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Abstract

In the past decade, a shift toward targeted therapies in non-small-cell lung cancer following 

molecular profiling has dramatically changed the way advanced adenocarcinoma is treated. 

However, tumor cells inevitably acquire resistance to such therapies, circumventing any sustained 

clinical benefit. As the genomic classification of lung cancer continues to evolve and as the 

mechanisms of acquired resistance to targeted therapies become elucidated and more improved 

target-specific drugs come into sight, the future will see more promising results from the clinic 

through the development of new therapeutic strategies to overcome, or prevent the development of, 

resistance for lung cancer patients.
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Introduction

Lung cancer has been the leading cause of cancer-related mortality in the past decade among 

men and women worldwide, with an estimated 160,000 deaths due to lung cancer predicted 

in 2014 for the USA alone [1–3]. Lung cancer has a 5-year overall survival rate of just 16 % 

for all stages, and survival has only minimally improved in the last three decades despite 

advances in surgical techniques, radiation, and systemic treatment [4]. Lung cancer is 

classified based on histology as either small-cell lung cancer (SCLC, 15 % of cases) or non-

small-cell lung cancer (NSCLC, 85 % of cases), with NSCLC further subtyped into 

squamous cell carcinoma, large-cell carcinoma, and adenocarcinoma [3, 5]. Surgery is the 

mainstay treatment in operable patients with NSCLC; however, only 15 % of patients are 

diagnosed at an early stage [4]. For SCLC, chemotherapy remains the cornerstone for 

therapy of this disease [6, 7].
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In metastatic NSCLC, chemotherapy has been the standard treatment for a long time, with 

different platinum-based chemotherapy regimens only offering modest clinical benefit, with 

response rates (RR) between 17 and 32 % and median overall survival between 7.4 and 9.9 

months [8–11]. These results have only been marginally improved by the addition of 

bevacizumab, an antivascular endothelial growth factor antibody, to chemotherapy in 

patients with nonsquamous histological subtypes [12].

In the past decade, a deeper understanding of the molecular abnormalities present in NSCLC 

that define disease subsets has been achieved, particularly in adenocarcinoma. This evolving 

genomic classification of NSCLC has helped to guide therapeutic strategies. The discovery 

of oncogenic drivers led to the design of therapies targeting tumors harboring specific gene 

alterations that cause aberrant signaling and proliferation [13]. The majority of these 

oncogenic drivers are tyrosine kinases, proteins that are key regulators of cellular 

proliferation, growth, and survival. Constitutive activation of these kinases through 

mutations can be targeted using small-molecule tyrosine kinase inhibitors (TKIs) or 

antibodies directed at receptor tyrosine kinases (RTKs), which have provided greater clinical 

benefit toward tumors that are oncogene-dependent [14–16].

Currently, most patients with NSCLC, particularly adenocarcinomas, routinely undergo a 

biopsy for molecular profiling of their tumor. The molecular analysis of the biopsy helps to 

provide insight into the molecular and histological characteristics of the disease to guide 

treatment decisions. Testing for EGFR mutations and anaplastic lymphoma kinase (ALK) 

fusions, regardless of sex, race, smoking history, or other risk factors, are prioritized over 

other molecular predictive tests [17–22]. This paradigm for targeted therapies in oncology 

allows the right patient to receive the most active therapy, while sparing those that are 

unlikely to benefit from the cost and potential morbidity associated with unresponsive 

therapeutic interventions. However, despite the clinical success of targeted therapies in 

NSCLC and other indications, responses typically last less than a year as tumors inevitably 

acquire resistance to such targeted therapies [5, 16]. Here, we review some of the known 

oncogenic drivers (EGFR, ALK, ROS1, RET, etc.) in NSCLC, its targeted therapies, and the 

acquired resistance to these therapeutic interventions that are observed in patients (Table 1).

EGFR

The epidermal growth factor receptor (EGFR) belongs to a family of RTKs that include 

ERBB2, ERBB3, and ERBB4 (also known as HER2, HER3, and HER4). Activating 

mutations in EGFR occur within the kinase domain in exons 18 to 21 and are mutually 

exclusive to KRAS mutations, which are the most prevalent oncogenic driver within NSCLC 

(Fig. 1). EGFR mutations are almost exclusively found in adenocarcinoma histology. 

