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Abstract

Background: The varicelloviruses comprise a genus within the alphaherpesvirus subfamily, and infect both humans
and other mammals. Recently, next-generation sequencing has been used to generate genomic sequences of several
members of the Varicellovirus genus. Here, currently available varicellovirus genomic sequences were used for
phylogenetic, recombination, and genetic distance analysis.

Results: A phylogenetic network including genomic sequences of individual species, was generated and suggested a
potential restriction between the ungulate and non-ungulate viruses. Intraspecies genetic distances were higher in the
ungulate viruses (pseudorabies virus (SuHV-1) 1.65%, bovine herpes virus type 1 (BHV-1) 0.81%, equine herpes virus type 1
(EHV-1) 0.79%, equine herpes virus type 4 (EHV-4) 0.16%) than non-ungulate viruses (feline herpes virus type 1 (FHV-1) 0.
0089%, canine herpes virus type 1 (CHV-1) 0.005%, varicella-zoster virus (VZV) 0.136%). The G + C content of the ungulate
viruses was also higher (SuHV-1 73.6%, BHV-1 72.6%, EHV-1 56.6%, EHV-4 50.5%) compared to the non-ungulate viruses
(FHV-1 45.8%, CHV-1 31.6%, VZV 45.8%), which suggests a possible link between G + C content and intraspecies genetic
diversity. Varicellovirus clade nomenclature is variable across different species, and we propose a standardization based
on genomic genetic distance. A recent study reported no recombination between sequenced FHV-1 strains, however
in the present study, both splitstree, bootscan, and PHI analysis indicated recombination. We also found that the
recently sequenced Brazilian CHV-1 strain BTU-1 may contain a genetic signal in the UL50 gene from an unknown
varicellovirus.

Conclusion: Together, the data contribute to a greater understanding of varicellovirus genomics, and we also suggest
a new clade nomenclature scheme based on genetic distances.
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Background
The Varicellovirus genus is part of the larger alphaherpes-
virus subfamily which includes herpes simplex viruses 1
and 2, as well as Marek’s disease virus. Like other alpha-
herpesviruses, varicelloviruses typically infect epithelial
surfaces, and most appear to be neurotropic, establishing
latency in neurons [1–9]. The first varicellovirus to be
clinically described as a unique disease was varicella zoster
virus (VZV), the causative agent of chickenpox and shin-
gles in 1767 [10]. Numerous other varicelloviruses have
been identified, including pseudorabies virus/SuHV-1

(Aujeszky’s disease) in pigs, BHV-1 (bovine herpes virus
type 1; infectious bovine rhinotracheitis; IBR), EHV-1
(equine herpes virus type 1; epidemic abortion and
myeloencephalopathy in horses), EHV-4 (equine herpes
virus type 4; equine rhinopneumonitis), FHV-1 (feline
herpes virus type 1; feline rhinotracheitis), and CHV-1
(canine herpes virus type 1; fading puppy syndrome).
These viruses have significant impact on livestock and
companion animals. Due to high transmissibility and viru-
lence, pseudorabies virus and EHV-1 are both classified by
the United States Department of Agriculture (USDA) as
reportable diseases [11]. Vaccines have been developed
against several varicelloviruses, including VZV, pseudo-
rabies virus, BHV-1, EHV-1, EHV-4, FHV-1, CHV-1,
which have been effective at reducing morbidity and mor-
tality [12–22]. Pseudorabies vaccination and eradication
efforts in the United States have been effective, with the
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country declared disease free in 2004. The USA and
Canada have also enacted BHV-1 control programs, and
several European countries have successfully eradicated
the disease [23]. Despite vaccination and control efforts,
many of these diseases continue to negatively affect
humans and animals worldwide.
The first complete sequence of a varicellovirus, (VZV)

was reported in 1986 [24], followed by several others [25–
27] . The advent of next-generation sequencing (NGS) has
revolutionized genomics, and has allowed additional vari-
cellovirus species and sub-strains to be sequenced. The first
comprehensive computational multigene phylogenetic ana-
lysis of the three main herpes virus subfamilies was a major
step forward in cementing the basic structure for Alphher-
pesvirinae, including varicelloviruses [28]. As increasing
numbers of viral strains have been sequenced, full genome
phylogenetic and recombination analysis of VZV, SuHV-1,
EHV-1, and EHV-4 have been performed [29–32].
The genetic code is degenerate, resulting in most amino

