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Abbreviations
ΔF∕F	� Relative fluorescence change
OSN	� Olfactory sensory neuron
PCA	� Principle component analysis
PID	� Photoionization detector

Introduction

Neural networks increase their coding capacity using com-
binatorial logic, rather than coding information in single 
neurons (the “grandmother cells”), information resides 
in activity patterns across many neurons. Olfactory cod-
ing is a powerful example for such an approach, humans 
have approximately 350 sensory neuron classes (OSN), but 
can smell thousands of substances, fruit flies with approxi-
mately 50 OSN classes (Couto et al. 2005; Benton et al. 
2009; Grabe et al. 2015) are similarly powerful. At very low 
concentrations, a substance might only activate a single class 
of OSNs: in this range, with 50 receptors, the capacity of the 
system is 50 odors. However, as concentration increases, 
more than one OSN class is activated, and the capacity of 
the system increases exponentially. The Drosophila olfac-
tory sensory system has been analyzed to a great extent, 
with good examples for information carried by single OSN 
classes (Kwon et al. 2007; Stensmyr et al. 2012; Dweck et al. 
2015), and extensive analyses of combinatorial coding pat-
terns (Hallem and Carlson 2006; Galizia et al. 2010; Camp-
bell et al. 2013; Münch and Galizia 2016).

With a binary code, 50 OSN classes would allow for 250 
patterns, i.e., 1015 patterns (Galizia 2014). However, since 
the activation pattern also changes with odorant concentra-
tion, one odor needs more than one pattern, thus reduc-
ing the capacity of the system. On the other hand, OSN 
responses are not binary (on/off), but continuous (weak 
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responses, strong responses), leading to an increase in 
the information capacity (de Bruyne et al. 2001; Hallem 
and Carlson 2006). Indeed, single OSNs can encode more 
than one odorant, probably exploiting the time course 
of an odorant response (DasGupta and Waddell 2008). 
Many more factors add complexity here, OSNs may be in 
an adapted state when hit by an odor plume (de Bruyne 
et al. 1999), and odor plumes may be temporally complex 
(Murlis et al. 2000; Szyszka et al. 2014). Furthermore, the 
chemical space of odors to be coded is not limited to the 
many chemical substances, since odors are generally not 
single chemical substances. Rather, odors are generally 
mixtures of substances, with varying ratios of their key 
components in an ecological setting (Jordán et al. 2001; 
Locatelli et al. 2016).

For this reason, we have sought to analyze the combi-
natorial odorant response code in a systematic way, using 
Drosophila melanogaster as a model system. We have meas-
ured the responses to 99 odorants in eight different classes 
of olfactory sensory neurons, both in a non-adapted and an 
olfactory-adapted state. Furthermore, we have systematically 
studied the responses to odorant mixtures. We found that 
responses show complex but reproducible temporal trajecto-
ries, which greatly add to the coding capacity of the system. 
We hypothesize that animals may respond fast to the initial 
activity pattern evoked by an olfactory stimulus, but then 
may have the capacity to fine-tune their sensory analysis. 
Such a two-step odorant evaluation behavior needs to be 
tested experimentally.

Materials and methods

Animals

All recordings were performed on female Drosophila 
melanogaster expressing the calcium reporter GCaMP 1.3 
(Nakai et al. 2001) or GCaMP 3 (Tian et al. 2009) under 
the control of the GAL4-UAS expression system. UAS-
GCaMP 1.3 flies were provided by Jing Wang, University 
of California, San Diego, La Jolla, CA; UAS-GCaMP 3.0 
flies were provided by Loren L. Looger, Howard Hughes 
Medical Institute, Janelia Farm Research Campus, Ashburn, 
Virginia. Stable GAL4-UAS fly lines were of the follow-
ing genotypes: P[UAS:GCaMP1.3]; P[GAL4:X] (X being 
one of Or10a, Or13a, Or22a, Or42b, Or47a, Or47b, Or67b, 
Or69a or Or92a), and P[Or56a:GAL4]; P[UAS:GCaMP3]
attP40. Flies were kept at 25 ◦C in a 12/12 light/dark cycle 
at 60–70% RH. Animals were reared on standard medium 
(100 mL contain: 2.2 g yeast, 11.8 g of sugar beet syrup, 
0.9 g of agar, 5.5 g of cornmeal, 1 g of coarse cornmeal and 
0.5 mL of propionic acid).

Odorants

Odorants were purchased from Sigma-Aldrich in the highest 
purity available. Pure substances were covered with Argon 
to avoid oxidation. Odorants were prepared as dilutions 
(ranging from 10−2 to 10−6) in 5 mL mineral oil (Sigma-
Aldrich, Steinheim, Germany). Odorants were prepared as 
5 mL diluted substances in 20 mL head space vials covered 
with pure nitrogen to avoid oxidation (Sauerstoffwerk Frie-
drichshafen GmbH, Friedrichshafen, Germany) and imme-
diately sealed with a Teflon-coated septum (Axel Semrau, 
Germany). Single odorants were applied at 10−2 dilution, 
mixture components at 10−3. Concentration series were 
recorded at dilutions ranging from 10−2 to 10−6. A complete 
list of odorants is given in Table S1.

Calcium imaging

Calcium imaging was performed on either of two setups 
which consisted of a fluorescence microscope (BX50WI or 
BX51WI, Olympus, Tokyo, Japan) equipped with a 50× air 
lens without cover slip correction (Olympus LM Plan FI 
50×∕0.5). Images were recorded with a CCD camera (Sen-
siCam, PCO, Kelheim, Germany) with 8 × 8 pixel on-chip 
binning, which resulted in 80 × 60 pixel-sized images. We 
recorded each stimulus for 20 s at a rate of 4 Hz using TILL-
visION (TILL Photonics, Gräfelfing, Germany). A mono-
chromator (Polychrome II or Polychrome V, TILL Photonics, 
Gräfelfing, Germany) produced excitation light of 470 nm 
wavelength which was directed onto the antenna via a 500 
nm low-pass filter and a 495 nm dichroic mirror, emission 
light was filtered through a 505 nm high-pass emission filter. 
We recorded between 7 and 98 odorant responses per animal 
(median = 35).

Stimulus application

A computer-controlled gas chromatography autosampler 
(PAL, CTC Switzerland) was modified and used for auto-
matic odorant application. A head space of 2 mL from the 
20 mL vials was injected into a continuous flow (60 mL 
min−1) of purified air in two 1 mL portions spaced by 2.75 s 
with an injection speed of 1 mL s−1. This procedure fur-
ther diluted the stimulus 1:2. Stimuli arrived at the antenna 
with setup-specific delays, therefore, the first stimulus 
onset was defined at t = 0. The stimulus was directed at 
the antenna of the animal via a Teflon tube (inner diam-
eter 1 mm, length 39.5 cm, with the exit positioned ∼2 mm 
from the antenna). Stimulus properties were measured with 
a photoionization detector (miniPID, model 200A, Aurora 
Scientific, Ireland). Blocks of four to eight odorants were 
presented (ISI >2 min) interspaced by solvent control, room 
air control and an OSN-specific reference odorant. The 
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reference odorants were Or10a: butyl acetate (InChIKey: 
DKPFZGUDAPQIHT-UHFFFAOYSA-N), Or13a: 3- 
octanol (NMRPBPVERJPACX-UHFFFAOYSA-N) Or22a: 
ethyl propionate (FKRCODPIKNYEAC-UHFFFAOYSA-
N), Or42b: ethyl propionate (FKRCODPIKNYEAC-
UHFFFAOYSA-N), Or47a: hexyl acetate (AOGQPLX-
WSUTHQB-UHFFFAOYSA-N), Or47b: (S)-(+)-carvone 
(ULDHMXUKGWMISQ-VIFPVBQESA-N), Or56a: 2-hex-
anol (QNVRIHYSUZMSGM-UHFFFAOYSA-N), Or67b: 
1-hexanol(ZSIAUFGUXNUGDI-UHFFFAOYSA-N), 
Or69a: isopentanoic acid (GWYFCOCPABKNJV-UHFF-
FAOYSA-N), Or92a: 2,3-butanedione (QSJXEFYPDAN-
LFS-UHFFFAOYSA-N). After each injection, the auto 
sampler syringe was flushed with purified air for 30 s. After 
each block of stimuli, the syringe was washed with hexane 
or pentane (Merck, Darmstadt, Germany), heated up to 48 
◦C, and flushed with continuous clean air stream for ∼6 min.