Particular patient characteristics are more commonly associated with EGFR mutations: East 

Asian origin (40–55 %), female gender (22 %), and never-smokers (42 %) [26–29]. In 

Caucasians, the overall incidence of EGFR mutations is 10–15 %. Initially, the discovery 

that EGFR was overexpressed in many epithelial tumors galvanized the design for anti-

EGFR inhibitors. Gefitinib, erlotinib, and afatinib are small-molecule TKIs that can 

penetrate the cell membrane and bind to the ATP pocket of the EGFR kinase domain, 
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whereas cetuximab is an anti-EGFR antibody that prevents ligand-induced receptor 

dimerization [13].

In 2004, it was discovered that certain mutations in the kinase domain of EGFR lead to 

increased growth factor signaling and are associated with increased response rate of NSCLC 

patients to EGFR TKI treatment [30, 31]. After a large number of studies and investigations 

of copy number and expression of EGFR as potential biomarkers of activity of EGFR 

inhibitors, it became clear that the presence of activating mutations in EGFR (in particular 

exon 19 deletions and exon 21 substitutions such as L858R, which represent over 90 % of 

these activating mutations) was the best predictor of response [30, 31]. These findings 

eventually led to phase III studies that determined that NSCLC patients harboring EGFR-

activating mutations achieved superior overall response rates (ORR) and progression-free 

survival (PFS) with EGFR TKIs compared to chemotherapy alone in the first line treatment 

of advanced NSCLC [32, 33]. The IPASS study, which compared gefitinib to standard 

chemotherapy with carboplatin and paclitaxel in East Asian patients with adenocarcinoma 

and a light or never smoking history, concluded the superiority of gefitinib as initial 

treatment [32]. The subsequent studies investigated the same question in patients harboring 

EGFR-activating mutations (Table 2). Most of these studies were conducted in Asia, where 

the incidence of EGFR mutations is 3–4-fold higher than in the USA or Europe [29]; the 

EURTAC study, conducted mainly in Spain and a few other European countries, was able to 

replicate the results obtained in Asia [38]. All of these studies provided strong evidence for 

an increased response rate and increased PFS but not overall survival. The crossover to 

EGFR TKIs that occurred in patients who received chemotherapy first possibly explains the 

lack of increased overall survival. Also, of interest is that the overall survival in studies 

selecting for EGFR-positive mutation status is superior to that of studies with EGFR-

negative populations (about 22 vs 12 months) indicating that the presence of EGFR 

mutations also has prognostic significance [34]. In part, this increased survival may be also 

due to the reduced incidence of comorbidities in this mainly never-smoker population.

Despite the impressive high response rates to EGFR TKIs in EGFR-mutant NSCLC, none of 

the patients with advanced NSCLC can be cured with these treatments, and prolonged 

clinical benefit is limited due to acquired drug resistance. Acquired resistance can be defined 

as progression of the disease after responding in a patient harboring an EGFR-activating 

mutation while on continuous treatment with single-agent EGFR TKI [40].

The increasing use of repeat biopsies at the time of progression has offered the opportunity 

to study the mechanisms underlying resistance to EGFR TKIs as well as other drugs. 

Knowing the mechanism of resistance may have implication for the next treatment and 

potential participation in clinical trials of novel agents that are targeting the ensuing genetic 

abnormality [17]. The most common resistance mechanism to erlotinib and gefitinib is the 

development of the secondary mutation, T790Min EGFR exon 20, which occurs in 

approximately 50–60 % of patients [41–43]. This threonine-to-methionine mutation 

abrogates the inhibitory activity of the drug by inducing steric hindrance in the ATP-binding 

pocket of EGFR and also increases the binding affinity of ATP [44]. Resistance may arise 

from an undetectable minor T790M clone that is present in a small fraction of tumor cells 

prior to EGFR TKI treatment, which then gets propagated upon erlotinib or gefitinib therapy 
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[45]. Other secondary mutations in EGFR have been reported in erlotinib- and gefitinib-

relapsed patients. D761Y mutation in EGFR was found in a metastatic brain lesion of a 

patient who acquired resistance to gefitinib [46]; the EGFR secondary mutation T854A was 

reported in another case [47], and one patient who was on gefitinib treatment for 40 months 

acquired a L747S secondary mutation in EGFR [48]. These secondary mutations, however, 

occur at much less frequency than the T790M mutation.