acids being encoded by multiple codons. The usage of
some codons and not others for an amino acid is often
not random, and is called codon usage bias [33]. Codon
usage and mutational bias analysis has been examined in
several viruses, including phages, canine parvovirus, Japa-
nese encephalitis virus, rabies, Zika virus, herpesviruses,
and other vertebrate DNA viruses [34–40]. Shackelton et
al. [39], showed that codon usage bias is strongly linked
with genomic G + C content. The previous analysis of
codon usage in herpesviruses [38] found strong codon bias
in the SuHV-1 and BHV-5 viruses, both high G + C vi-
ruses. While the earlier herpesvirus study [38] included
several varicelloviruses, additional viruses have now been
sequenced, and a more inclusive analysis is now possible.
The goal of the current study was to perform a genome

based comprehensive phylogenetic, genetic distance, and
recombination analysis of the varicellovirus subfamily.
Unique findings reported here are a phylogenetic stricture
between ungulate herpesviruses and the remaining
species, a possible link between genomic G +C content
and intraspecies distance, the identification of recombin-
ation amongst FHV-1 strains, and results suggesting that
the Brazilian CHV-1 strain BTU-1 may be a recombinant
between CHV-1 and an unknown varicellovirus. We also
propose a Varicellovirus genus clade nomenclature
standardization based on genetic distance.

Methods
Genomic multiple sequence alignments
For phylogenetic and distance analysis, currently avail-
able Varicellovirus genus genomic sequences were
downloaded from NCBI, and are cataloged in Add-
itional file 1: Table S1. The first generated alignment was
of the Varicellovirus genus as a whole, using one strain
from each of the viral species, as well as an outgroup,

anatid herpes virus type 1 (AnHV-1). AnHV-1 was chosen
as an outgroup because the AnHV-1 is an alphaherpes-
virus, and the genome is annotated in a similar fashion to
the varicelloviruses. The varicelloviruses and the AnHV-1
outgroup virus have similar genome annotation and gene
synteny, with the exception of pseudorabies virus. In
pseudorabies virus, the UL27 to UL44 genes are inverted.
Prior to genome alignment, the UL27-UL44 genome
segment of pseudorabies virus was inverted by reverse
complemention in order to generate a gene order similar
to the other varicellovirueses. MAFFT v2.66 [41, 42] was
utilized to generate the alignment using the FFT-NS-1
method. The subsequent genomic multiple sequence
alignment was manually inspected for quality. Areas of
the alignment that appeared to be of poor quality were
realigned in Mega 6 [43] using ClustalW.
Additional intraspecies genomic alignments of BHV-1,

CHV-1, EHV-1, EHV-4, FHV-1, SuHV-1, and VZV, were
generated with and without outgroups using MAFFT
v2.66. The outgroups for the intraspecies alignments
were chosen based on low genetic distance, in other
words, the closest known relative. Thus, for EHV-1 ana-
lysis, EHV-8 was chosen as the outgroup, with the
remaining analyzed species/outgroup combinations be-
ing; BHV-1/outgroup BHV-5, EHV-4/outgroup EHV-1,
SuHV-1/outgroup BHV-1, FHV-1/outgroup CHV-1,
CHV-1/outgroup FHV-1, and VZV/outgroup CeHV-9.
All of the genomic alignments generated in thus study
are available for download at http://sites.ophth.wisc.edu/
brandt/.

Genetic distance and genomic G + C content calculations
The mean maximum likelihood (ML) distances for each
alignment were calculated using the Mega 6 package.
For the genetic distance analysis, pairwise gap deletion
rather than complete deletion of gaps was used, as
complete deletion of alignment gaps may exclude valu-
able phylogenetic data, and could result in an underesti-
mation of distance. To calculate overall genome G + C
content, an online calculator found at http://www.end-
memo.com/bio/gc.php was used.