Mixture application

Mixture application was performed as above but using two 
computer-controlled autosamplers (Twin-PAL, CTC Swit-
zerland). Injections were essentially performed as described 
above but the two components of each mixture were injected 
simultaneously. The two autosamplers injected into two sep-
arate arms of a y-shaped Teflon tube (inner diameter 2 mm, 
length 47.5 mm) with an injection speed of 1 mL s−1. The 
combined air stream was directed onto the antenna of the fly 
via the outlet of the y-tube. Using two modified autosam-
plers, it was possible to perform mixture experiments with-
out pre-mixed chemicals, excluding molecular interactions 
of ligands in solution and possible influence on individual 
headspace concentrations. Both components were injected 
at the same time, creating an “on the fly” mixture within 
the stimulus tube. Blocks of five stimuli were presented 
interspaced by controls as described above. Odorants to be 
mixed were selected on the basis of their temporal response 
profiles, to analyze a range of different combinations. Odor 
vials were labeled with barcodes containing odor and con-
centration information. Barcodes were scanned and recorded 
by the autosampler system after each stimulation.

Data analysis

We analyzed calcium imaging data using custom writ-
ten routines in IDL (ITT VIS, USA) and Gnu-R (R Core 
Team 2017). Recorded movies were manually corrected 
for lateral movement artifacts. Then, an area of interest 
was defined for the parts of the antenna that showed fluo-
rescence increase upon stimulation. Time traces were aver-
aged across this area. We included all measurements into 
the analysis as long as animals showed stable responses 
to the reference odorant. Relative percentage fluorescence 

change was calculated as ΔF∕F = ((Fi − F
0
)∕F

0
) × 100 

with Fi being the fluorescence at framei and F
0
 being the 

mean fluorescence of 5 s before stimulus onset. To correct 
for the photo bleaching of the dye, we fitted an exponen-
tial decay function of the form A × exp−x∕B + C to each 
response trace using the nls() function in R. Because 
some odorant responses would not reach baseline within 
measurement time, the decay rate parameter B was esti-
mated from the median mineral oil control trace within 
each animal. We omitted 750 ms at the beginning of the 
time-trace and 11 s during the response. The pre-stimulus 
part of the recording was weighted 100 fold (Galizia and 
Vetter 2004). We corrected for calcium signal decrease 
across measurements, likely due to GCaMP bleaching, 
using a linear regression across reference odorant meas-
urements within each individual animal. The value of this 
function at each corresponding time point was used to 
scale responses using the first reference odorant presenta-
tion as reference.

Response classification

To automatically classify responses to the four differ-
ent response categories (excitatory, inhibitory, biphasic, 
and non-responder) we extracted response magnitudes 
as the mean of five frames around three different time 
points during the response: peak 1 (1.5 s after stimulus 
onset), peak 2 (4 s after stimulus onset and post (6.5 s 
after stimulus onset). We defined ±2.5× the standard devi-
ation of the activity during 5 s before stimulus onset as a 
response threshold, which corresponded to |0.3%|ΔF∕F.  
All responses that did not exceed the response thresh-
old at any of the three time windows were classified as 
non-responders, remaining responses were classified as 
responders accordingly. Responders were classified as 
biphasic when response values at peak 1 were positive and 
at post were negative. Remaining responses were classified 
excitatory when the response value at peak 1 was positive 
and inhibitory when activity at peak 1 was negative. Clas-
sifications were performed on mean response traces with 
n ranging from 3 to 28 with a median of 8 flies.

Bootstrapping

We recorded calcium imaging data from flies that expressed 
a calcium reporter in a single class of OSN. We used a boot-
strapping-like approach to derive ensemble response pat-
terns from this data. From the entity of recordings (99 odor-
ants × 8 OSNs × n of 3–28) we randomly sampled recordings 
to create “meta animals” that consisted of a complete set of 
odorant × OSN combinations.
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Odorant discriminability

To quantify the difference between odorant activity patterns, 
we created 100 “meta animals” (as described above), yield-
ing 100 coordinates per odorant in an eight-dimensional 
OSN space. We measured odorant pattern distance as 
Euclidean distance between the centroids of the 100 repeti-
tions per odorant. To obtain a discriminability measure we 
corrected the distance measure by the variability within the 
100 repetitions per odorant. Therefore, we calculated the 
average distance between the 100 coordinates per odorant 
to their respective centroid. Finally, we divided the distance 
between the centroids of each odorant pair by the sum of the 
corresponding intra-odorant variabilites.With n = 100 fictive 
responses A

i
 to odorant A and B

i
 to odorant B, this gives:

Odorant classification

To quantify odorant identity information at different time 
points during the odor response, we trained a linear clas-
sifier (linear discriminant analysis using the lda function 
in R) on a subset of the data and tested its performance on 
a different subset. In detail: (1) We created a test dataset 
by sampling one “meta animal” (as described above), these 
data were removed from the pool of recordings. (2) From 
the remaining data we sampled a training dataset consist-
ing of ten “meta animals”. (3) We used the training data to 
train the classifier on different time points of the responses. 
(4) We then used the trained classifier to predict the correct 
labels of the 99 odorant responses from the test dataset and 
noted its performance. (5) We repeated steps 1–4 1000× to 
get estimates of the average performance and variability of 
the classification. We performed the classification analysis 
on the complete set of 99 odorants as well as on smaller 
subsets. For the subsets, we ranked odorants according to 
the overall response strength they elicited across OSNs and 
divided them into four sets. To create equal-sized sets of 25 
odorants each, one odorant was assigned both to set 3 and 4. 
To obtain the ranking, for each response we calculated the 
absolute peak response after stimulation and averaged across 
OSNs per odorant. See Table S2 for the obtained ranking.

Mixture trajectories

For each binary mixture, we performed a principal com-
ponent analysis (PCA) on the peak response of the compo-
nent responses using the prcomp function in R. Thereby 
the PCA was optimized to separate the components’ peak 
responses. The resulting rotation was then applied to the 
full response traces including the mixture trace. For better 

‖centroidA − centroidB‖
1

n

∑n

i=1
‖Ai − centroidA‖ +

1

n

∑n

i=1
‖Bi − centroidB‖

visibility, we removed the initial part of the recording till 
1 s prior to the first stimulation in Figs. 6b and S7.

Statistical testing

All statistical testing was performed in R using base func-
tions and the PMCMR package.