Of interest, second (afatinib and dacomitinib) and third generation EGFR TKIs (CO-1686 

and AZD9291) have been developed to increase efficacy and cope with acquired secondary 

mutations which first generation TKIs confer; these inhibitors appear active on the T790M 

mutations while sparing wild-type EGFR in preclinical models [33, 49–51]. Afatinib gained 

FDA approval in mid-2013 based on the LUX-Lung 3 trial [33]. The activity of second 

generation inhibitors against the T790M mutation in clinical studies has been disappointing, 

primarily due to the subtherapeutic dose administered because of the dose-limiting toxicities 

by on-target wild-type EGFR inhibition, which commonly leads to skin rash and diarrhea 

[52]. On the contrary, CO-1686 and AZD9291 have already demonstrated significant 

activity in patients with EGFR-mutant advanced NSCLC that failed prior EGFR TKIs and 

do not appear to have the typical side effects related to inhibition of wild-type EGFR, which 

are the most common side effects of the first generation EGFR TKIs (gefitinib and erlotinib) 

which have a weak effect on wild-type EGFR [50, 51]. However promising, the data on 

third-generation EGFR inhibitors CO-1686 and AZD9291 are preliminary, and we are still 

awaiting the full results of the phase I clinical trials [51, 52].

In addition to secondary EGFR mutations, activation of bypass pathways is a frequently 

occurring theme in the mechanisms of resistance to RTK-targeted inhibition. Amplification 

of the MET oncogene was initially observed in around 20 % of EGFR-mutant NSCLC 

patients who acquire resistance to EGFR TKIs, but its real incidence is probably a more 

modest 5 % [5]. This amplification occasionally coexists with the T790M secondary 

mutation [53, 54]. MET oncogene encodes a RTK, which activates the phosphoinositide-3-

kinase (PI3K)/Akt signal transduction pathway independent of EGFR through 

phosphorylation of ERBB3, creating a bypass mechanism that promotes resistance to EGFR 

TKIs. Activation of MET can also be driven by increased production of its ligand, hepatic 

growth factor (HGF), which is sufficient to activate downstream signaling and to promote 

resistance to EGFR TKIs [55, 56].

HER2 amplification, by fluorescence in situ hybridization (FISH), is also observed in 12 % 

of patient tumor samples that acquired resistance to EGFR TKIs, compared to 1 % of EGFR 

TKI naive tumor samples. HER2 amplification was mutually exclusive of T790M secondary 

mutation in this study [57]. AXL kinase, another RTK, has also been shown to drive 

resistance to EGFR TKIs either through overexpression of AXL or upregulation of its ligand 

GAS6 [58]. AXL activation confers drug resistance through the mitogen-activated protein 

kinase (MAPK), PI3K/Akt, and NFκB signaling pathways. Twenty percent of tumor 

samples from patients that acquired resistance to EGFR TKIs showed increased expression 

of AXL, and this overexpression was mutually exclusive with MET amplification [58]. 

Mutations in the PIK3CA gene encoding the p110α catalytic subunit of PI3K were observed 

in 5 % of tumor samples that acquired resistance to EGFR TKIs [43]. However, PI3K-
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activating mutations usually coexist with other oncogenic drivers, including EGFR, KRAS, 

or ALK [59]. The effect of concurrent mutations on acquired resistance to EGFR TKIs 

remains to be explored.

Histological transformation of NSCLC to SCLC occurs in 14 % of patients; none of whom 

demonstrated EGFR T790M mutation or MET amplification; however, one patient 

developed a PIK3CA mutation [43]. These patients were sensitive to standard SCLC 

chemotherapy. In another study of tumor specimens at the time of acquired resistance, only 

3 % of patients had transformed to SCLC histology [60].

