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Abstract
Small intestinal mucosa is characterised by villus 
forming connective tissues with highly specialised 
surface lining epithelial cells essentially contributing 
to the establishment of the intestinal border. In order 
to perform these diverse functions, spatially distinct 
compartments of epithelial differentiation are found 
along the crypt-villus axis, including Paneth cells as a 
highly specialised cell type. Paneth cells locate in crypts 

and assist undifferentiated columnar cells, called crypt 
base columnar cells, and rapidly amplifying cells in the 
regeneration of absorptive and secretory cell types. There 
is some evidence that Paneth cells are involved in the 
configuration and function of the stem cell zone as well 
as intestinal morphogenesis and crypt fission. However, 
the flow of Paneth cells to crypt bottoms requires strong 
Wnt signalling guided by EphB3 and partially antagonised 
by Notch. In addition, mature Paneth cells are essential 
for the production and secretion of antimicrobial peptides 
including α-defensins/cryptdins. These antimicrobials 
are physiologically involved in shaping the composition 
of the microbiome. The autophagy related 16-like 1 
(ATG16L1) is a genetic risk factor and is involved in the 
exocytosis pathway of Paneth cells as well as a linker 
molecule to PPAR signalling and lipid metabolism. There 
is evidence that injuries of Paneth cells are involved in 
the etiopathogenesis of different intestinal diseases. The 
review provides an overview of the key points of Paneth 
cell activities in intestinal physiology and pathophysiology.

Key words: Antimicrobial peptide; Paneth cell; Crohn’s 
disease; Microbiome; Small intestine

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Paneth cells physiologically locate in small intestinal 
crypts. Wnt signalling promotes their differentiation and 
movement into crypts, whereas Notch activities antagonise 
Paneth cell maturation. The cells essentially contribute to 
crypt morphogenesis and intestinal homeostasis, sharpening 
the microbiome by secreting antimicrobial peptides, like 
defensins, and crypt fission. There is increasing molecular 
evidence that Paneth cells disorders are strongly involved in 
the pathophysiology of several intestinal diseases including 
ileal Crohn’s disease and necrotising enterocolitis.
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INTRODUCTION
The human small intestine is a multi-layered organ with 
complex cellularity. The intestinal mucosa is characterised 
by villus forming connective tissues with highly spe-
cialized surface lining epithelial cells. The epithelium 
is highly dynamic and interacts with the underlying 
mesenchyme and the luminal content. In order for these 
diverse functions to be performed, spatially distinct 
compartments of epithelial differentiation are found along 
the crypt-villus axis (CVA). Stem cells located in the 
crypts are responsible for the high throughput of surface 
lining cells within a few days. Histomorphologically, 
the CVA is a very characteristic mucosal feature and 
fundamental in explaining the structure and function of 
the surface lining epithelia. At present, four important 
cell types are defined, namely absorptive (enterocytes), 
mucosecreting (goblet cells), enteroendocrine, and 
Paneth cells[1]. Some other epithelial and non-epithelial 
cell types are found at the mucosal surface, including 
M-cells, brush/tuft/caveolated cells, and several types of 
intraepithelial lymphocytes.

Enterocytes are most common in the surface epith-
elium and are responsible for digestion and absorption 
of nutrients as well as in forming the intestinal border. 
They are assisted by mucosecreting/goblet cells which 
producing several mucine types which are chemically 
different along the intestinal tract. Goblet cells increase 
in number from oral to aboral as the stool becomes 
increasingly compacted. Enteroendocrine cells represent 
the third important cell type and comprise a highly 
specialised chemosensory system involved in sensing the 
energy balance and reserve of an individual. A detailed 
classification of enteroendocrine subtypes is possible by 
the specific intestinal hormones that are produced and 
the assistance of Notch signalling in enteroendocrine cell 
differentiation[2,3].

Paneth cells, first described by Gustav Albert 
Schwalbe in 1872, originate directly from intestinal 
stem cells[4]. In contrast to other secretory cell types, 
Paneth cells are physiologically found at the bottom 
positions of small intestinal crypts (Figure 1). The 
unique histomorphological feature implicates special 
functions of Paneth cells in cellular homeostasis as 
well as in the establishment and configuration of the 
mucosal barrier as a physical and highly organised 
immune interface. Recently, some molecular mechanisms 
underlying secretory disorders of Paneth cells were 
identified strongly related to intestinal diseases, e.g., 
ileal Crohn’s disease and necrotising enterocolitis. The 
important etiopathological findings were addressed 
and summarised with the term “Paneth’s disease” and 
introduced in the literature[4].