Results

Complex response dynamics of OSNs

We recorded calcium responses from eight different 
classes of Drosophila olfactory sensory neurons (OSN) in 
response to stimulation with 99 mono-molecular odorants. 
Response magnitudes differed widely, ranging from −6.6 
to 5.9% changes in ΔF∕F. Some responses were excita-
tory (calcium increases, green traces in Fig. 1a), some 
were inhibitory (calcium decreases, red traces in Fig. 1a), 
some odorants elicited biphasic responses (yellow trace 
in Fig. 1a), and some did not elicit any response (gray 
trace in Fig. 1a; see Fig. S1 for histograms of the classi-
fied responses). Biphasic responses were always excitatory 
first, and inhibitory later—we never observed the inverted 
sequence. Biphasic responses were strongest at high odor-
ant concentrations. We found large differences in response 
shape over time: phasic responses were fast, and returned 
to baseline within a few seconds, while slow responses had 
a slow return to baseline, generally not complete within 
the 15 s recording time. Since our stimuli were always 1 s, 
we did not evaluate whether some responses had a tonic 
component, i.e., whether calcium concentration would 
have stabilized to a different value with ongoing stimula-
tion. Our stimulus protocol consisted in two 1 s stimuli, 
spaced by 2.75 s. We found that the response to the second 
stimulus, hitting a weakly adapted OSN, was clearly vis-
ible in most cases. For fast responses, the second stimulus 
generally elicited a response of similar shape and size as 
the first stimulus (both in the excitatory and the inhibitory 
case), indicating that no adaptation had remained (see, 
e.g., first and third trace in Fig. 1a). For slow responses, 
the second stimulus elicited a response riding on top of 
the first one, leading to a stronger overall response, even 
though the response to the second stimulus alone was 
smaller (see e.g., second trace in Fig. 1a). In many cases, 
slow responders did not show any visible response to the 
second stimulus, suggesting a completely adapted OSN, 
but we cannot exclude that the second stimulus might have 
augmented the return to baseline time constant (Fig. 1a).
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Response categories are differentially distributed 
across OSN classes

We performed an automatic classification of the odorant 
responses into the four main categories of responses we 
found (no response, excitation, inhibition, biphasic). We 
defined a response threshold of 0 ± 2.5× the standard devi-
ation of a 5-s response window before stimulus presenta-
tion, averaged across all OSNs and odors. This yielded a 
threshold of |0.3|ΔF∕F, responses that remained within that 
range were classified as non-responders. We found that for 
our set of 99 odorants, the response types were differen-
tially distributed across OSN classes. Excitatory responses 
were the most frequent ones: Or13a and Or92a only showed 
excitatory responses (or no responses), while Or10a, Or47b, 
Or67b, and Or69a mainly responded with excitation. Con-
versely, Or42b exhibited mostly inhibitory and Or56a mainly 
biphasic responses (Fig. 1b).

Response dynamics depend on the odorant–OSN 
combination

Response dynamics did not depend on either the odorant or 
the OSN alone, but rather on the odorant–OSN combination 
(Fig. 2). This means that a given odorant was able to elicit 
different response dynamics across OSNs, and that OSNs 
were able to respond with different dynamics to different 
odorants. In addition, responses of OSNs that only showed 
excitation (and no response, Or67b and Or92a, Fig. 1b) 
displayed odorant-dependent time-courses (Fig. 2). Most 
importantly, a given odorant–OSN combination reliably elic-
ited the same type of response (see the error shades along the 
response traces in Fig. 2). As an example an odorant × OSN 

response matrix is shown in Fig. 2 (see Fig. S2 for all odor-
ant–OSN combinations). Temporal diversity could also 
derive from adsorption and desorption differences of the 
chemical substances in the stimulus delivery device, there-
fore, we characterized stimulus dynamics for all odorants 
with a photoionization detector (PID). We found that indeed 
different substances generate physically different temporal 
profiles in their stimulus (Figs. 2, S2). Comparing stimulus 
and response dynamics demonstrated that both odorants with 
slow as well as fast stimulus dynamics were able to elicit fast 
and slow response dynamics (Fig. 2a). For example, BEAM 
(benzaldehyde) elicited a fast inhibitory response in Or47b 
returning to baseline between the two stimuli, a slow inhibi-
tory response in Or56a, with the second response riding on 
top of the first one, and a slow excitatory response to Or67b, 
even though, physically, the odorant stimulus was very fast 
(see PID trace; Fig. 2a, b). On the other hand, PRBL (�
-propyl-�-butyrolactone) was a more “sticky” odorant in our 
olfactometer, with the second PID peak riding on top of the 
first. Nevertheless, Or56a showed perfectly phasic and fast 
responses, clearly separating the information of the first and 
second stimulus peak (Fig. 2a, b). A quantitative analysis 
of the time courses showed that there was no correlation 
between the duration of the physical stimulus (PID traces; 
width at 30% peak response) and the biological response 
time courses (OSN responses; width at 30% peak response; 
r = 0.06, p = 0.13; Fig. S3). For some of the best ligands, we 
measured concentration series (Fig. 3). Response dynamics 
were stable across concentrations except for one case where 
an excitatory response became biphasic in the highest con-
centration (EHAE [E2-hexenyl acetate] in Fig. 3a). Thus, 
fast responses stayed fast and slow responses remained slow 
across concentrations as became clear when normalizing the 

a b

Fig. 1   Response dynamics are temporally diverse. All odorants given 
at 10−2 dilution. a The different response dynamics we observed 
could be grouped into four different categories. Excitatory and inhibi-
tory responses could be further subdivided into “fast” and “slow” 
responses. Traces are given as average of n = 4–10 animals, shades 
indicate SEM. Gray segments indicate the stimulation times. b The 

four main response types were differentially distributed across OSN 
classes. Response types were automatically defined, responses with 
maxima below a threshold of |0.3%|ΔF∕F (±2.5 × SD before stimu-
lus onset) were defined as “non-responders” (see “Material and meth-
ods” for details)
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response to the first response peak (compare lower panel in 
Fig. 3a, b). We observed signal saturation, i.e., reduced sig-
nal at the highest concentration, in 5 out of 50 cases.

Temporal response dynamics carry odorant identity 
information

Odorant identity is encoded via the ensemble response pat-
tern of all the differentially activated OSNs of an olfactory 
sensory system. Thus, with eight OSNs, we can represent 
an odor response as a vector of eight dimensions, a vec-
tor that changes over time as the response evolves. Before 
stimulus onset, all measurements will be located close to 
the origin, reflecting physiological noise. As soon as the 
odorant responses begin, the representation for each odor-
ant will move to its characteristic place. If two odorants are 
very different, they will be far away (have a large Euclidean 
distance) in this eight-dimensional space, if two odorants 

are similar, they will be close to each other (Sachse et al. 
1999; Mazor and Laurent 2005). We calculated the average 
binary distance of all odorant pairs for each time point of 
the response (Fig. 4a). The distance increased with the first 
stimulus, and increased further with the second stimulus, 
slowly moving towards baseline thereafter. Distance alone, 
however, is not sufficient for efficient information coding: if 
single measurements scatter widely (i.e., if noise is high), 
the brain will not be able to reliably assess the identity of a 
stimulus. Therefore, we divided the distance between each 
odorant pair by a quantification of the scattering of each 
of the individual odorants to visualize general separability 
(Fig. 4b; see “Material and methods” for details). Values 
above 1 indicate good average separability between odorant 
representations, or high information content in the response 
patterns. While in the raw distance measure, the peak 
response to the second stimulus was larger than to the first 
stimulus, the mean discriminability across all odorant pairs 

a b

Fig. 2   Response dynamics depend on the odorant–OSN combina-
tion. a Example calcium imaging response traces for eight OSNs 
stimulated with five odorants. Traces are given as average of n = 
4–13 animals, shades indicate SEM, colors indicate response type as 
in Fig. 1. b PID measurements of the stimulus dynamics for the five 

example odorants. Traces are given as average of n = 1–3 independ-
ent measurements. See Fig.  S2 for response traces and PID meas-
urements of all 99 odorants. For a list of odorant abbreviations see 
Table S1. Gray segments indicate the stimulation times
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peaked during the first stimulation and, though increasing 
again for the second stimulus, did not reach the same height. 
It reached a level above 1 only during the first stimulation.