The notion that MET amplification, AXL kinase activation, and PIK3CA mutations are 

involved in the mechanisms of acquired resistance offers the rationale of using combinatorial 

therapies targeting EGFR and MET, or EGFR and AXL kinase, or EGFR and PIK3CA to 

extend the survival of EGFR-mutant NSCLC patients [52, 53, 58]. Various clinical trials are 

currently designed to target the moment of occurrence of resistance with a new agent in 

combination with EGFR TKI (NCT01887886 and NCT01487265). However, limitations 

involving overlapping toxicities in combination therapy can lead to suboptimal dosing of 

each agent [52].

ALK

Anaplastic lymphoma kinase (ALK) is a RTK that belongs to the insulin receptor family on 

the basis of their similarities in the kinase domain [61]. In 3–7 % of NSCLC, ALK fusion 

proteins occur, causing constitutive activation of ALK and mediating oncogenesis through 

the MAPK, JAK/STAT, and PI3K/Akt signal transduction pathways [62–64]. ALK gene 

rearrangements can occur through different fusion partners, including KIF5B-, TFG-, 

KLC1-, PTPN3-, STRN-, and the most common, EML4-ALK [61]. At least seven variants 

of EML4-ALK have been identified based on the number of exons of EML4 fused to ALK 

kinase domain [65]. The EML4-ALK fusions generated by a small inversion within the short 

arm of chromosome 2 typically occur in young never-smokers, are mutually exclusive of 

EGFR and KRAS mutations and have brought forth new treatment options for this subset of 

NSCLC [66]. Patients are screened for the presence of ALK-positive NSCLC using an FDA-

approved break-apart FISH method to detect for the presence of ALK rearrangement [67]. 

Crizotinib, an ALK, ROS1, and MET inhibitor, is a first-in-class FDA-approved targeted 

therapy for NSCLC patients harboring ALK fusion protein. It was shown to be clinically 

efficacious in ALK-positive NSCLC with a response rate close to 60 % [68], and when 

compared to chemotherapy in a phase 3 open-label trial in patients who had failed one prior 

platinum-based regimen, the median PFS and RR in the crizotinib group was 7.7 months and 

65 %, respectively, versus 3.0 months and 20 % [69]. However, in this phase 3 trial, there 

was no improvement in overall survival probably due to the crossover of patients from 

chemotherapy to crizotinib [69]. Crizotinib therapy was shown to be associated with 

improved overall survival compared with crizotinib-naive patients in a retrospective analysis 

[70].

Similarly to EGFR TKIs, acquired resistance to crizotinib can occur via secondary mutations 

in ALK protein, which are observed in 22–36 % of ALK-positive NSCLC patients [71, 72]. 
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The most common secondary mutation in ALK is the gatekeeper L1196M mutation, 

analogous to the T790M gatekeeper mutation in EGFR [73]. The leucine-to-methionine 

substitution causes steric hindrance in the binding pocket of ALK, thus preventing crizotinib 

from binding effectively. Additionally, other secondary mutations in ALK have been 

observed in crizotinib-resistant patient samples, including T1151ins, G1202R, S1206Y, 

L1152R, and G1269A among others [72–75]. Although the mechanism in which specific 

secondary mutations confer resistance to crizotinib is unknown, it is likely that the mutations 

either reduce the binding affinity of crizotinib to ALK or increase the ATP affinity for the 

mutant ALK, or both.

Second generation ALK inhibitors that are more potent than crizotinib, such as ceritinib 

(LDK378) and alectinib (CH5424802), are currently under clinical investigation (Table 3). 

In a subset of 80 crizotinib-resistant ALK-positive patients, ceritinib treatment resulted in a 

56 % ORR [77]. Alectinib shows antitumor activity against the gatekeeper L1196M 

mutation in ALK that frequently arises in acquired resistance to crizotinib [83]. In a single-

arm, open-label phase II study, alectinib was given to ALK-inhibitor-naive patients, of 

whom 93.5 % achieved an objective response [78]. Alectinib achieved a 54 % response rate 

in 37 evaluable crizotinib-resistant patients (preliminary data) [79]. These studies validate 

the necessity for second and third generation TKIs to overcome acquired resistance or to 

delay the development of resistance. However, multiple minor resistant populations within a 

tumor mediated by different oncogenic drivers may exist; thus, the efficacy of a potent 

single-agent therapy may be limited due to the intratumor heterogeneity.

