TGF-β1 and reduced the incidence of elongated stress fiber 
formation (Fig. 4G).

RNA Interference of KLF4 Enhanced TGF-β1-induced EMT in Alveolar Epithelial Cells.  To exam-
ine whether endogenous KLF4 plays a role for EMT in alveolar epithelial cell, we transfected AECs with KLF4 
siRNAs or control siRNA. KLF4 siRNA was shown to efficiently decrease KLF4 mRNA level (Fig. 5A).

To elucidate the effect of KLF4 on TGF-β1-induced EMT in alveolar epithelial cells, AECs were transfected 
with KLF4 siRNAs or control siRNA for 48 h and stimulated with TGF-β1. Knockdown of KLF4 potentiated 
TGF-β1-induced EMT as shown by downregulation of E-cadherin and upregulation of fibronectin, compared to 
control siRNA (Fig. 5C,D). Moreover, knockdown of KLF4 also decreased endogenous expression of E-cadherin 
and slightly enhanced expression of fibronectin.

Furthermore, knockdown of KLF4 promoted the morphological change induced by TGF-β1 as shown in 
Fig. 5B by images taken under phase contrast light microscopy and Fig. 5E by F-actin staining. Knockdown of 

Figure 3.  Overexpression of KLF4 attenuated EMT in bleomycin-induced lung fibrosis in vivo. Mice were 
intratracheally intubated and given bleomycin or saline as control to induce pulmonary fibrosis overexpression 
in KLF4 transgenic mice group and wild-type group. Double-labelled immunofluorescent staining were 
performed to examine the expression of E-cadherin (green) and fibronectin (red) as indicated by the white 
arrow. Scale bar = 50μm and 25μm as indicated in the figure (A). The percentage of double-label positive cells 
was calculated in each group (B). Double-labelled immunofluorescent staining was detected E-cadherin (green) 
and α-SMA (red). Scale bar = 25 μm (C). Representative image of three independent experiments were shown. 
The values were expressed as mean ± SD from five samples in each group were shown. **P < 0.01 by t-test.
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Figure 4.  Overexpression of KLF4 attenuated TGF-β1-induced EMT of alveolar epithelial cells. (A) KLF4 
mRNA level expression in AECs(a) and lung tissues from mice(b) was assessed with PCR. Immunocytochemistry 
was performed using a primary antibody against KLF4 to show the expression of KLF4 in AECs(c) and lung 
tissue of mice(d). Scale bar = 50 μm for (A). (B) AECs were co-infected with AdKLF4 and AdtTA (20 MOI) 
and maintained in the medium with or without tetracycline (Tc; 0.1 μg/mL). Nuclear protein lysates were 
immunoblotted with antibodies against KLF4 or Histone as an internal control. (C) F-actin staining was 
performed to show the morphological changes in AECs upon TGF-β1 stimulation. (D) AECs were co-infected 
with AdKLF4 and AdtTA in the medium with or without tetracycline and then treated with or without TGF-β1 
(5 ng/mL) for 48 hours.The TGF-β1-stimulated morphological change in AECs with or without overexpression 
of KLF4 was observed under phase contrast light microscopy. (E) Total proteins were immunoblotted 
with antibodies against E-cadherin and fibronectin. β-actin was used as a loading control. Data shown are 
representative of three independent experiments. (F) Immunochemistry staining of E-cadherin and fibronectin 
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KLF4 promoted the morphological change as shown by more elongated spindle-like mesenchymal cells upon the 
stimulation of TGF-β1 (Fig. 5B,E). Meanwhile, knockdown of KLF4 enhanced the incidence of elongated stress 
fiber formation upon TGF-β1 stimulation (Fig. 5E).