The analysis with the Euclidean distance shows that 
information is present in odorant responses, and peaks 
during odorant presentation. However, we have seen that 

temporal response profiles differ. Therefore, we asked 
whether the brain would benefit from analyzing the 
whole response time course, or whether the initial, pha-
sic response already contains all relevant odorant infor-
mation. To this end, we selected different groups of five 
time points each, and ran a classifier on these. We tested 
(Fig. 5a): (1) five points at the first response peak (pha-
sic initial response, peak 1), (2) five points at the second 
response peak (adapted response, peak 2), and (3) five 
points at the second peak, shifted to a baseline between 
the two peaks (phasic component of the adapted response). 
We compared these with (4) five points spread across the 
response (trace). As controls we shuffled odorant labels 
(control), or the time information of the trace set (shuffled 
time). We always selected five time points of the recording 
to keep the degrees of freedom available to the algorithm 
comparable.

First, we ran the classifier on the complete set of 99 
odorants (Fig. 5b), using bootstrap-like resampling to 
quantify the reliability of the approach. The algorithm was 
able to correctly classify a mean of 33% of odorants using 
peak 1 and 29% based on peak 2. Classification success 
increased significantly to 45% when the five time points 
were spread across the recording (trace) (Kruskal–Wallis 
rank sum test with a Bonferroni corrected Dunn’s post 
hoc test, p < 0.01) and it dropped to 20% when time infor-
mation was scrambled (Figs. 5b, S6). This demonstrates, 
that information of odorant identity resides in the tem-
poral dynamics of odorant responses and that using this 
information improves odorant classification. As expected, 
the classifier performed on chance level when the odorant 
identity was shuffled.

We ran the same analysis on subsets of odorants. We 
ordered the odorants according to response strength by 
quantifying the mean peak responses an odorant elicited 
across all eight OSNs and split the 99 odorants set into 
four subsets (set 1–set 4). The classifier performed better 
on the smaller sets of odorants except for the set contain-
ing the weakest odorants (set 4). Classification success 
was best for set 1 (the set containing the strongest odor-
ants) and decreased gradually towards set 4 (Figs. S4, 
S5). The overall classification improved when performed 
on the trace instead of the peak response alone (peak 1) 
for all sets (Fig. 5c). This was true for all odorant sets as 
averages, but when looking at the odorants individually, 
there were cases of individual odorants where classifica-
tion success went down (Figs. 5d, S5). The improvement 
in classification was highest for sets 2 and 3, it was low for 
the set 1 (containing the strongest odorants; Fig. 5c). This 
demonstrates that information about temporal response 
dynamics improves odorant identity classification espe-
cially for ligands that elicit intermediate responses.

a

b

Fig. 3   Response dynamics are stable across a concentration range. a 
Recordings of five odorant–OSN combinations at five dilution steps. 
Traces are given as average of n = 3–17 animals. Colors indicate dif-
ferent dilutions. b Same recordings as in the lower panel in a but nor-
malized to the first response peak. Gray segments indicate the stimu-
lation times. For a list of odorant abbreviations see Table S1

a b

Fig. 4   Odorant pattern difference peaks during stimulation. a The 
average Euclidean distances between response patterns of all possi-
ble odorant pairs. Shades indicate the variability within the repeated 
measurements of a given odorant (see “Material and methods” for 
details), gray segments indicate the stimulation times. b Average dis-
criminability of all possible pairs of odorants. The discriminability 
measure was derived from dividing Euclidean distances by the vari-
ability within repeated measurements of an odorant (see “Material 
and methods” for details). Gray shades indicate SEM, gray segments 
indicate the stimulation times
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a b c

d

Fig. 5   Odorant identity information increases over time. a Sche-
matic showing the time points of the recordings that were used for the 
classification shown in b and d. Black traces are averages across all 
recordings of a given response type. Colors indicate the different time 
points used in the classification (compare to b), gray segments indi-
cate the stimulation times. b Boxplot of the classifier performance at 
different time points. control classification with shuffled odor labels, 
peak 1 and peak 2 five time points around the 1st and 2nd response 
peak, peak 2 shift classification run on peak 2 but with the activity 
right prior to peak 2 shifted to baseline, trace five time points spread 
across the recording, trace-shuffled classification run on the trace 
frames but with scrambled time information. all comprises all odor-
ants, set 1 contains the top quartile with the 25 strongest odorants 
(quantified as mean absolute peak response across OSNs), set 2 con-
tains 2nd best quartile of odorants (see Table S2 for a list of odorants 
and Fig. S4 for data regarding sets 3 and 4). All differences between 

classifications at different time points were significant (Kruskal–Wal-
lis rank sum test with a Bonferroni corrected Dunn’s post hoc test, p 
< 0.01). Boxplots indicate median, lower, and upper quartile, whisk-
ers extend to the lowest and highest values that lie within 1.5 times 
the inter-quartile range from the box, data beyond the whiskers are 
treated as outliers and indicated as points, asterisks indicate the mean. 
c The differences between the classifier performances at peak1 and 
trace. Error bars indicate SEM. Different letters indicate significant 
differences between groups (Kruskal–Wallis rank sum test with a 
Bonferroni corrected Dunn’s post hoc test, p < 0.01) d Correct clas-
sifications and classification errors in the sets of the strongest and the 
weakest odorants at the different time points, visualized as confusion 
matrices. The values along the diagonal represent classification reli-
ability. See Table S1 for a complete list of odorant names and abbre-
viations
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New response dynamics can arise when mixing 
odorants

Most olfactory stimuli in the natural world consist of mix-
tures containing many substances. Responses of olfactory 
sensory neurons to mixtures have been shown to be com-
plex in several studies (Tabor et al. 2004; Rospars et al. 
2008; Hillier and Vickers 2011; Münch et al. 2013). Here, 
we investigated how odorant mixtures influence the tem-
poral evolution of odorant responses. We used a subset 

of odorants and OSNs to investigate responses to binary 
mixtures (Fig. 6a). Apart from changes in response ampli-
tude, mixing two components that both elicited excitatory 
responses from a given OSN usually resulted in mixture 
response that resembled the response dynamics of the 
stronger component. For example, the response of Or13a 
to the mixture of GEST (geranyl acetate, weak excitatory 
response) and Z3HL (Z3-hexen-1-ol, excitatory response) 
resembled the response to Z3HL alone, with no apparent 
contribution of GEST (Figs. 6a, S7). Or47a responded to the 

a

b

Fig. 6   Response dynamics of binary mixtures. a Response traces 
elicited from binary mixtures of odorants. The mixture trace is 
shown in green, the components are shown in yellow and blue, 
gray segments indicate the stimulation times. Concentration of 
the components was the same when tested alone or in the mixture 
(1 × 10−3 vol∕vol dilution). Traces are given as average of n = 7–16 
animals. b Principal component trajectories of mixture and compo-

nent responses. Trajectories show how the odor response pattern of 
the five analyzed OSNs develops over time. Same color code as in a. 
Numbers on the axes indicate the percentage of variance explained by 
the corresponding principal component. Times of odorant stimulation 
are indicated by darker arrows pointing in the direction of time. See 
Table S1 for a complete list of odorant names and abbreviations and 
Figs. S7 and S8 for data of all mixtures tested
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mixture of ISOE (isopentyl acetate, excitatory response) and 
FURL (furfural, no response), with a reduced response, yet 
resembling the dynamics of the response to ISOE (Fig. 6a). 
Dynamics of mixtures containing components that elicited 
responses of opposing polarity on the other hand were not 
easily predictable (Figs. 6a, S7). We observed cases where 
the inhibitory component clearly dominated the mixture 
response. For example, Or22a responded to the mixture of 
GEST (geranyl acetate, excitatory response) and ETAS (ace-
tic acid, biphasic response) with a response corresponding 
to that of ETAS alone, and Or56a responded to the mixture 
of GEST (geranyl acetate, weak excitatory response) and 
PROA (propanal, inhibitory response) with a response cor-
responding to the inhibitory component (Fig. 6a). We found 
other cases where the excitatory component dominated in 
the early part of the response, e.g., Or22a responded to the 
mixture of ESHE (ethyl (S)-(+)-3-hydroxybutyrate, strong 
excitatory response) and ETAS (acetic acid, weak bipha-
sic response) with a strong initial activation followed by an 
influence of the inhibitory late phase of ETAS that eventu-
ally resulted in a strong biphasic mixture response. In other 
cases again the resulting mixture response was additive, such 
as in the response of Or56a to PROA (propanal, inhibitory 
phasic response) and ETAS (acetic acid, inhibitory slow 
response) (Fig. 6a).