Furthermore, mechanisms of crizotinib resistance can also occur through copy number gain 

of the ALK gene, either alone or together with secondary mutations in ALK [71, 72]. Other 

mechanisms that have been observed in patients include activation of bypass signaling 

involving KIT amplification and increased phospho-EGFR levels due to elevated ligand 

levels [71]. One patient had both KIT amplification and a secondary G1202R ALK 

mutation, further confirming the notion that multiple mechanisms of resistance can be 

activated in the same patient [71]. EGFR-activating mutations have also been observed in 

patients who acquired resistance to crizotinib, as well as mutations in the KRAS oncogene 

[72]; however, in another study of 25 criztonib-resistant ALK-positive patients, these 

mutations were not evident [66].

ROS1

ROS1, remotely related to the ALK and insulin receptor family, is another RTK that can 

form oncogenic fusion proteins to define a new molecular class of NSCLC. ROS1 gene 

fusions are observed in around 1–2 % of NSCLC patients; all of whom have 

adenocarcinoma and are typically young never-smokers [84, 85]. ROS1 translocations does 

not overlap with other oncogenic drivers and can rearrange with several different partners, 

including SDC4, CD74, and GOPC, while still harboring the kinase domain that is 

constitutively active [84, 86]. CD74-ROS1, observed in 30 % of ROS translocations, was 

found to mediate invasiveness through phosphorylation of extended synaptotagmin-like 

protein, E-Syt1 [87]. Given that the ROS1 and ALK kinases share high sequence homology 

with 77 % at the ATP-binding site [88], crizotinib has shown to be efficacious in patients 
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harboring ROS1 translocations [76, 85], with a 56 % RR [89]. However, acquired resistance 

to crizotinib inevitably occurs. The glycine-to-arginine substitution at codon 2032 in the 

ROS1 kinase domain has been observed in a crizotinib-treated CD74-ROS1-positive NSCLC 

patient [90]. In another case, a patient with SDC4-ROS1 NSCLC experienced disease 

progression after successful treatment with crizotinib, and the resistant biopsy suggested an 

oncogenic switch mediated by EGFR activation as the potential mechanism of resistance 

[91]. Ongoing clinical trials are testing second- and third-generation ALK inhibitors 

ceritinib (LDK378), AP26113, and ASP3026 in ROS1-positive tumors (NCT01964157, 

NCT01449461, and NCT01284192).

RET

Another oncogenic driver in NSCLC is the fusion of the RTK RET, and similar to ROS1 

gene rearrangements, RET gene fusions are mutually exclusive of other driver mutations and 

are found in around 1–2 % of NSCLC patients, typically never-smokers [84, 92, 93]. RET 

fusions were originally found in papillary thyroid cancers and could fuse with several genes 

including KIF5B and lead to constitutive activation of RET kinase [86, 92]. RET-rearranged 

NSCLC all show moderate to well differentiated tumor cells, and histopathological features 

are common between patient biopsies including positive staining for thyroid transcription 

factor 1 (TTF-1) and napsin A and negative staining for thyroglobulin [92]. Tumor cell 

nuclei also displayed prominent intranuclear inclusions [86]. RET can be targeted with TKIs 

such as vandetanib and cabozantinib [3]. In the preliminary data of a phase II trial of 

cabozantinib (NCT01639508), two of three NSCLC patients with RET fusion-positive 

confirmed partial responses (one with a novel TRIM33-RET fusion), while the third patient 

had prolonged disease stabilization [94].

MET

In addition to the MET amplifications in EGFR TKI-treated EGFR-mutant NSCLC patients, 

high copy number of MET gene has been observed in up to 11 % of NSCLC patients 

(resected from primary tumor site in lung) and correlated with shorter survival time [95]. 