In the following paragraphs, important aspects 
of Paneth cell physiology and pathophysiology are 
reviewed. The data clearly demonstrate that Paneth 
cells are a highly specialized cell type strongly involved 
in assisting to sharpen and maintain of the microbiome 
as well as in the establishment of the stem cell niche 

and promotion of cellular renewal and mucosal mor-
phogenesis. Consequently, Paneth cell disorders are 
involved in the pathophysiology of intestinal diseases.

PANETH AND STEM CELL NETWORK
The small intestinal epithelium renews within 3-6 d. 
The extraordinary rate of cell renewal is driven by a 
vigorous proliferation within crypts and a highly dynamic 
movement of epithelial columns toward the villus tip. The 
intestinal epithelia descend from a distinct stem cell zone 
located in small intestinal crypts. The zone consists of 
Paneth cells and 4 to 6 independent intestinal adult stem 
cells adjacent to rapidly cycling progenitors in the upper 
part of intestinal crypts.

The stem zone model is orientated on the morp-
hological finding of crypt base columnar cells (CBC cells). 
These undifferentiated cycling cells are intermingled with 
Paneth cells and are hierarchically followed by Mix cells 
located directly above the Paneth cells[5-7]. Mix cells are 
assumed to be strongly amplifying precursors of the 
different epithelial cell lines including Paneth cells. 

In contrast to the stem cell zone model, a +4 po-
sition model has been suggested[8]. The model was sub-
stantiated by the finding that severe radiation sensitivity 
exists in the +4 position[9]. In this location, active cell 
cycling is found and radiation sensitivity indicates sufficient 
protection of the stem cell compartment from genetic 
damage. In the proposed model, injured +4 position 
stem cells are replaced by earlier generations of transit 
amplifying (TA) cells with a better repair capacity and 
asymmetric segregation of old and new DNA strands[10]. 
Some parallels exist between the both models including 
definition of a slow and a rapid cycling cell type and an 
assisting role of Paneth cells in maintaining stem cell 
behaviour.

Maturing Paneth cells migrate downward into small 
intestinal crypts, where they reside for 3-6 wk[11]. Paneth 

Figure 1  Normal small intestinal crypts with basal orientated Paneth 
cells. A: Paneth cells are characterised by their apical located granules (arrows). 
Between Paneth cells undifferentiated progenitor cells are found. In the normal 
Lamina propria mucosae a mixed population of immune cells and stroma 
resident cells is found; B: Occasionally, Paneth cells at the bottom of small 
intestinal crypts are mixed up with enteroendocrine cells (arrow). They are 
characterised by basal located granules. In the upper part of the crypt, a mitotic 
figure is shown.
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cells escape from the crypt bottom by cellular frag-
mentation and phagocytosis from lamina propria mucosae 
infiltrating macrophages. There is experimental evidence 
that Wnt signalling and the expression of Wnt target 
genes are essential in the configuration and function of the 
stem cell zone including establishment of rapidly cycling 
TA cells[4,12-14]. In a current model, an increasing gradient 
of Wnt activity directed into the small intestinal crypt 
is proposed reflecting the governing action of adjacent 
mesenchymal cells that release Wnt proteins. At the base 
of crypts, β-catenin is enriched in the nuclei of progenitor 
cells implying a strong response to Wnt signalling. The 
Wnt gradient is crucial for a graded expression of EphB2 
and EphB3 acting as cell-sorting receptors along the 
CVA[15]. In addition, graded Wnt activity is essential in 
the differentiation of Paneth cells with accumulation of 
large granules in the cytoplasm. Terminal differentiation 
of Paneth cells exists at the crypt bottom, where Wnt 
activity is maximised and several Wnt target genes are 
expressed[16]. It has to be stressed that the expression 
pattern of Wnt target genes, especially Lgr5/Gpr49, is 
essential in the establishment of the small intestinal crypt 
stem cell zone including CBC cells interspersed between 
the maturing Paneth cells[10]. Recently, intestinal organoids 
were used to visualize the short-range Wnt gradient in the 
intestinal stem cell niche[17].