KLF4 Inhibited TGF-β1-induced Phosphorylation of Smad2/3 and Dvl Signaling in AECs.  To 
elucidate the signaling pathway through which KLF4 modulates TGF-β1-induced EMT, AECs were co-infected 
with AdKLF4 and AdtTA in the medium with or without tetracycline and then stimulated with TGF-β1 for the 
indicated times. Overexpression of KLF4 inhibited TGF-β1-induced phosphorylation of Smad2/3 in canonical 
TGF-β/Smad pathway (Fig. 6A) and decreased expression of Dvl2 in Wnt/β-catenin signaling pathway (Fig. 6C). 
On the contrary, knockdown of KLF4 potentiated TGF-β1-induced phosphorylation of Smad2/3 (Fig. 6B) and 
increased expression of Dvl2 (Fig. 6D). These results demonstrate that endogenous KLF4 play an important role 
in TGF-β1-induced EMT, probably by modulating the Smad and Wnt pathway.

Discussion
In this study, we describe the novel finding that the expression of KLF4 was decreased in human IPF lung tis-
sues and mouse models of bleomycin-induced pulmonary fibrosis, when compared to the corresponding con-
trols. Our results showed that KLF4 attenuated bleomycin-induced pulmonary fibrosis and EMT in vivo and 
TGF-β1-induced EMT in AECs in vitro.

KLF4 is a zinc-finger transcription factor that plays an important role in cellular differentiation and prolifera-
tion during normal development and in various diseases. The expression of KLF4 is enriched in colon and moder-
ate in distal small intestine, testis and lung tissues in adult mice at mRNA level27. As to lung, KLF4 is discovered to 
be the most significantly altered lung gene at birth and protein product was expressed in fibroblast and airway epi-
thelial cells of perinatal lung tissues of mice28. KLF4 is also expressed in pulmonary arterial and venous endothe-
lial cells in mice at mRNA level and protein level29. Pathophysiologically, lung KLF4 expression was reduced in 
PAH22, and lung cancer21. Here, our results show that the expression of KLF4 in surgical lung biopsy samples in 
normal controls and was decreased in IPF lung tissues. The expression of KLF4 was also observed in normal FVB 
mouse lung tissue and showed decreased level in bleomycin-induced pulmonary fibrosis model. Recently, Chen 
et al. showed that KLF4 was decreased in animal models of renal fibrosis23,30. Our data showed the first evidence 
that KLF4 is decreased in lungs of IPF patients and bleomcyin-induced pulmonary fibrosis.

The function of KLF4 in pulmonary fibrosis has not been previously described. Here, we report, for the first 
time, that KLF4 inhibited bleomycin-induced pulmonary fibrosis in vivo. Cowan et al. found that KLF4 depletion 
augmented lipopolysaccharide-induced lung injury and pulmonary edema in vivo, and concluded that KLF4 
was important for VE-cadherin-mediated endothelial barrier function31. Shatat et al. found that knockdown of 
KLF4 exacerbated pulmonary hypertension in response to chronic hypoxia in mice22. These results indicated the 
importance of KLF4 in pulmonary function. Our data from transgenic mice with overexpression of KLF4 provide 
evidence to support KLF4 as a promising anti-fibrotic transcriptional factor.

EMT has been found to be involved in pathogenesis of fibrosis in many organs including lung. Here in 
our study, we demonstrated the presence of co-expression of epithelial marker and mesenchymal marker in 
bleomycin-induced pulmonary fibrosis shown by co-localization of E-cadherin and fibronectin, which suggests 
the existence of EMT. Moreover, results from semi-quantitative analysis of dual staining positive cells showed 
that overexpression of KLF4 inhibited the proportion of cells undergoing EMT in bleomycin-induced pulmonary 
fibrosis in vivo. Results from reporter-mice demonstrated that approximately one third of fibroblasts in lung fibro-
sis originated from epithelium12. Wu et al. confirmed airway EMT in BLM-induced peribronchial fibrosis mice32. 
However, Rock et al. concluded that no evidence of myofibroblasts were derived from Type II AEC33. There are 
some reasons that may lead to this inconsistent conclusion from different studies. Firstly, it should be kept in 
mind that EMT is a transient and dynamic state so it is really hard to capture the whole changing process in vivo 
by currently available methods. Secondly, as far as methods to elucidate EMT are concerned, co-localization 
by immune staining for EMT markers or the utilization of reporter mouse model, in different type of animal 
pulmonary fibrosis models or in human samples. Our data suggest that EMT does exist in bleomycin-induced 
pulmonary fibrosis. Moreover, KLF4 inhibited EMT in pulmonary fibrosis model in vivo.