However, different techniques are used to determine MET gene amplification and 

overexpression, including FISH and immunohistochemistry (IHC) analysis, which may lead 

to discordant results. For example, using a FISH assay to determine MET gene amplification 

will not clearly differentiate between real MET gene amplification and polysomy. Thus, it 

remains critical to standardize and optimize for real MET gene amplification or MET 

overexpression to better select and define the patient population that will benefit from anti-

MET therapies [95, 96].

Various therapies targeting the HGF/MET pathway are in the clinic, including crizotinib, 

onartuzumab, and tivantinib [3]. However, multiple studies have cast doubt on tivantinib’s 

ability to selectively inhibit MET to induce cell death, including tivantinib’s potential to 

inhibit microtubule dissociation as one of its off-target effects [97, 98]. In one case, an ALK-

negative patient with de novo MET-amplified NSCLC achieved a rapid and durable response 

to crizotinib therapy, exemplifying crizotinib’s ability to effectively inhibit MET and 

validating METas an oncogenic driver [99]. Onartuzumab is a humanized monovalent 
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monoclonal antibody directed at MET to prevent HGF ligand binding [100]. In a 

randomized phase II trial comparing onartuzumab and erlotinib versus placebo and erlotinib 

in MET-positive NSCLC patients (confirmed by IHC), patients treated with onartuzumab 

showed improved PFS and OS. Clinical outcomes were worse in MET-negative patients 

treated with onartuzumab plus erlotinib than control, highlighting the importance of 

companion diagnostic testing [100]. Preclinical models suggest that MET and KRAS gene 

amplifications along with activation of EGFR pathway serve as mechanisms of acquired 

resistance to MET TKIs [101, 102].

HER2

The initial discovery of EGFR mutations in NSCLC galvanized subsequent interest in 

finding other oncogenic drivers. HER2 kinase domain mutations were present in around 1–

4 % of primary lung tumors [103–105]. Mutations in exon 20 of HER2 are mutually 

exclusive with KRAS (except for one patient) and EGFR mutations, observed predominantly 

in female never-smokers with adenocarcinoma subtype [105]. Several HER2-targeted 

therapies have been developed, including antibodies directed at HER2 like trastuzumab and 

pertuzumab and small-molecule TKIs like afatinib and lapatinib [105]. Recently, 

trastuzumab has been shown to control disease at a rate of 96 % (n=15) and is currently 

being tested in clinical trials for patients with HER2 mutation, amplification, or IHC-

positive NSCLC (NCT00004883 and NCT00758134) [105]. Lapatinib, however, has been 

unsuccessful in demonstrating clinical benefit to NSCLC patients with HER2 gene 

amplification or kinase mutations [106].

BRAF

BRAF is a serine/threonine kinase downstream of KRAS in the MAP kinase signaling 

pathway, and mutational activation of BRAF occurs in approximately 60 % of human 

melanoma [107]. In particular, the V600E BRAF mutation accounts for over 90 % of BRAF 

mutations in melanoma, and targeted therapies, such as vemurafenib, have shown over 50 % 

overall response rate for V600EBRAF-driven advanced melanomas [108, 109]. In lung 

adenocarcinomas, 3–5 % of patients have missense mutations in the BRAF gene with a little 

over 50 % of the BRAF mutations represented by V600E; other BRAF mutations included 

G469A and D594G [108]. These patients were typically former or current smokers [108, 

110]. Debrafenib is a selective inhibitor of mutant BRAF that has demonstrated clinical 

efficacy in a phase II study in previously treated BRAF V600E-mutated NSCLC patients. 