This great variability in mixing logic for individual ORs 
suggests that the combinatorial response patterns to mixtures 
are rather configural, i.e., mixture-unique, than elemental. 
However, this has to be tested in the ensemble response, 
and not for single OSNs. Therefore, we created response 
trajectories by calculating response data in the five-dimen-
sional OSN space, and projecting it onto two dimensions. 
We plotted the mixture trajectory together with its two 
component trajectories. The 2-D plots were derived from 
a principal component analysis with rotations calculated to 
maximize the distance of mixture components during the 
first response peak (Fig. 6b). In some mixtures, one compo-
nent clearly dominated the mixture response pattern (first 
two columns in Fig. 6b, where the green trajectory (mix) 
closely follows either the yellow or the blue trajectory (one 
component) while in others the mixture was intermediate 
to the component responses (column 3). In others again we 
observed a “flipping” behavior with the mixture trajectory 
initially being intermediate and then flipping to one com-
ponent (column 4), comparable to the individual mixture 
response becoming biphasic in Fig. 6a. Interestingly, in these 
cases, the component of the trajectory that corresponded to 
one of the components reflected the phase after stimulus 
offset. In other words, the data showed that in some odor 
mixtures, one odor was dominant (e.g., when mixing ETBE 
[ethyl butyrate] and PELM [2-phenylethanol], the compo-
nent ETBE was dominant, suggesting elemental coding of 
one element, and suppression of the other), while in other 

mixtures the trajectory indicated a new, configural odor 
percept (e.g., when mixing ESHE [ethyl (S)-(+)-3-hydroxy-
butyrate] and ETAS [acetic acid]). Whether the “flipping” 
behavior might indicate that the animal may have access to 
both elemental odor percepts would be an intriguing hypoth-
esis deriving from these observations.

Discussion

We measured OSN responses to mono-molecular odor-
ants and binary mixtures. We found that temporal response 
dynamics were complex, including phasic and tonic ele-
ments, and that they were odorant–OSN combination spe-
cific and thus carried information about odorant identity, 
sufficient to enhance the performance of a classifying algo-
rithm. We also showed that odorant mixtures led to response 
dynamics with both elemental and configural signatures. 
Diversity in temporal response dynamics of Drosophila 
OSNs, including biphasic responses, has been observed in 
previous studies of electrophysiological responses in OSNs 
but to our knowledge has never been studied comprehen-
sively across many odorants and OSNs (de Bruyne et al. 
1999, 2001; Hallem et al. 2004; Kreher et al. 2005; Nagel 
and Wilson 2011; Grillet et al. 2016).

Potential origin of complex response dynamics

Several mechanisms can potentially contribute to the odor-
ant–OSN combination-specific response dynamics, and the 
results that we measured may be a combination of all. (1) 
Even before hitting a biological surface, odorants delivered 
by our olfactometer have different physical properties of 
adsorption to the technical surfaces used, leading to slightly 
different temporal patterns (Figs. 2b, S2b; Martelli et al. 
2013): some substances are more “sticky” than others. These 
properties will also occur in a natural environment, lead-
ing to odors that linger for longer, and others that do not. 
In a natural environment, another factor will add to this: 
differences in volatility lead to different diffusion rates of 
substances, which alters their temporal profile at the OSN. 
And finally, differences in adsorption will also occur on the 
cuticular surface of the animal, which is an effect that we 
did not measure in this study. (2) In addition, sensillar events 
influence the temporal processes that transport odorant mol-
ecules from the surface to the OSN dendrites (Syed et al. 
2006; Chertemps et al. 2012; Kaissling 2013; Rospars 2013; 
Larter et al. 2016), including affinity to odorant binding pro-
teins, and solubility to the sensillar lymph. The importance 
of the sensillar lymph is evident from studies that show that 
ectopical expression of receptors in other sensilla only works 
within particular sensilla types, showing that each recep-
tor needs a specific sensillar complement (Ronderos et al. 
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2014). (3) receptor affinity and saturation curves are likely to 
be the main factors affecting odorant-response time courses. 
These have been studied extensively in ligand-receptor stud-
ies of metabotropic receptors (Kenakin 2017). The direct 
interaction of the odorant molecule with the receptor protein 
is most likely the principal factor determining whether the 
response is phasic or has tonic elements: in pharmacological 
characterizations of receptor–ligand interactions, time con-
stants for binding and for release can have different values 
(Tummino and Copeland 2008). (4) negative and positive 
responses (inhibitions or excitations) arise from competitive 
binding of ligand and receptor. In particular, a ligand that 
displaces a tonically present alternative ligand, or that allos-
terically competes with another ligand, will lead to different 
temporal profiles. Several other molecular mechanisms for 
inhibitory responses are possible (e.g., inhibitory transduc-
tion cascades, Michel and Ache 1992, “leaky” receptors that 
are closed, Costa and Herz 1989, etc.). (5) The transduction 
cascade might add to the temporal properties. In the present 
study, we do not expect the transduction cascade to differ 
between seven receptors used, since they all share the same 
Orco co-receptor, and can all be expressed ectopically in 
Or22a neurons, without apparent loss in function (Dobritsa 
et al. 2003; Kreher et al. 2008; Dweck et al. 2015; Lebreton 
et al. 2017). Whether the 8th receptor, Or56a, would func-
tion in the Or22a empty-neuron is not known since its best 
ligand, geosmin (Stensmyr et al. 2012), has not been tested 
in that system yet. However, in the full olfactory system of 
Drosophila, we anticipate the diversity to be much larger, 
given that different ORs might have different transduction 
pathways, e.g., different G proteins involved in either trans-
duction itself or in regulating transduction (Wicher et al. 
2008; Yao and Carlson 2010; Ignatious Raja et al. 2014), 
and that IRs probably have a different transduction cascade 
altogether (Benton et al. 2009). Together, these considera-
tions suggest that the role of temporal diversity might even 
be underestimated in our sample of eight OSN classes and 
99 odorants.

The major factor affecting temporal response properties 
is adaptation. Sensory neurons with fast adaptation show 
phasic responses, slow adaptation leads to tonic responses. 
In our samples, we found all sorts of intermediate cases: 
very phasic responses (e.g., Or56a to PRBL, Fig. 2), and 
very slow, long lasting responses (e.g., Or10a to 2EBM). 
We included a direct test for adaptation by giving a double-
pulse stimulus: the second pulse, given 3 s after the first 
pulse, was a test of the response in a adapted state. The fact 
that we found a great variety of different behaviors to the 
second pulse, dependent both on the OSN class, and on the 
odorant, suggests that adaptation resides to a large degree 
in a mechanism that involves the odorant molecule itself, 
most likely receptor–ligand interaction, though we cannot 
exclude a contribution from the sensillar lymph. We note 

that the sensory neuron with the most biphasic (i.e. com-
plex) responses was Or56a. These cells co-express a further 
receptor, Or33a (Fishilevich and Vosshall 2005), for which 
no functional role has been reported yet. A contribution to 
temporal complexity is an intriguing hypothesis to be tested.