As to the complexity and discrepancies of EMT in vivo, the results of studies about EMT in vitro are relatively 
definite and consistent. EMT is a process characterized by loss of epithelial markers such as E-cadherin, acqui-
sition of mesenchymal markers such as α-SMA and fibronectin, change of morphology and reorganization of 
cytoskeleton. In pulmonary fibrosis, EMT is initiated by various types of pro-fibrotic stimuli to epithelium which 
lead to abnormal injury-repair. Our in vitro findings found that TGF-β1-induced EMT in AECs with the typical 
change of cellular morphology, phenotype marker transition, cytoskeleton rearrangements, and cell signaling 
pathway change, which were in consistence with results of other researchers. Overexpression of KLF4 attenuated 
EMT while knockdown of KLF4 promoted EMT with matched opposite tendency in both EMT-related pheno-
type and signaling pathways. Our data defined the function of KLF4 in EMT in human alveolar epithelial cells 
for the first time by overexpression and knockdown of KLF4. Moreover, KLF4 could maintain the expression of 
E-cadherin in AECs, which strengthens the important function of KLF4 in maintaining the epithelial phenotype.

One limitation of our study is that reason why KLF4 was down-regulated in pulmonary fibrosis still needs to 
be further investigated.

in TGF-β1-induced EMT in AECs with and without overexpression of KLF4. (G) Cells were fixe F-actin 
staining (Green) was shown. Nuclei were counterstained with DAPI (Blue). ((A) Scale bar = 50 μm. (B) Scale 
bar = 20 μm). Data shown are representative of three independent experiments.
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Figure 5.  Knockdown of KLF4 promoted TGF-β1-induced EMT in alveolar epithelial cells. AECs were 
transfected with KLF4 siRNAs or control siRNA (100 nM) for 48 h. KLF4 expression level was assessed with 
qRT-PCR (A). AECs transfected with siRNA or control siRNA were stimulated with TGF-β1 for 48 hours. The 
TGF-β1 induced morphological changes were shown (B). Total proteins were immunoblotted with antibodies 
against E-cadherin and fibronectin. β-actin was used as loading control (C). Immunocytochemistry staining of 
E-cadherin and fibronectin in KLF4 knock down and control AECs (D). (E) RNA interference of KLF4 F-actin 
staining (Green) was shown. Nuclei were counterstained with DAPI. ((A) Scale bar = 50 μm. (B). Scale bar = 20 
μm). Data shown are representative of three independent experiments.
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In conclusion, the present study demonstrates that the transcription factor KLF4 attenuates bleomycin-induced 
lung fibrosis and EMT in vivo and TGF-β1-induced EMT in vitro. Epithelial KLF4 is a promising potential target 
for further understanding the mechanism and developing novel strategy for the treatment of lung fibrosis in IPF 
and other EMT-related disease.

Materials and Methods
Patients.  Five patients with IPF were included in this study and 5 cancer adjacent normal lung tissues were 
included as control. IPF diagnoses was dignosed by pulmonologists according to American Thoracic Society 
guideline1. These IPF patients had no history of cancer or other lung disease. The specimen sections were 
obtained from the Department of Pathology of Peking University First Hospital in Beijing, China. The study pro-
tocol was approved by the Ethics Committee of Peking University First Hospital and informed written consents 
were obtained from all participants involved in this study. All experiments were performed in accordance with 
relevant guidelines and regulations.