Paneth cells are important players in the intestinal 
stem cell niche, but they are identified as nonessential 
constituents. In a mouse model deficient in Math1 
(Atoh1), which totally and permanently lacks Paneth 
cells, Lgr5+ CBCs occupied the full crypt base, showed 
strong proliferation, and generated differentiated progeny 
over months[18]. The increased proliferation along the 
CVA was associated with an increase in crypt height 
in the duodenum (13%) and ileum (15%). Enhanced 
or unaffected levels of Wnt target transcripts of genes 
associated with cell proliferation such as CD44, Myc, and 
Ccnd1 were found. Using a different strategy of intestinal 
Math1 deficiency, functional intestinal stem cells were 
found after Paneth cell ablation[19]. In this study, ex vivo 
and in vivo experiments were performed to clarify the 
role of mesenchyme in the establishment of the stem 
cell niche. In the ex vivo setting, Math1-deficient crypt 
cells were not able to self-renew or survive indicating for 
extraepithelial, mesenchymal signals necessary for stem 
cell activities. Using caspase-8 deleted mesenchyme-free 
organoids, differentiation of Paneth cells was found[20].

The Wnt dependency of Paneth cell differentiation 
is modified by other signalling cascades including the 
hierarchical Notch. The expression of Notch receptors 
is found in CBCs, and Paneth cells express the corre-
sponding ligands[21]. Consequently, Paneth cells are 
postulated as a source of Notch signalling to maintain 
CBC functions and crypt activities. It is suggested that 
some CBC functions unrelated to secretory metaplasia 
may require a Paneth cell source of Notch signalling.

Inhibition of Notch by pharmacological inactivation 
of the γ-secretase, an enzyme that is involved in Notch 
signalling, is already established. In dibenzazepine (DBZ) 

- treated wild-type black-6 mice, a significant increase 
in secretory differentiated cells located throughout small 
intestinal crypts is found. After DBZ treatment, small 
intestinal crypts are lined by orthotopic Paneth cells and 
transdifferentiated cells with morphological features 
mixed from Paneth cells and mucus-retaining cells (Fi-
gure 2). The change in secretory differentiation is called 
secretory metaplasia.

PANETH CELL METAPLASIA
In distinct intestinal disorders, the physiology of Paneth 
cells is disturbed. In general, true injuries/diseases of 
Paneth cells should be separated from such intestinal 
disorders, where differentiation of Paneth cells is 
necessary to compensate cellular stress or misdirected 
mucosal differentiation/tissue homeostasis. The im-
portant histomorphological findings include loss, trans-
differentiation or metaplasia of Paneth cells.

Metaplasia is defined as the occurrence of diff-
erentiated cells in a histomorphological location, where 
they are physiologically not found. Paneth cell metaplasia 
is seen throughout the gastro-intestinal tract, but fre-
quently manifests in the stomach and is associated with 
different intestinal injuries (Figure 3). In addition, Paneth 
cell metaplasia is found in extra-gastro-intestinal sites, 
like the lung and tracheobronchial system, pancreatico-
biliary tract, and the uro-genital tract, but is a rarity in the 
nasopharyngeal system. It has been postulated that Notch 
may be involved in forms of pre-cancerous, metaplastic 
conditions in the stomach, which typically results from 
a loss of parietal cells and chronic inflammation. The 
expression of Math1, which is physiologically not found in 
normal gastric mucosa, has been shown to be upregulated 
in intestinal metaplasia of the stomach[22,23].

Paneth cell loss is a hallmark of special types of 
Crohn’s disease and is also found in acute inflammation 
like graft vs host disease (GvHD) grade Ⅱ and Ⅲ and 
ischemic tissue damage[20,24]. The phenomenon of tra-
nsdifferentiation, whereby Paneth cells are replaced 
by lysozyme-producing mucus cells, is described in 
inflammatory small intestinal disorders and in celiac 
disease. There is some phenomenological evidence that 
Paneth cell transdifferentiation could be due to re-pro-
grammed stem cells[25].