The diverse temporal response dynamics we observed 
were stable across a range of concentrations. This is inter-
esting as the overall activation pattern across OSNs changes 
with odorant concentration (Sachse and Galizia 2003; Sil-
bering et al. 2008; Strauch and Galizia 2012). Thus, response 
dynamics could facilitate concentration-independent coding 
of odorant identity.

This study has several limitations that need to be taken 
into account when interpreting the data. Most importantly, 
any study in olfactory coding that looks at the “entire” olfac-
tory landscape is limited, since that landscape is vast. Spe-
cifically, eight OSNs are many, but still only 16% of all fly 
OSN classes, 99 odorants might sound a lot, but still they are 
a minute fraction of olfactory space, and binary odorants are 
but a glimpse on the complexity of odorant mixture. Simi-
larly, probing adaptation with a single, second pulse after 
2.75 s does not allow to study the temporal development 
of adaptation, nor the effects of cross adaptation. Further-
more, our experimental design does not allow to analyze the 
effect of temporally complex plume structures onto olfactory 
coding. However, despite all of these limitations, this study 
already offers an astounding view on the diversity in tem-
poral responses, and suggests that animals might use time 
to enhance their sensory capacity.

Impact on olfactory coding

We show here that time increases the coding capacity of 
the olfactory system. Specifically, adding information 
about the temporal development of an odor response across 
OSNs increases the capacity to identify the stimulus, from 
33 to 45% (Fig. 5). This increased capacity comes at a 
cost, the animal needs to wait until the brain can evaluate 
the temporally evolving pattern. Since the initial, phasic 
odor-response pattern already contains a large amount of 
information, this raises an important question: do animals 
evaluate odor information using the initial response peak 
(high-speed, low-accuracy), or do they wait for the pat-
tern to evolve (low-speed, high-accuracy)? In honeybees 
and rodents, time-to-decision was measured to be constant 
irrespective of odor-choice difficulty (Uchida and Mainen 
2003; Ditzen et al. 2003), though other experiments found 
that there is a speed-accuracy trade off and odor classifica-
tion becomes more reliable when more time is available 
(Abraham et al. 2004). This result suggests that an animal 
can decide, and taking time into consideration represents a 
trade-off: accuracy against speed (Heitz 2014). We are not 
aware of experiments in Drosophila that have analyzed this 
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fact. We do not expect the temporal constants to be equal 
across species and environmental situations, however. In 
different fly species, visual transduction differs in speed, 
with D. melanogaster being on the slow and energetically 
cheap side (Niven et al. 2007). Whether an animal uses 
fast or slow odor evaluation may depend on the situation: 
insects can extract mixture-component information from 
stimuli where the components are separated by tempo-
ral differences as short as 6 ms (Szyszka et al. 2014). In 
such a situation, fast coding is necessary. On the other 
hand, Drosophila will find an odor source (say, a glass of 
wine), in a room without major turbulences, in a mean-
dering flight, a situation where slow coding is sufficient. 
The brain may add to the temporal complexity that we 
have measured here across sensory neurons. For exam-
ple, in zebra fish, combinatorial patterns in the olfactory 
bulb evolve and increase their information content during 
the first ∼800 ms of the response (Friedrich and Laurent 
2001).

The response strength that a mixture of odorants would 
elicit from an OSN is not easily predictable from the com-
ponents’ responses due to different kinds of mixture inter-
actions (Silbering and Galizia 2007; Rospars et al. 2008; 
Hillier and Vickers 2011; Münch et al. 2013). Here, we show 
that not only response strength differs for different odorant 
combinations but also new response dynamics might arise 
from mixing two odorants. Some mixture responses in our 
data were first dominated by the excitatory component and 
later by the inhibitory which might be a consequence of 
sharpening of the excitatory response by the inhibitory com-
ponent (Su et al. 2011). Potentially, such a response could 
convey information on both components of a mixture, allow-
ing for double elemental mixture analysis. Behavioral data 
found that discriminability of components within a mixture 
depends on the identity of the components, since some 
studies show elemental mixture coding, others configural 
mixture coding. The data reported here indicate that this 
distinction arises already at the level of the olfactory sensory 
neurons, suggesting that—at least for some cases—the brain 
might not be able to switch from elemental to configural 
analysis.

Acknowledgements  We thank Birgit Rapp, Gabi Pszolla, Jennifer 
Ignatious-Raja, Michael Thoma, Shouwen Ma, and Tom Laudes for 
help with the physiological measurements. This research was funded 
by the German Research Foundation, DFG.

Compliance with ethical standards 

Conflict of interest  The authors declare no conflict of interest.

Open Access  This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided you give 

appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Abraham NM, Spors H, Carleton A, Margrie TW, Kuner T, Schaefer 
AT (2004) Maintaining accuracy at the expense of speed: stimu-
lus similarity defines odor discrimination time in mice. Neuron 
44(5):865–876. doi:10.1016/j.neuron.2004.11.017

Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant 
ionotropic glutamate receptors as chemosensory receptors in 
Drosophila. Cell 136(1):149–62. doi:10.1016/j.cell.2008.12.001

Campbell RAA, Honegger KS, Qin H, Li W, Demir E, Turner GC 
(2013) Imaging a population code for odor identity in the Dros-
ophila mushroom body. J Neurosci 33(25):10,568–10,581. 
doi:10.1523/JNEUROSCI.0682-12.2013

Chertemps T, François A, Durand N, Rosell G, Dekker T, Lucas P, 
Maïbèche-Coisne M (2012) A carboxylesterase, esterase-6, 
modulates sensory physiological and behavioral response 
dynamics to pheromone in Drosophila. BMC Biol 10(1):56. 
doi:10.1186/1741-7007-10-56

Costa T, Herz A (1989) Antagonists with negative intrinsic activity at 
delta opioid receptors coupled to GTP-binding proteins. Proc Natl 
Acad Sci 86(19):7321–7325

Couto A, Alenius M, Dickson BJ (2005) Molecular, anatomical, and 
functional organization of the Drosophila olfactory system. Curr 
Biol 15(17):1535–1547. doi:10.1016/j.cub.2005.07.034

DasGupta S, Waddell S (2008) Learned odor discrimination in Dros-
ophila without combinatorial odor maps in the antennal lobe. Curr 
Biol 18(21):1668–74. doi:10.1016/j.cub.2008.08.071

de Bruyne M, Clyne PJ, Carlson JR (1999) Odor coding in a model 
olfactory organ: the Drosophila maxillary palp. J Neurosci 
19(11):4520–4532

de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the 
Drosophila antenna. Neuron 30(2):537–552. doi:10.1016/
S0896-6273(01)00289-6

Ditzen M, Evers JF, Galizia CG (2003) Odor similarity does not 
influence the time needed for odor processing. Chem Senses 
28(9):781–789

Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, 
Carlson JR (2003) Integrating the molecular and cellular basis of 
odor coding in the Drosophila antenna. Neuron 37(5): 827–841. 
doi:10.1016/S0896-6273(03)00094-1

Dweck HKM, Ebrahim SAM, Thoma M, Mohamed AAM, Keesey IW, 
Trona F, Lavista-Llanos S, Svatoš A, Sachse S, Knaden M, Hans-
son BS (2015) Pheromones mediating copulation and attraction in 
Drosophila. Proc Natl Acad Sci 112(21):2829–2835. doi:10.1073/
pnas.1504527112

Fishilevich E, Vosshall LB (2005) Genetic and functional subdivision 
of the Drosophila antennal lobe. Curr Biol 15(17):1548–1553. 
doi:10.1016/j.cub.2005.07.066

Friedrich RW, Laurent G (2001) Dynamic optimization of odor rep-
resentations by slow temporal patterning of mitral cell activity. 
Science 291(5505):889–894. doi:10.1126/science.291.5505.889