Phylogenetic and recombination analysis
For phylogenetic maximum likelihood and network ana-
lysis, intraspecies genomic alignments of BHV-1, CHV-
1, EHV-1, EHV-4, FHV-1, SuHV-1, VZV, and total
sequenced varicelloviruses were generated using duck
enteritis virus (AnHV-1) as the outgroup as described
above. Maximum likelihood phylogenetic analysis was
performed on the genomic alignments containing an
outgroup using the RAxMLGUI package [44] with the
GTRCAT + I model and 500 bootstrap replicates.
Phylogenetic networks for BHV-1, CHV-1, EHV-1,

EHV-4, FHV-1, SuHV-1, VZV, and total sequenced
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varicelloviruses were generated with Splitstree 4 [45]
using multiple sequence alignments and AnHV-1 as the
outgroup. Splitstree was also used to calculate the pair-
wise homoplasy index (PHI) statistical test [46] for
recombination. Jmodeltest2 [47] was used to identify the
optimal substitution model settings for each individual
phylogenetic network. RDP4 [48] recombination analysis
performed genomic multiple sequence alignments with-
out outgroups using the Jin and Nei substitution model
with the following parameters: 1500 bp window, 750 bp
step size, and 200 bootstrap replicates.

Determining shared clade cut-off values between BHV-1,
EHV-1, and SuHV-1
Shared clade Cut-off values between BHV-1, EHV-1, and
SuHV-1 were determined by first generating a histogram
of pairwise p-distances and corresponding frequencies
for each virus species, similar to the study performed by
Grau-Roma et el with porcine circovirus type 2 (PCV2)
[49].The pairwise p-distances for each species were cal-
culated using Mega 6, and multiple sequence alignments
without outgroups. Histograms of frequency vs p-dis-
tance for BHV-1, EHV-1, and SuHV-1, and subsequent
data were generated using R (version 3.4.2 using the
ggplot2 package). An initial shared cut-off of 0.01 was
established by examining the upper and lower bounds of
the two main groups in the three histograms. This intial
cut-off was further evaluated, using a variance analysis
framework, where variance between and within groups
was examined. For each potential cut-off value, we
calculated the following quantities for the p-distances
for each virus:
For each potential cut-off value, we calculate the fol-

lowing quantities:
SSbetween = ∑fij·(group mean j − overall mean),2

SSwithin = ∑fij·(p-distance i − overall),2

where.
group meanj =mean p-distance in groupj, j = 1, 2,
overall mean = overall mean p-distance,
p-distance i = the ith p-distance,
fij = the frequency of the ith p-distance in the jth group.
Finally, we calculate ratio

F ¼ SSbetween

SSwithin= Nj−2
� �

where Nj is the total number of observations in group
j, or in terms of frequencies, Nj = ∑ifij. We next wanted
to determine the cut-off which maximized the quantity
across the groups, by first plotting the F values for each
of the three graphs (Figure S1). We next restricted the
cut-off values where the p-values for the different viruses
was divided into two groups. For example, this means

that values larger than 0.012 were discarded as no such
distances were found in the BHV-1 virus group. The
values within each graph were rescaled 0 to 1 in order to
make each virus of equal value, and the sum of the
curves maximized. To examine how the F measure cor-
responded to the frequency distributions, the value of
rescaled F was overlayed. The point at which the sum of
the rescaled F values attains it’s maximum, was chosen
as the cut-off value.

Codon usage analysis
To investigate codon usage in the Varicellovirus genus
as a whole, the effective number of codons (ENC) was
calculated for the US1 (ICP22), UL30 DNA polymerase,
and glycoprotein H genes from each varicellovirus spe-
cies. These genes represent one member of the α (imme-
diate-early), β (early), and γ (late) gene classes. The ENC
value is a measure of how much the codon usage of a
gene deviates from the equal usage of synonymous co-
dons [50]. ENC values range from 20 to 61, with 20 indi-
cating maximum bias, with one codon used from each
synonymous codon group, to 61 indicating no codon
usage bias. The ENC values for the varicellovirus US1,
UL30, and gH genes were calculated using DnaSP (v5)
[51]. In addition to the ENC values, GC3s values were
calculated using DnaSP, while the GC1 and GC2 values
were obtained using in the online calculator http://geno-
mes.urv.es/CAIcal/. The GC12 values were calculated
using Microsoft Excel. ENC-GC3s plots were generated
using SigmaPlot v.11 . In the ENC-GC3s plots, if the
plotted values are located on or near the standard curve,
then codon usage is constrained only by G + C mutation
bias. However, the greater the plotted values deviate
from the standard curve, the more additional factors
such as natural selection may influence the bias.
Neutral evolution plots (GC12s vs GC3s) were gener-

ated to examine the contribution of mutational pressure
and natural selection. Sigmaplot v.11 was used to gener-
ate the plots, as well as for the linear regression statis-
tical analysis.