At present, it is well established that the molecular 
framework underlying the process of regular Paneth 
cell differentiation and maturation strongly depends 
on Wnt activity[16]. In contrast to the crypt physiology, 
the role of Wnt signalling in the development of Paneth 
cell metaplasia is only marginally elucidated. However, 
there is some evidence of Wnt activity as a driving 
force in metaplasia. In an experimental study with the 
constitutive expression of a β-catenin-Lef1 fusion protein 
under control of a lung-endoderm-specific promoter from 
the surfactant protein C gene transgenic lungs included 
cells expressing marker genes strongly characteristic 
of intestinal Paneth cells[26]. The data strongly supports 
the view that hyperactive Wnt signalling could be crucial 
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in stem cell lineage commitment and the generation of 
intestinal metaplasia. In the lung study, where lysozyme 
was used as a marker protein of mature Paneth cells, 
increased Wnt activity was associated with diminished 
lysozyme expression in metaplastic cells[26]. This 
interesting finding is highly suggestive that Wnt activity is 
an important prerequisite for Paneth cell metaplasia, but 
additional factors and supportive signalling mechanisms 
are necessary. The auxiliary components necessary for 
Paneth cell differentiation and maturation probably differs 
between tissues. For example, inflammation seems to 
induce Paneth cell metaplasia/hyperplasia in the colon, but 
not in the small intestine[27]. The intestinal microbiome is 
suggested as an important variable in signalling activities 
and the expression level of several intestinal pathways and 
regulates phenomena including inflammation and cellular 
differentiation.

PANETH CELLS AND ANTIMICROBIAL 
PEPTIDES
In the intestine, a plethora of microbes is found including 
autochthonous long-term colonisers and allochthonous 
transient microorganisms. One important function of 
commensal microbiota is host defence through the 
promotion of the mucosal immune system and inhibition 
of pathological microbes. Another function is the nutrition 
of the host, because the bacteria have the capacity 
to ferment components of the diet. The synthesised 
short-chain fatty acids (SCFAs), vitamins, and amino 
acids are essentials in organising host physiology and 
energy balance. SCFAs act as signalling molecules and 
highly specialised free fatty acid receptors (FFARs) 
exist in the intestinal epithelium. FFARs contributes to 
the chemosensory intestinal system and differ in their 
molecular structure, ligand specificity, and functional 
properties[28]. There is evidence that SCFAs are able to 
induce glucagon-like peptide-1 release from intestinal 
cells. The molecular link is important to display the integral 
role of the intestinal microbiome in the regulation host’s 
energy homeostasis. Metabolic disorders and obesity are 

associated with changes in the gut microbiota[29].
In the intestine, a complex molecular system is 

established to maintain microbiome - host homeostasis 
and to shape the composition of microbes colonising the 
intestine. For this purpose, Paneth cells sufficiently express 
and secrete different types of antimicrobial peptides 
(AMPs) which are important host-defence substances 
in the communication between host and microbiome. 
The secretory capacity of Paneth cells is reflected by the 
cytoarchitecture with apical clustering of large secretory 
granules. Ultrastructurally, the endoplasmic reticulum (ER) 
is hyperplastic and associated with a well-developed Golgi 
network. Upon prosecretory stimuli like bacterially derived 
Toll-like receptor ligands the cytosolic calcium content 
increases via KCa3.1, a calcium-activated potassium 
channel, and leads to granule secretion[30-33].

Defensins are the major AMP family and contain 
six cysteines involved in intramolecular disulphide 
bonds[34,35]. Two major subfamilies of defensins exist. 
The α-defensins are strongly synthesised by Paneth cells 
and neutrophils, whereas β-defensins with constitutive 
HBD-1 and inducible HBD-2 are found in different types 
of cells including enterocytes[36]. In mice, α-defensins are 
named cryptdins or cryptidins which consist of six major 
isoforms. Among those isoforms, variant 4 is the most 
microbicidal peptide[37]. In addition to α-defensins, Paneth 
cell granules contain lysozyme as another potent host-
defence molecule. The biosynthesis of active α-defensins 
depends on proteolytic processing. In murine Paneth 
cells, matrix metalloprotease 7 (MMP7) is found cleaving 
defensin precursor molecules to active α-defensins[38,39]. 
Disturbed proteolytic activity as found in MMP7 knockout 
mice is associated with a hampered intestinal microbiome 
and an increased distribution of bacterial pathogens[40]. 
In contrast to mice, trypsin is found in human Paneth 
cells as an activating protease for prodefensins and the 
antimicrobial protein Reg3A[41]. The human α-defensins 
type 5 (HD5) and 6 (HD6) are essential in host protection 
from intestinal pathogens. Using a HD5 transgenic mouse 
model with physiological defensin levels, animals were 
resistant to enteric Salmonella infections due to reduced 
viability of bacteria, diminished bacterial translocation, 