Figure 6.  KLF4 inhibited TGF-β1-induced phosphorylation of Smad2/3 and Dvl. AECs were co-infected 
with AdKLF4 and AdtTA in the medium with or without tetracycline and then stimulated with or without 
TGF-β1 (5 ng/mL) for the indicated time (A,E). AECs were transfected with KLF4 siRNAs or control siRNA 
(100 nM) and then were stimulated with TGF-β1 (5 ng/mL) for indicated time (B,F). Total protein lysate 
was immunoblotted with antibodies against Smad2/3, their phosphorylated forms, DVL-2 and β-actin. 
Densitometry analysis of figure A and B was performed with imageJ (C,D). Similar results were obtained in 
three independent experiments.
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Construction of Overexpression of KLF4 Mice.  Mice with overexpression of KLF4 were constructed 
by injection of plasmid DNA of KLF4 into zygote of FVB mouse following standard pronuclear injection by 
Cyagen Biosciences (CA, USA). Positive founders were identified by PCR. Genotyping was done by PCR on 
toe DNA using the following primers: KLF4 (forward) 5′-CCGATGAACTGACCAGGCACTA, and (reverse) 
5′-AGCGAGGAAGCGGAAGAGC. Wild-type littermates were used as controls. No difference in weight or sur-
vival rate was observed between overexpression group and wild type group. Mice were housed in a temperature- 
and humidity-controlled specific pathogen free facility, with standard chow and water ad libitum. Mouse were 
maintained on a 12 h light/12 h dark schedule at 22–25 °C with 45–65% humidity. All animal care and experimen-
tal procedures conformed to the Guide for the Care and Use of Laboratory Animals (NIH Publication no. 85-23, 
revised 1996) and were approved by the Animal Research Committee of Peking University First Hospital. All 
experiments were performed in accordance with relevant guidelines and regulations

Bleomycin-induced Fibrosis Model.  Male FVB mice with an average weight of approximately 25~30 g 
and aged from 8~11 weeks were intratracheally instilled with saline or 5 mg/kg of bleomycin on day 0 and 8. Mice 
were killed on day 21. Experiments were carried out using 5–7 mice per group. The lung tissues were collected for 
further analyses. Lungs were fixed in formalin and embedded in paraffin, sectioned and stained with hematoxylin 
and eosin (H&E) and Masson staining, or immunohistochemistry with antibodies against markers for EMT. 
Fibrosis was quantified using the whole lung by the Ashcroft scoring system. For immunofluorescent staining, 
lung tissues were embedded in Tissue-Tek OCT compound and snap frozen in liquid nitrogen. All experiments 
were performed in accordance with relevant guidelines and regulations.

Cell Culture.  Human primary alveolar epithelial cells (AECs) (Cell Biologics Inc, USA), were grown 
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 0.1% 
Insulin-Transferrin-Selenium (ITS), 0.1% epithelial growth factor (EGF), 0.1% Hydrocortisone, 1% L-Glutamine, 
2% Epithelial Cell Supplement and 1% Antibiotic-Antimycotic Solution at 37 °C in a humidified 5% CO2 
atmosphere.

Adenoviral Vectors and Infections.  KLF4 adenovirus was constructed as previously described34,35. The 
expression of the inserted KLF4 was driven by a 7X tet operon/minimal cytomegalovirus promoter, that was fur-
ther under the control of tetracycline-controlled transactivator (tTA). The adenoviruses were purified by cesium 
chloride methods. For adenovirus-mediated gene transfer, confluent AECs were exposed to adenoviral vectors 
with Ad-tTA to induce tetracycline controllable expression. Infected cells were incubated for the indicated time 
with or without tetracycline.

Small-interfering RNA (siRNA)-mediated Gene Knockdown.  The siRNA targeting human KLF4 
mRNA (NM_004235) was synthesized with the sense sequence 5′-AGACGCUUCCAAGUUAUAU-3′. SiRNA for 
KLF4 and scrambled siRNA were purchased from Invitrogen (Carlsbad, CA). The double-strand RNAs (100 nM) 
were transfected into A549 cells with lipofectamine 2000 (Invitrogen). The control siRNA was used at the same 
dose.