Galizia CG (2014) Olfactory coding in the insect brain: data and 
conjectures. Eur J Neurosci 39(11):1784–1795. doi:10.1111/
ejn.12558

Galizia CG, Vetter RS (2004) Optical methods for analyzing odor-
evoked activity in the insect brain. In: Christensen TA (ed) Meth-
ods in insect sensory neuroscience, Frontiers in Neuroscience. 
CRC Press, pp 349–392

Galizia CG, Münch D, Strauch M, Nissler A, Ma S (2010) Integrating 
heterogeneous odor response data into a common response model: 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuron.2004.11.017
https://doi.org/10.1016/j.cell.2008.12.001
https://doi.org/10.1523/JNEUROSCI.0682-12.2013
https://doi.org/10.1186/1741-7007-10-56
https://doi.org/10.1016/j.cub.2005.07.034
https://doi.org/10.1016/j.cub.2008.08.071
https://doi.org/10.1016/S0896-6273(01)00289-6
https://doi.org/10.1016/S0896-6273(01)00289-6
https://doi.org/10.1016/S0896-6273(03)00094-1
https://doi.org/10.1073/pnas.1504527112
https://doi.org/10.1073/pnas.1504527112
https://doi.org/10.1016/j.cub.2005.07.066
https://doi.org/10.1126/science.291.5505.889
https://doi.org/10.1111/ejn.12558
https://doi.org/10.1111/ejn.12558


971J Comp Physiol A (2017) 203:959–972	

1 3

a DoOR to the complete olfactome. Chem Senses 35(7):551–563. 
doi:10.1093/chemse/bjq042

Grabe V, Strutz A, Baschwitz A, Hansson BS, Sachse S (2015) Digital 
in vivo 3d atlas of the antennal lobe of Drosophila melanogaster. J 
Comp Neurol 523(3):530–544. doi:10.1002/cne.23697

Grillet M, Campagner D, Petersen R, McCrohan C, Cobb M (2016) 
The peripheral olfactory code in Drosophila larvae contains tem-
poral information and is robust over multiple timescales. Proc R 
Soc B 283(1831):20160,665. doi:10.1098/rspb.2016.0665

Hallem EA, Carlson JR (2006) Coding of odors by a receptor reper-
toire. Cell 125(1):143–60. doi:10.1016/j.cell.2006.01.050

Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of 
odor coding in the Drosophila antenna. Cell 117(7):965–979. 
doi:10.1016/j.cell.2004.05.012

Heitz RP (2014) The speed-accuracy tradeoff: history, physiol-
ogy, methodology, and behavior. Front Neurosci. doi:10.3389/
fnins.2014.00150

Hillier NK, Vickers NJ (2011) Mixture interactions in moth olfactory 
physiology: examining the effects of odorant mixture, concentra-
tion, distal stimulation, and antennal nerve transection on sensil-
lar responses. Chem Senses 36(1):93–108. doi:10.1093/chemse/
bjq102

Ignatious Raja JS, Katanayeva N, Katanaev VL, Galizia CG (2014) 
Role of Go/i subgroup of G proteins in olfactory signaling of 
Drosophila melanogaster. Eur J Neurosci. doi:10.1111/ejn.12481

Jordán MJ, Tandon K, Shaw PE, Goodner KL (2001) Aromatic profile 
of aqueous banana essence and banana fruit by gas chromatogra-
phy-mass spectrometry (GC-MS) and gas chromatography-olfac-
tometry (GC-O). J Agric Food Chem 49(10):4813–7

Kaissling KE (2013) Kinetics of olfactory responses might largely 
depend on the odorant-receptor interaction and the odorant 
deactivation postulated for flux detectors. J Comp Physiol A. 
doi:10.1007/s00359-013-0812-z

Kenakin T (2017) Theoretical aspects of GPCR-ligand complex 
pharmacology. Chem Rev 117(1):4–20. doi:10.1021/acs.
chemrev.5b00561

Kreher SA, Kwon JY, Carlson JR, Haven N (2005) The molecular basis 
of odor coding in the Drosophila larva. Neuron 46(3):445–456. 
doi:10.1016/j.neuron.2005.04.007

Kreher SA, Mathew D, Kim J, Carlson JR (2008) Translation of sen-
sory input into behavioral output via an olfactory system. Neuron 
59(1):110–124. doi:10.1016/j.neuron.2008.06.010

Kwon JY, Dahanukar A, Weiss L, Carlson JR (2007) The molecular 
basis of CO2 reception in Drosophila. Proc Natl Acad Sci USA 
104(9):3574–3578. doi:10.1073/pnas.0700079104

Larter NK, Sun JS, Carlson JR (2016) Organization and func-
tion of Drosophila odorant binding proteins. eLife 5:e20,242. 
doi:10.7554/eLife.20242

Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin E, 
Hedenstroem E, Hansson BS, Gustavsson AL, Bengtsson M, Birg-
ersson G, Walker WB, Dweck H, Becher PG, Witzgall P (2017) 
The Drosophila pheromone Z4-11Al is encoded together with 
habitat olfactory cues and mediates species-specific communica-
tion. bioRxiv. doi:10.1101/083071

Locatelli FF, Fernandez PC, Smith BH (2016) Learning about natu-
ral variation of odor mixtures enhances categorization in early 
olfactory processing. J Exp Biol 219(17):2752–2762. doi:10.1242/
jeb.141465

Martelli C, Carlson JR, Emonet T (2013) Intensity invariant dynam-
ics and odor-specific latencies in olfactory receptor neu-
ron response. J Neurosci 33(15):6285–6297. doi:10.1523/
JNEUROSCI.0426-12.2013

Mazor O, Laurent G (2005) Transient dynamics versus fixed points in 
odor representations by locust antennal lobe projection neurons. 
Neuron 48(4):661–673. doi:10.1016/j.neuron.2005.09.032

Michel WC, Ache BW (1992) Cyclic nucleotides mediate an odor-
evoked potassium conductance in lobster olfactory receptor cells. 
J Neurosci 12(10):3979–3984

Münch D, Galizia CG (2016) DoOR 2.0-comprehensive mapping of 
Drosophila melanogaster odorant responses. Sci Rep 6:21,841. 
doi:10.1038/srep21841

Münch D, Schmeichel B, Silbering AF, Galizia CG (2013) Weaker 
ligands can dominate an odor blend due to syntopic interactions. 
Chem Senses. doi:10.1093/chemse/bjs138

Murlis J, Willis MA, Cardé RT (2000) Spatial and temporal struc-
tures of pheromone plumes in fields and forests. Physiol Entomol 
25(3):211–222. doi:10.1046/j.1365-3032.2000.00176.x

Nagel KI, Wilson RI (2011) Biophysical mechanisms underlying olfac-
tory receptor neuron dynamics. Nat Neurosci 14(January):208–16. 
doi:10.1038/nn.2725

Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise ca(2+) 
probe composed of a single green fluorescent protein. Nat Bio-
technol 19(2):137–141. doi:10.1038/84397

Niven JE, Anderson JC, Laughlin SB (2007) Fly photoreceptors dem-
onstrate energy-information trade-offs in neural coding. PLOS 
Biol 5(4):e116. doi:10.1371/journal.pbio.0050116

R Core Team (2017) R: A language and environment for statistical 
computing

Ronderos DS, Lin CC, Potter CJ, Smith DP (2014) Farnesol-detecting 
olfactory neurons in Drosophila. J Neurosci 34(11):3959–3968. 
doi:10.1523/JNEUROSCI.4582-13.2014

Rospars JP (2013) Interactions of odorants with olfactory receptors 
and other preprocessing mechanisms: how complex and difficult 
to predict? Chem Senses. doi:10.1093/chemse/bjt004