Results and discussion
Nomenclature standardization
The nomenclature designation for varicellovirus species
strains and intraspecies clades is somewhat variable, with
some, such as bovine herpesvirus 1 strains given a BHV-
1.1 or 1.2 designation [52], while VZV clades are given a
simple numeral designations (1–6) [29]. As such, a clade
nomenclature standardization across varicelloviruses
may be useful, and we are proposing a common nomen-
clature system based on genetic distances. The Inter-
national Committee on Taxonomy of Viruses (ICTV)
does not provide guidelines in defining taxonomic clades
below species level [53], and it is within the purview of
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interested groups to do so. Genetic distances have been
previously used as a basis for nomenclature systems in
H5N1 avian influenza [54] and porcine circovirus type 2
[55, 56]. The genetic distance based nomenclature sys-
tem we are proposing would preserve classic BHV-1 1.1
and 1.2 clade designations, as well the varicella zoster
virus (VZV) numerical designations. Within each spe-
cies, clade/group distances greater than 1% would be
designated by a 1.1, 1.2, ... numbering as seen in BHV-1
[52]. Between clade/group distances of less than 1%
would result in a numerical format (i.e. 1, 2, 3…) as has
been consistently used with VZV [29]. Under this sys-
tem, it would be possible to have two distant clades
given a 1.x designation, with less distant subclades desig-
nated numerically.
The 1% cut-off was determined by calculating a shared

value for the BHV-1, EHV-1, and SuHV-1 viruses. BHV-
1, EHV-1, and SuHV-1 were chosen, as these three vi-
ruses have the highest levels of intraspecies genetic dis-
tance of the varicelloviruses (detailed in the sections
below). An initial cut-off of 0.01 was chosen, based on a
shared p-distance value that divides the observed p-dis-
tances into two groups simultaneously for all three vi-
ruses (Fig. 1a, b, and c). Additional evaluation of the
initial cut-off was performed using a variance analysis

framework, where variation between groups and within
groups was examined. Figure 1e, f, and g show the indi-
vidual rescaled F curves (gray dotted line) for each of
the three viruses, as well as the sum of the curves in
black. The F values were rescaled so as not to weight
one virus more than the rest so the curves do not dir-
ectly overlap. The sum of the rescaled F curves shows a
peak at 0.01, which validates the initial cut-off. The
values of the unscaled, and rescaled F values are shown
in Additional file 1: Tables S2, and S3 respectively.

Phylogenetic network analysis of varicelloviruses
To investigate phylogenetic relationships between the se-
quenced varicelloviruses, the genomes of each species,
along with the AnHV-1 outgroup genome were aligned.
Both a maximum likelihood (ML) based tree (Fig. 2a) and
phylogenetic network (Fig. 2b) were constructed. The ML
whole genome based tree showed that CeHV-9 and VZV
occupy a basal position in the genus, and the ungulate vi-
ruses share a node with bootstrap support of 100% (Fig. 2a).
This result is fairly unremarkable and is similar to analysis
performed using smaller sets of genes [57]. To assess the
phylogenetic dissonance in the dataset, a phylogenetic net-
work was also generated, and shows a similar basic top-
ology with the ML tree. The network however suggests a
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Fig. 1 Establishing a shared phylogenetic clade cut-off value for BHV-1, EHV-1, and SuHV-1. To establish and initial cut-off value, pairwise p-distance
values were calculated for BHV-1, EHV-1, and SuHV-1 using multiple sequence alignments. Frequency vs. p-distance histograms were generated for
each of the three viruses (a, b and c). An initial cut-off of 0.01 was chosen, based on a shared p-distance value that divides the observed p-distances
into two groups simultaneously for all three viruses (vertical dotted line; panels a, b, and c). Groups with p-distances <0.01 are colored salmon, while
groups with p-distances >0.01 are colored teal. To evaluate the validity of the initial cut-off, variance analysis was performed, where variation between
groups and within groups was examined. Panels e, f, and g show the individual rescaled F curves (gray dotted line) for each of the three viruses, as
well as the sum of the curves in black. It is important to note the individual rescaled F and F sum curves cannot be directly compared as they are
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Additional file 1: Tables S2, and S3 respectively
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stricture between the ungulates and non-ungulates, and is
denoted by a pink circle (Fig. 2b). The stricture could be
the result of low amounts of recombination between the
two sides of the network, however, it may represent a
bottleneck, or may be simply due to divergent phylogenetic
signals. To determine if there was recombination within
the network, the PHI statistical test for recombination was
performed. The PHI test indicated statistically significant
signals amongst the ungulate virus portion of the network,
as well the non-ungulate portion, however, analysis of the
network as a whole (minus outgroup) was not significant
(Table 1). This lack of a significant result is likely due to the
high amount of genetic distance within the dataset. The
genomic distances between virus species are also shown in
Fig. 2b to aid in data interpretation.