Western Blotting.  Total proteins were extracted from AECs or mouse lung tissues with lysis buffer (50 mM 
Tris-HCL, pH 7.5, 15 mM EGTA, 100 mM NaCl, 0.1% Triton X-100 supplemented with protease inhibitor cock-
tail) and resolved on SDS-PAGE for electrophoresis. Nuclear proteins were prepared with the use of a high-salt 
buffer (20 mM Tris-HCL, pH 7.5, 15 mM MgCl2, 420 mM NaCl, 10% glycerol, 0.2 mM EGTA, supplemented with 
protease inhibitor cocktail). Immnunoblotting was performed with appropriate primary antibodies and a horse-
radish peroxidase (HRP)-conjugated secondary antibody followed by ECL detection (Amersham Biosciences, 
Fairfield, CT, USA).

Quantitative Reverse Transcription-polymerasechain Reaction (qRT-PCR).  Total RNA was 
extracted from AECs or mouse lung tissues with Trizol reagent (Invitrogen, Grand Island, NY, USA). Two μg of 
total RNA was converted into cDNA with the use of reverse transcriptase and oligo (dT) (Promega, Madison, MI, 
USA) as a primer. Real-time quantitative PCR was performed using the iQ™ SYBR Green PCR Supermix in the 
DNA Engine Opticon realtime system (Bio-Rad Laboratories, Inc., Hercules, CA, USA) with GAPDH used as an 
internal control. The primer sequences are as follows: KLF4, 5′-AGGGGGTGACTGGAAGTTGT-3′ (forward), 
5′-TTGCACATCTGAAACCACAG-3′ (reverse); GAPDH, 5′-ACCACAGTCCATGCCATCAC-3′ (forward), 
5′-TCCACCACCCTGTTGCTGTA-3′ (reverse).

Immunohistochemistry and Immunofluorescence.  Lung tissues were fixed with 4% paraformalde-
hyde and embedded with paraffin. Cells were cultured on cover slips and subjected to staining. Sections were 
incubated with the appropriate primary antibodies at 37 °C for 1 h and 4 °C overnight. The secondary antibody 
was incubated for 1 h at 37 °C. Sections were viewed with light microscopy. Negative controls were performed by 
omitting the primary antibody.

As to phalloidin staining, F-actin was stained with FITC-conjugated phalloidin at a 1:1000 dilution in 2% 
BSA for at least 30 min. Hoechst was used to counterstain the nuclei. Images were acquired with confocal laser 
scanning microscope.

As to statistical analysis of double-staining positive cells, the confocal photos were taken under SP8 confocal 
microscopy (Germany) randomly and at least 5 visual fields were included in each section for further calculation. 
The number of cells and double-staining positive cells were manually counted and statistically analyzed.
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To analyze KLF4 expression in sections after immunohistochemistry, immunoreactive system (IRS) was used 
to quantify the positively stained areas and intensity.

Hydroxyproline Analysis.  Total lung collagen levels were determined using Hydroxyproline Analysis 
Kit (Jiancheng, Nanjing, China). Briefly, a sample of lung tissue (30 mg) was mixed with 1 ml of hydrolysate 
and boiled for 20 min. One drop of indicator was added and pH was adjusted to 6.0–6.8. To a 3 ml sample of 
the digested pulmonary dilution, active carbon (about 30 mg) was added to make the supernatant clean and 
clear. After centrifugation, the supernatant was collected to test OD value at 550 nm by a spectrophotometer. 
Hydroxyproline concentrations were calculated from a standard curve of hydroxyproline.

Materials
Bleomycin, recombinant human TGF-β1, and phalloidin were from Invitrogen (Carlsbad, CA, USA). Antibodies 
against E-cadherin, α-SMA, fibronectin, KLF4 and β-actin were from Santa-Cruz Biotechnology (Santa Cruz, 
CA, USA). Antibodies against Dvl-2 were from Cell Signaling Technology (Danvers, MA, USA). Antibodies 
against phosphorylated Smad2/3 were from Bioworld Technology (MN, USA). Antibodies against Smad2/3 were 
from Abcam (MA, USA, Beijing Biolink Biotehnology Co, Ltd).

Statistical Analysis.  Data are expressed as mean ± SEM. Multi-group comparisons were analyzed using 
Student’s t-test or one-way ANOVA. P < 0.05 was considered statistically significant. Non-quantitative results 
were representative of at least three independent experiments.
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