Rospars JP, Lansky P, Chaput M, Duchamp-Viret P (2008) Competitive 
and noncompetitive odorant interactions in the early neural coding 
of odorant mixtures. J Neurosci 28(10):2659–66. doi:10.1523/
JNEUROSCI.4670-07.2008

Sachse S, Galizia CG (2003) The coding of odour-intensity 
in the honeybee antennal lobe: local computation opti-
mizes odour representation. Eur J Neurosci 18(8):2119–32. 
doi:10.1046/j.1460-9568.2003.02931.x

Sachse S, Rappert A, Galizia CG (1999) The spatial representation 
of chemical structures in the antennal lobe of honeybees: steps 
towards the olfactory code. Eur J Neurosci 11(11):3970–3982. 
doi:10.1046/j.1460-9568.1999.00826.x

Silbering AF, Galizia CG (2007) Processing of odor mixtures in the 
Drosophila antennal lobe reveals both global inhibition and glo-
merulus-specific interactions. J Neurosci 27(44):11966–11977. 
doi:10.1523/JNEUROSCI.3099-07.2007

Silbering AF, Okada R, Ito K, Galizia CG (2008) Olfactory infor-
mation processing in the Drosophila antennal lobe: any-
thing goes? J Neurosci 28(49):13075–13087. doi:10.1523/
JNEUROSCI.2973-08.2008

Stensmyr MC, Dweck HKKM, Farhan A, Ibba I, Strutz A, Mukunda 
L, Linz J, Grabe V, Steck K, Lavista-Llanos S, Wicher D, Sachse 
S, Knaden M, Becher PGG, Seki Y, Hansson BSS (2012) A 
conserved dedicated olfactory circuit for detecting harmful 
microbes in Drosophila. Cell 151(6):1345–1357. doi:10.1016/j.
cell.2012.09.046

Strauch M, Galizia CG (2012) Keeping their distance? odor response 
patterns along the concentration range. Front Syst Neurosci 6:71. 
doi:10.3389/fnsys.2012.00071

Su CY, Martelli C, Emonet T, Carlson JR (2011) Temporal coding of 
odor mixtures in an olfactory receptor neuron. Proc Natl Acad Sci 
USA 108(12):5075–80. doi:10.1073/pnas.1100369108

Syed Z, Ishida Y, Taylor K, Kimbrell DA, Leal WS (2006) Phero-
mone reception in fruit flies expressing a moth’s odorant recep-
tor. Proc Natl Acad Sci 103(44):16538–16543. doi:10.1073/
pnas.0607874103

https://doi.org/10.1093/chemse/bjq042
https://doi.org/10.1002/cne.23697
https://doi.org/10.1098/rspb.2016.0665
https://doi.org/10.1016/j.cell.2006.01.050
https://doi.org/10.1016/j.cell.2004.05.012
https://doi.org/10.3389/fnins.2014.00150
https://doi.org/10.3389/fnins.2014.00150
https://doi.org/10.1093/chemse/bjq102
https://doi.org/10.1093/chemse/bjq102
https://doi.org/10.1111/ejn.12481
https://doi.org/10.1007/s00359-013-0812-z
https://doi.org/10.1021/acs.chemrev.5b00561
https://doi.org/10.1021/acs.chemrev.5b00561
https://doi.org/10.1016/j.neuron.2005.04.007
https://doi.org/10.1016/j.neuron.2008.06.010
https://doi.org/10.1073/pnas.0700079104
https://doi.org/10.7554/eLife.20242
https://doi.org/10.1101/083071
https://doi.org/10.1242/jeb.141465
https://doi.org/10.1242/jeb.141465
https://doi.org/10.1523/JNEUROSCI.0426-12.2013
https://doi.org/10.1523/JNEUROSCI.0426-12.2013
https://doi.org/10.1016/j.neuron.2005.09.032
https://doi.org/10.1038/srep21841
https://doi.org/10.1093/chemse/bjs138
https://doi.org/10.1046/j.1365-3032.2000.00176.x
https://doi.org/10.1038/nn.2725
https://doi.org/10.1038/84397
https://doi.org/10.1371/journal.pbio.0050116
https://doi.org/10.1523/JNEUROSCI.4582-13.2014
https://doi.org/10.1093/chemse/bjt004
https://doi.org/10.1523/JNEUROSCI.4670-07.2008
https://doi.org/10.1523/JNEUROSCI.4670-07.2008
https://doi.org/10.1046/j.1460-9568.2003.02931.x
https://doi.org/10.1046/j.1460-9568.1999.00826.x
https://doi.org/10.1523/JNEUROSCI.3099-07.2007
https://doi.org/10.1523/JNEUROSCI.2973-08.2008
https://doi.org/10.1523/JNEUROSCI.2973-08.2008
https://doi.org/10.1016/j.cell.2012.09.046
https://doi.org/10.1016/j.cell.2012.09.046
https://doi.org/10.3389/fnsys.2012.00071
https://doi.org/10.1073/pnas.1100369108
https://doi.org/10.1073/pnas.0607874103
https://doi.org/10.1073/pnas.0607874103


972	 J Comp Physiol A (2017) 203:959–972

1 3

Szyszka P, Gerkin RC, Galizia CG, Smith BH (2014) High-speed odor 
transduction and pulse tracking by insect olfactory receptor neu-
rons. Proc Natl Acad Sci 111(47):16925–16930

Tabor R, Yaksi E, Weislogel JM, Friedrich RW (2004) Processing 
of odor mixtures in the zebrafish olfactory bulb. J Neurosci 
24(29):6611–20. doi:10.1523/JNEUROSCI.1834-04.2004

Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petre-
anu L, Akerboom J, a McKinney S, Schreiter ER, Bargmann CI, 
Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural 
activity in worms, flies and mice with improved GCaMP calcium 
indicators. Nat Methods 6(12):875–881. doi:10.1038/nmeth.1398

Tummino PJ, Copeland RA (2008) Residence time of receptor-ligand 
complexes and its effect on biological function. Biochemistry 
(Mosc) 47(20):5481–5492. doi:10.1021/bi8002023

Uchida N, Mainen ZF (2003) Speed and accuracy of olfactory discrimi-
nation in the rat. Nat Neurosci 6(11):1224–1229. doi:10.1038/
nn1142

Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heine-
mann SH, Hansson BS (2008) Drosophila odorant receptors are 
both ligand-gated and cyclic-nucleotide-activated cation channels. 
Nature 452(7190):1007–11. doi:10.1038/nature06861

Yao CA, Carlson JR (2010) Role of g-proteins in odor-sensing and 
CO2-sensing neurons in Drosophila. J Neurosci 30(13):4562–72. 
doi:10.1523/JNEUROSCI.6357-09.2010

https://doi.org/10.1523/JNEUROSCI.1834-04.2004
https://doi.org/10.1038/nmeth.1398
https://doi.org/10.1021/bi8002023
https://doi.org/10.1038/nn1142
https://doi.org/10.1038/nn1142
https://doi.org/10.1038/nature06861
https://doi.org/10.1523/JNEUROSCI.6357-09.2010

	Take time: odor coding capacity across sensory neurons increases over time in Drosophila
	Abstract 
	Introduction
	Materials and methods
	Animals
	Odorants
	Calcium imaging
	Stimulus application
	Mixture application
	Data analysis
	Response classification
	Bootstrapping
	Odorant discriminability
	Odorant classification
	Mixture trajectories
	Statistical testing


	Results
	Complex response dynamics of OSNs
	Response categories are differentially distributed across OSN classes
	Response dynamics depend on the odorant–OSN combination
	Temporal response dynamics carry odorant identity information
	New response dynamics can arise when mixing odorants

	Discussion
	Potential origin of complex response dynamics
	Impact on olfactory coding

	Acknowledgements 
	References