Figure 2  Differentiation of Paneth cells and Notch inhibition. Normal ileal mouse mucosa with normal crypts and Paneth cells: HE staining (A) and alcian-PAS 
staining (B). Arrows indicate Paneth cells. Ileal mouse tissues after treatment with dibenzazepine show an increase in secretory cells in the crypts with differentiation 
of Paneth cell-like epithelia (arrows): HE staining (C) and alcian-PAS staining (D).
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and increased survival after lethal Salmonella infe-
ctions[42]. In the same model, evidence of a direct role 
of α-defensins in regulating and shaping the small 
intestinal microbiome was shown[40]. In the intestine of 
HD5 transgenic animals the number of commensals was 
changed with an increase in Bacteroides, a decrease 
in Firmicutes, and the loss of segmented filamentous 
bacteria (SFB), designated Candidatus arthromitus, 
accompanied by an absence of Th17 cell differentiation. 
SFB are host specific intestinal symbionts belonging to 
the Clostridiaceae displaying differentiation of filaments 
that interact intimately with the surface lining intestinal 
epithelia. Secreted proteins are expressed by SFB 
including different ADP-ribosyltransferases and a myosin-
cross-reactive antigen, all probably involved in modifying 
the host response and post-natal maturation of the 
gut immune system[43,44]. Recently, an SFB-host cell 
co-culturing system was established producing viable 
infectious particles, which can colonise intestinal mucosa 
with the induction of an immune response[45]. Regional 
variation in the expression and secretion of Paneth cell 
AMPs along the intestinal tract are well-balanced by the 
colonising activity of SFB with the establishment and 
shaping the intestinal microbiome[46].

The α-defensin HD6 secreted by human Paneth cells 
acts in a way that is completely different to HD5. The HD6 
is antibacterial by the configuration of self-assembled 
peptide nanonets and formation of nanofibrils[47,48]. 

Targeted bacteria surrounded by the fibrils and nanonets 
are not able to invade the intestinal mucosa. The HD6 self-
assembling function is essentially based on the presence 
of histidine-27, which forms a salt bridge necessary 
for multimerising the peptide. The important Paneth 
cell produced α-defensins HD5 and HD6 can be further 
classified by their unique functions. The antimicrobial 
HD5 activity with disruption of bacterial membranes is 
called “harpoon” activity, whereas HD6 represents so-
called “net forming” activities[49]. In summary, HD5 acts 
antimicrobially and exhibits lectin-like properties, whereas 
HD6 entraps microbes and blocks host cell invasion[50,51].

In addition to defensins, Paneth cells are able to 
secrete other AMPs including lysozyme, secretory 
phospholipase A2 (sPLA2), RegⅢ, angiogenin 4, and 
cathelicidins[52-54]. Among the AMPs, RegⅢ proteins are 
important in antibacterial defence, and murine RegⅢγ 
shares 65% identity with human RegⅢα. RegⅢ proteins 
belong to the family of C-type lectin regenerating islet-
derived proteins and bind glycan chains of peptidoglycans 
on the cell wall of gram-positive bacteria. In contrast to 
other C-type lectin AMPs as mannose-binding lectin, the 
complement recruitment domains are not constantly 
expressed in RegⅢ suggesting a direct anti-bactericidal 
function[55].