Preliminary results show a RR of 54 %, validating BRAF as an actionable target in NSCLC 

[111]. In one case, a BRAF-mutant NSCLC patient treated with debrafenib acquired 

resistance through an oncogenic mutation in KRAS [112]. NSCLC patients with non-BRAF 

V600E mutations are unlikely to benefit from V600E specific BRAF inhibitors such as 

debrafenib; thus, inhibiting downstream targets such as MEK may offer clinical benefit 

[113].
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PI3K

Activation of phosphatidylinositol 3-kinase (PI3K), an intracellular membrane-bound 

kinase, regulates cell growth, proliferation, and survival. Activating mutations in PIK3CA 

gene, which encodes the catalytic subunit of PI3K, are observed in 1–4 % of NSCLC 

patients of primarily squamous cell carcinoma histology [113]. PIK3CA mutations cause 

aberrant signaling through the PI3K/Akt/mTOR pathway; however, they often coexist with 

other oncogenic drivers such as EGFR, KRAS, or ALK in about 2 % of lung 

adenocarcinomas [59]. Ongoing phase II trials are being conducted in NSCLC patients to 

examine combinations of PI3K inhibitors with chemotherapy or other targeted agents 

(NCT01297491, NCT01493843, and NCT01487265).

Other oncogenic drivers

RAS oncogenes (KRAS and NRAS) are oncogenic drivers observed in about 30 % of lung 

cancer, mainly adenocarcinomas; however, there have been a lack of clinically efficacious 

drugs targeting RAS in the clinic [3, 25]. Clinical trials of targeted therapies inhibiting 

proteins downstream of RAS (i.e., MEK inhibitors) are ongoing for NSCLC patients with a 

KRAS-positive mutation (NCT01362296 and NCT01229150). Recently, gene fusions that 

include the kinase domain of NTRK1 have been observed in 3.3 % of lung cancer patients 

with otherwise unknown oncogenic alterations, and this gene rearrangement can transform 

cells in vivo [24]. One patient with MPRIP-NTRK1 fusion gene consented to treatment with 

crizotinib and achieved minor radiographic response before the disease progressed after 3 

months [24]. Another study has observed activating mutations in the small GTPase gene 

RIT1 in 2 % of lung adenocarcinoma patients with otherwise unknown oncogenic mutations, 

and mutated RIT1 induces transformation of cells into the malignant phenotype in vitro and 

in vivo [25]. Mutations in DDR2 kinase gene occur in around 4 % of lung squamous cell 

carcinomas, and potentially could be sensitive to the multi-targeted TKI dasatinib in patients 

harboring this mutation [114]. Gene amplification of FGFR1, a membrane-bound RTK, 

occurs in 21 % of squamous cell carcinoma and 1–3 % of adenocarcinomas [113, 115]. 

FGFR1 amplification in lung adenocarcinomas tends to be more common in male heavy 

smokers; however, this analysis of patient characteristics was not statistically significant 

[23]. Several FGFR TKIs are under clinical investigation, such as AZD4547, a selective 

inhibitor of FGFR1/2/3 that is in a proof-of-concept phase II clinical trial (NCT01795768) in 

patients with FGFR1-amplified squamous cell carcinoma of the lung [3].

Targeted immunotherapy and future direction

Immunotherapies are achieving promising results in the clinic and have emerged not only as 

an effective way to inhibit oncogenic proteins or survival factors but also to enrich the power 

of the immune system [116]. The interaction between ligand PD-L1 and PD-1 on activated T 

cells plays a crucial role for tumor evasion [3]. High levels of PD-L1 on tumor cells have 

been reported in NSCLC patients and targeting PD-1 and PD-L1 with nivolumab and 

MPDL3280A, respectively, has demonstrated antitumor activity in clinical trials 

(NCT01673867, NCT01721759, NCT01846416, NCT01903993, and NCT01375842) [3, 82, 

116, 117]. Immunotherapies may be especially beneficial to heavy smokers who accumulate 
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many somatic mutations, where one single driver mutation may not exist such as squamous 

cell carcinomas and SCLCs. In addition, acquired mutations to TKIs may lead to the 

upregulation of PD-L1 in tumor cells. In this regard, immunotherapies may help to address 

the challenge of acquired resistance to TKIs. The re-biopsy of NSCLC tumors at recurrence 

is becoming increasingly critical to understand the underlying molecular changes causing 

acquired resistance to treatment. Molecular profiling of the tumor provides clinicians a 

rational therapeutic strategy in the next line of treatment to overcome resistance. However, 

the feasibility of obtaining quality biopsies in lung tumors remains a great challenge due to 

tumor location, potential harm to the patient, and disease status among others [3].