Varicellovirus G + C content and interstrain genetic
distance
The G + C content of each of the varicellovirus species
was analyzed, with results shown in both Fig. 2b, and
Table 2. All of the ungulate viruses had a G + C content
above 50%, ranging from 50.5% in EHV-4 to 74.8% in
BHV-5. The primate and carnivore viruses had G+C
contents under 50%, and ranged from 31.6% in CHV-1
to 45.8% in both VZV and FHV-1. For each varicello-
virus, where multiple strains have been sequenced, the
overall intraspecies genetic distance for each species was
calculated (Fig. 1b and Table 1). The results suggest a
possible link between G + C content and intraspecies
genetic distance with higher G + C content and genetic
distance in the ungulate viruses (SuHV-1 = 1.65%, BHV-
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1 = 0.81%, EHV-1 = 0.79%, and EHV-4 = 0.16%), and
lower values in the carnivore and VZV viruses (VZV =
0.136%, CHV-1 = 0.0056/0.020%, and FHV-1 = 0.0089%).
It should be noted that for CHV-1, two distance values
are given, and this is discussed below.
It is unclear if the higher genomic G + C content of the

ungulate viruses is the result of genetic drift or evolution-
ary pressure. The observation that G + C content in vari-
celloviruses may be linked to intraspecies genetic distance
may not be unprecedented, as G + C content appears to
correlate with substitution rates in Arabadopsis [58]. It is
highly unlikely that G + C content is the main driver of
varicellovirus intraspecies genetic distance, however, it
may be possible that G + C content is able to influence
distance. Additional factors may influence intraspecies

genetic variability in varicelloviruses, such as the pro-
pensity of the host to form large herds, transmissibility,
and the number reactivation events in the life of the
host. We also cannot eliminate the possibility that the
genomic G + C content and intraspecies distance link is
an artifact due to small sample size.

Codon usage and mutational bias in the Varicellovirus
genus
The observation of varying G + C content across the
Varicellovirus genus lead us to investigate codon usage
and mutational bias. Codon usage and mutational bias
has been previously examined in other viruses such as
canine parvovirus [35], Japanese encephalitis virus [37],
and Zika virus [36]. For the present analysis, the effective
codon number values of three genes, US1 (α), UL30
polymerase (β), and UL22 (glycoprotein H; γ) were cal-
culated for each of the varicellovirus species (Table 3).
These three genes were chosen to be representative of
each kinetic class; α (immediate-early), β (early), and γ
(late). ENC values range from 20 to 61, with 61 indicat-
ing no bias and 20 indicating extreme bias. The values
show greater bias in all three genes from viruses that are
either A-T or G-C rich (Table 3), for example CHV-1,
SuHV-1, BHV-1, BHV-5, and BuHV-1. Next, ENC values
in the context of mutational pressure were assessed by
plotting the ENC values against the G + C content in the
synonymous third codon position (GC3s), found in
Fig. 3a, b, and c. The ENC plots for US1, UL30, and
UL22 show that these three Varicellovirus genus genes
are largely constrained by G + C mutation bias, as most
data points are located close to the standard curve.
Some of the data points are located farther away from
the plot, such as SuHV-1 US1 (Fig. 3a), and EHV-4

Table 1 Pairwise homoplasty index (PHI) statistic test p-values
for recombination in the varicelloviruses