The AMP LL-37 belongs to the cathelicidin family 
and acts in a similar way as HD5 by puncturing holes 
in microbial membranes. LL-37 mediates antimicrobial 

Figure 3  Examples of Paneth cell metaplasia throughout the intestinal tract. A: Paneth cell metaplasia (arrows) in Barrett mucosa. Squamous epithelia of 
the oesophagus are marked with an arrowhead; B: Chronic atrophic gastritis with Paneth cell metaplasia (arrow); C: Paneth cell metaplasia (arrows) of Brunner’s 
gland. In the upper part, small intestinal mucosa and secretory ducts are shown (arrowheads); D: Colon mucosa in ulcerative colitis with disturbed crypt architecture, 
increased numbers of stroma infiltrating inflammatory cells, and Paneth cell metaplasia (arrowheads); E: Higher magnification of ulcerative colitis-associated Paneth 
cell metaplasia (arrows) in colon mucosa as demonstrated in (D); F: Paneth cell metaplasia (arrows) in tubular adenoma of the colon with low-grade dysplasia.
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activities in addition to immunological functions via 
various cellular receptors[56]. LL-37 is an inducible AMP, 
because LL-37 expression increases in the presence 
of SCFAs. Consequently, the protein is predominantly 
found in the transit-amplifying zone in colonic crypts, 
when compared with small intestinal mucosa[57]. In 
quantitative terms, the ratio of HD5 to HD6 is about 3:1, 
whereas HD5 expression levels are higher by a factor of 
up to 100 than those of lysozyme and sPLA2[4].

Paneth cells are secretory cells with the excretion 
of a plethora of molecules including several types of 
AMPs[50,52-54]. The secretory function depends on a 
well-adapted ER, which is controlled and smoothed by 
autophagy. Disruption of autophagy by the deletion 
of the unfolded protein response transcription factor 
X-box binding protein-1 results in ER stress, Paneth 
cell impairment, and spontaneous inflammation rese-
mbling special variants of Crohn’s disease[58]. There is 
experimental evidence that lipids and lipid metabolising 
enzymes are involved in the signalling cascade for 
exocytosis of granules from Paneth cells[59]. Expression 
profiling revealed a panel of target genes and related 
proteins including lipoprotein lipase, apolipoprotein 
A-IV, stearoyl-CoA desaturase-1, adiponectin, and 
leptin. Mapped pathways include PPAR signalling, statin 
pathway, adipocytokine signalling, and polyunsaturated 
fatty acid biosynthesis. It has been speculated that the 
lipid-associated exocytosis is an additive mechanism to 
the chemosensory system of FFARs and enteroendocrine 
cells to perform synergisms between the intestinal 
microbiome and host metabolism.

The release of AMPs from Paneth cells into the 
intestinal mucus and lumen is initiated by stimulation 
of pattern recognition receptors (PRRs) located on 
intestinal surfaces. The class of PRRs includes Toll-like 
receptors (TLRs) activated by lipopolysaccharide and 
nucleotide-binding oligomerisation domain-containing 
molecules (NODs), which recognise muramyldipeptide. 
Independently of PPRs, bacterial cell wall glycolipids are 
able to stimulate the release of defensins by Paneth 
cells. The myeloid differentiation primary response gene 
(MyD88) acts as an important cytoplasmic TLR limiting 
bacterial penetration into the intestinal mucosa[4].

In summary, Paneth cells are essential for the es-
tablishment of a mucus layer enriched with AMPs resting 
on the surface lining epithelia. The composition of AMPs 
differs along the intestine, implicating diverse functions in 
communication with the intestinal microbiome.

PANETH CELLS AND INTESTINAL 
DISEASES
High numbers of Lamina propria mucosae infiltrating 
leukocytes with different types of specialised lymphocytes, 
plasma cells, mast cells, monocytes, and eosinophiles is a 
very   characteristic histomorphological feature of intestinal 
mucosa. The balanced correspondence of the immune 
cells with the intestinal microbiome via the surface 

epithelium is a prerequisite for intestinal homeostasis. In 
consequence, an inflammatory response with a further 
increase in leukocytes including neutrophiles is very 
common in intestinal disorders and is established in the 
majority of intestinal diseases. There are remarkable 
differences in the quantity and quality of infiltrating 
leukocytes between the underlying intestinal disorders. 
The differences of leukocytes are helpful to classify the 
basal disease using morphological, immunohistochemical, 
and functional techniques.