Technological advances in sequencing may help to overcome this challenge. Next generation 

and exome sequencing of tumors without known oncogenic drivers helped to discover new 

oncogenic drivers such as NTRK1 and RIT1, respectively [24, 25]. In addition, advances in 

next-generation deep sequencing (NGS) may potentially detect mechanisms of resistance 

through noninvasive means before the clinical diagnosis of progressive disease is observed 

[52]. The noninvasive analysis of acquired resistance through exome-wide sequencing of 

circulating tumor DNA has yielded comparable results, for example, the detection of T790M 

mutation in EGFR of a gefitinib-resistant NSCLC patient [118]. In addition, with NGS, one 

can also identify minor populations of resistance clones in a heterogeneous tumor. Genomic 

testing of NSCLCs alongside histological testing will allow for candidate patients to be 

identified for optimal therapeutic intervention, ultimately reducing the risk of clinical trial 

failure and increasing patient benefit through personalized medicine.
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Fig. 1. 
The pie chart summarizes the prevalence of genetic mutations in adenocarcinoma of the lung
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Table 1

Molecular targets and therapies in lung adenocarcinoma

Molecular targets Prevalence (%) More commonly associated patient 
characteristics

Targeted therapies

RAS 30 Former/current smokers None

EGFR 10–18 Caucasian; 40–55 Asian East Asian, female, never smokers Erlotinib, gefitinib, afatinib

ALK 3–7 Young, never smokers Crizotinib, LDK378

ROS 1–2 Young, never smokers Crizotinib

RET 1–2 Never smokers Vandetanib, cabozantinib

PIK3CA 2 Concurrent with other oncogenic drivers GDC-0941, BKM120

BRAF 3–5 Former/current smokers Debrafenib

HER2 1–4 Female, never smokers Trastuzumab, pertuzumab, afatinib

RIT 2b Not available GDC-0941

NTRK1 3b Female, never smokers Crizotinib

MET 11 Mutually exclusive with EGFR mutations Crizotinib, onartuzumab, tivantinib

FGFR1 1–3 Male, smokersa AZD4547

a
Not statistically significant [23]

b
Frequencies were detected from patients with otherwise unknown oncogenic mutations; thus the prevalence is an overestimation [24, 25]
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Table 2

Phase III trials comparing first-line treatment of EGFR TKIs to chemotherapy on patients with EGFR-positive 

mutation status

Study (reference) Treatments PFS (months) OS (months)

IPASS [32, 34]a Gefitinib vs carbo/paclitaxel 9.5 vs 6.3 21.6 vs 21.9

First-SIGNAL [35] Gefitinib vs cis/gem 8 vs 6.3 27.2 vs 25.6

WJTOG3405 [36] Gefitinib vs cis/doce 9.2 vs 6.3 36 vs 39

NEJSG [37] Gefitinib vs carbo/paclitaxel 10.8 vs 5.4 30.5 vs 23.6

EURTAC [38] Erlotinib vs chemotherapy 9.7 vs 5.2 19.3 vs 19.5

OPTIMAL [39] Erlotinib vs carbo/gem 13.1 vs 4.6 22.7 vs 28.9

LUX-Lung 3 [33]** Afatinib vs cis/pemetrexed 11.1 vs 6.9 16.6 vs 14.8b

PFS progression-free survival, OS overall survival

a
IPASS study included East Asians with advanced pulmonary adenocarcinoma who were light or never smokers; the data above represents the 

EGFR-positive subgroup of the randomized study

b
Preliminary OS data (25th percentile), not statistically significant
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Table 3

ALK TKIs in the clinic

ALK inhibitors (reference) ROS1 activity Status NCT identifier

Crizotinib [68, 69, 76] Yes Approved for ALK-positive NSCLC; investigational for 
ROS1

NCT00585195

Ceritinib (LDK378) [77] Yes Phase II/III NCT01828099, NCT01828112

Alectinib (CH5424802) [78, 79] No Phase I/II NCT01588028

AP26113 [80] Yes Phase I/II NCT01449461

ASP3026 [81] Yes Phase I NCT01284192

Modified from Brahmer et al. [82]
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