In addition to resting Paneth cells, infiltrating leuko-
cytes are an important transient source for AMPs. They 
are assisted by metaplastic Paneth cells, found in the large 
intestine and stomach. In intestinal inflammation, sPLA2, 
which is physiologically not found in the colon, is expressed 
by metaplastic Paneth cells[60,61]. There are experimental 
data demonstrating a direct role of the microbiome in 
regulating the defensin production and secretion. Using 
Nod2 knockout mice in co-housing experiments, the 
wild-type microbiome was able to regulate defensin 
secretion to physiological levels[62]. The inflammation-
related expression profile of AMPs includes some 
characteristics indicating a defined intestinal dis-
ease[63,64]. For example, β-defensin types 2, 3, and 4 
are increased in ulcerative colitis but not in Crohn’s 
disease[65]. In summary Nod2 is highly expressed in ileal 
Paneth cells that essentially contribute to the regulation 
of ileal microbiota through the secretion of AMPs[66].

As outlined above, Paneth cells are the main source 
of AMPs and acts in stabilising the stem cell zone. 
Consequently, Paneth cells are investigated as a site 
of origin for intestinal inflammation. This point of view 
seems of high relevance concerning the pathogenesis 
of inflammatory bowel diseases (IBD). A fundamental 
feature of ileal Crohn’s disease is a reduced expression 
of HD5 and HD6. The finding is sometimes paralleled by 
a reduced Paneth cell number, but may be also a result 
of an injured microbiome[4,36,67].

An in-detail analysis of Paneth cells in Crohn’s disease 
revealed subgroups of the disease characterised by 
unique molecular, morphological, and clinical features. 
The clinical phenotype of ileal Crohn’s disease is 
especially associated with Paneth cell injuries. There 
was first evidence from loss-of-function mutations in 
NOD2 (SNP 13), a gene that is strongly expressed by 
Paneth cells[66,68-70]. Subsequently, the molecular me-
chanisms underlying several injuries of Paneth cells 
were described and linked to (ileal) Crohn’s disease. 
One important finding was low Wnt signalling activity in 
ileal Crohn’s disease with diminished Tcf-4 and reduced 
secretion of defensins[71,72]. Another milestone was the 
identification of defective granule exocytosis from Paneth 
cells with diminished levels of defensins due to abnormal 
autophagy in homozygosity for the risk allele autophagy 
related 16-like 1[59,73]. The molecular characterisation of 
disturbed autophagy and unresolved ER stress due to 
genetically and environmentally controlled dysfunction of 
unfolded protein response (UPR) was the breakthrough 
in understanding the underlying mechanisms for 
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the threshold for the development of (ileal) Crohn’s 
disease[58,59,74].

In addition to Paneth cells, enterocytes are an ad-
ditional source to produce AMPs including Reg proteins, 
defensins, and cathelicidins[50,52-54]. This fact is of high 
relevance to physiologically compensate the perinatal 
period prior to the establishment of Paneth cells and to 
pathologically balance Paneth cell disorders[75]. Paneth cells 
are found in the prenatal small intestine, but the number 
of cells is highly variable. In view of this observation, 
insufficient Paneth cell maturation is in discussion as an 
important variable in the pathogenesis of necrotising 
enterocolitis. The multifactorial disease is preferentially 
found in premature infants. Clinically, a sudden onset and 
high mortality in babies born after 35 weeks’ gestation are 
characteristic. 

At present, two different pathophysiological models 
for the development of necrotising enterocolitis are 
in discussion; the top-down and the bottom-up hypo-
thesis[76]. In the top-down scenario, bacterial invasion is 
found in the villus that triggers thrombosis of small arteries 
via activation of platelet-activating factor (PAF). In contrast 
to the top-down scenario, bacterial translocation at the 
crypt basis with consecutive activation of Paneth cells and 
arterial thrombosis are the key points in the bottom-up 
model. In very preterm neonates, the time period between 
birth and onset of the necrotising enterocolitis is frequently 
long. In this time maturation of the intestinal immune 
system is found, a pre-requisite for the initiation and 
development of enterocolitis[77]. In animal models, toxic 
Paneth cell ablation and gastral infection with Klebsiella 
pneumoniae is able to induce necrotising enterocolitis 
in a bottom-up scenario[78]. The variable number of 
Paneth cells found in human necrotising enterocolitis 
is discussed as enterocolitis associated necrobiosis and 
does not contradict the bottom-up model[79,80]. It has 
to be stressed that the immense damage to intestinal 
tissues in necrotising enterocolitis is not plausible from the 
thrombosis of small arteries. Therefore, a two-hit model 
has been proposed including at first ischemic damage of 
the intestinal mucosa. In a second step, reperfusion is 
found with uncontrolled activation of signalling cascades 
and enzymes aggravating the tissue damage[81].

Barrett mucosa is frequently found in the oesophageal 
junction and is due to chronic gastroesophageal reflux. 
Histomorphologically, the epithelial cells display intestinal 
differentiation with goblet cells and aberrant mucus 
retention[82]. In contrast to complete intestinal metaplasia, 
brush border and Paneth cells are not commonly found 
in Barrett mucosa. However, there is evidence of Paneth 
cell metaplasia in Barrett oesophagus (Figure 3A). The 
phenomenon is found in about 30% of the cases[83]. The 
frequency of Paneth cells in Barrett mucosa is inversely 
correlated to the development of epithelial dysplasia. In 
long-segment Barrett oesophagus, the metaplasia is more 
frequent than in short-segment lesions. The persistence of 
Barrett mucosa when Paneth cell metaplasia is found could 
be due to a dys-balanced Notch and Wnt signalling[84,85]. 
There is no evidence that Paneth cell metaplasia is 

associated with the progression of Barrett mucosa to 
dysplasia and adenocarcinoma[83].

In GvHD the intestinal tract is frequently affected and 
Paneth cell loss is a hallmark of the acute inflammation 
associated with changes in the composition of the 
microbiome[86,87]. Due to the loss of Paneth cells a striking 
disease of α-defensins is found favouring a shift from 
commensal to pathologic microbiota[88]. The dysbiotic shift 
is assumed to be crucial for severe septic complications 
in GvHD. In particular, the diminished number of Paneth 
cells correlates with higher disease severity and poor 
treatment response in patients suffering from GvHD[89]. 
Enteroendocrine cells have been recently discovered 
as sensors of the intestinal microbiome. The cells are 
involved in the pathogenesis of intestinal disorders 
and express specific receptors which can respond to 
bacterial products[90]. In germ-free mice, the number of 
enteroendocrine cells is drastically reduced[91], whereas 
an increase in microbiome metabolites such as in 
GvHD is inductive for secretion of immunomodulatory 
enteroendocrine hormone peptides[92]. The inductive 
mechanisms could be a pathophysiological link for 
hyperplasia of enteroendocrine cells in GvHD. 

PANETH CELLS AND MORPHOGENESIS
Crypt fission, the division of a single crypt into two 
daughters, is fundamental in intestinal tissue expansion 
and morphogenesis, but is also found in tumourigenesis 
driving the clonal expansion of mutant adenomatous 
crypts[93-96]. A specific cellular arrangement in the intestinal 
stem cell niche is observed that controls crypt fission. 
In a recent model, Paneth cells and CBCs (Lgr5+) are 
both importantly involved in crypt morphogenesis[97]. The 
findings summarise the data from intestinal organoids, 
where Paneth cells are essentially involved in crypt 
budding[98,99], and as mice lacking intestinal Paneth cells, 
which are able to sufficiently repair crypt injuries[21,100]. 
The morphogenic activities of Paneth cells depend on 
Wnt signalling and redundant sources contribute[101,102]. 
Important for the crypt fission model is the observation 
that Paneth cells adhere to their substrate more strongly 
than other crypt cells. In view with this strong evidence is 
given that so-called “mislocalised” Paneth cells change the 
symmetry of fission in determining the site of fission[97].

CONCLUSION
Paneth cells are important secretory cells in the small 
intestinal mucosa. They are found as metaplastic cells 
in several other locations. Important secretory products 
of Paneth cells belong to the AMPs. They are essential 
for the dialogue between the microbiome and the host. 
In addition to Paneth cell functions in controlling the 
microbiome, the cells are functionally and structurally 
involved in forming the stem cell zone of small intestinal 
crypts and involved in morphogenesis of the CVA. In the 
last decade, molecular mechanisms of different Paneth cell 
injuries have been identified and correlated with intestinal 
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diseases. There is evidence from these experiments that 
ileal Crohn’s disease as well as necrotising enterocolitis 
are strongly associated with diseased Paneth cells. The 
important role of Paneth cells in intestinal physiology and 
pathophysiology strongly supports the view that these 
cells are the guardian of small intestinal crypts.
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