Virus PHI p-value

VZV < 0.001

CHV-1 0.3082

FHV-1 < 0.001

EHV-4 < 0.001

EHV-1 < 0.001

SuHV-1 < 0.001

BHV-1 < 0.001

Varicellovirus Genus 1.00

Ungulate Viruses < 0.001

Primate and Carnivore Viruses < 0.001

Table 2 Varicellovirus G + C content and intraspecies strain
genetic distance

Virus G + C % Intrastrain distance %

BHV-1 72.6 0.77

BuHV-1 76.8% NA

BHV-5 74.8 NA

EHV-1(Combined) 56.6 0.74

EHV-1 (Wild) 56.6 0.60

EHV-1 (Domestic) 56.6 0.14

EHV-3 68.1 NA

EHV-4 50.5 0.14

EHV-8 54.4 NA

EHV-9 56.1 NA

SuHV-1 73.6 1.23

FHV-1 45.8 0.004

CHV-1 (UK strains) 31.6 0.005

CHV-1 (Overall) 31.6 0.20

CeHV-9 40.5 NA

VZV 45.8 0.136

Table 3 Effective codon number (ENC) values for the
varicellovirus US1 (α), UL30 (β), and UL22 (γ) genes
Virus US1 UL30 UL22

VZV 58.325 53.455 56.306

CeHV-9 55.196 46.375 48.746

CHV-1 44.246 37.827 34.744

FHV-1 57.692 54.214 55.561

EHV-4 48.973 55.309 58.247

EHV-1 37.591 50.632 57.499

EHV-8 42.716 53.786 57.220

EHV-9 37.448 50.471 57.474

EHV-3 29.358 34.598 38.156

SuHV-1 28.755 28.550 28.835

BHV-1 30.05 33.977 35.195

BHV-5 35.436 30.899 30.029

BuHV-1 29.317 29.396 29.430
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(Fig. 3b), which suggest additional pressures influencing
bias, possibly including natural selection.
Neutrality plots (GC12 vs GC3s) for US1, UL30, and

UL22 were generated to further examine mutation and
natural selection biases (Fig. 3c, d, and e). The neutral-
ity plots showed significant results for US1 (r2 = 0.827;
p = < 0.001), UL30 (r2 = 0.949; p = < 0.001), and UL22
(r2 = 0.937; p = < 0.001), which confirmed mutational
bias. The slopes for all three of the neutrality plots were
shallow (US1 = 0.1137, UL30 = 0.0933, and UL22 =
0.1092), which indicated that mutation bias influenced
codon usage only 11.37%, 9.33%, and 10.92% for each of
these genes, respectively. ENC and neutrality plots appear
to result in somewhat different conclusions in investigating
codon usage and mutational pressure. Care should be taken
in interpretation, as the analysis is genus wide, and not in a
single species. G+C constrained mutation bias in varicello-
viruses was confirmed as has been previously shown in ver-
tebrate DNA viruses [39], however additional factors such
as natural selection are likely to play major role as well.

Bovine herpesvirus 1
BHV-1 has been traditionally divided into three sub-
types; BHV-1.1, BHV-1.2a, and BHV-1.2b, with the 1.1
strains generally associated with IBR, and 1.2 with ven-
ereal disease phenotypes [59, 60]. It must be noted that

strains of either type can cause respiratory and venereal
disease phenotypes [61, 62], which suggests that genetic
criteria may be a more reliable way to group BHV-1 strains
than by clinical phenotype. To examine BHV-1 phylogeny,
recombination, and genetic distance between clades, max-
imum likelihood trees and phylogenetic networks were gen-
erated, recombination bootscan analysis was conducted,
and inter- as well as intra-clade distances were calculated.
The ML tree and the phylogenetic network both recover
two main clades (Fig. 4). Genetic distance analysis showed
that the distance between the two groups was 1.12%, fulfill-
ing the criteria for designating the clades 1.1 and 1.2. Thus,
the BHV-1 clades retain the 1.x organization they had
previously under our proposed nomenclature criteria. The
genomic sequence analysis of BHV-1 recovered two main
clades designated 1.1 and 1.2, however subclades within 1.2
were not detected. It is possible that as additional BHV-1
strains are sequenced, evidence of 1.2. subclades may be-
come apparent. The overall genetic distance within BHV-
1.1 was 0.60%, and within BHV-1.2 was 0.43% (Fig. 4b).
Bootscan recombination analysis using BHV-1.2 strain
B589 revealed extensive recombination from the remaining
BHV-1.2 strains, but no significant recombinant signals
from the BHV-1.1 viruses were detected (Fig. 4c). PHI
recombination test analysis suggests that there is recombin-
ation in the dataset (p = <0.001; Table 1).
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Fig. 3 Effective codon number (ENC) – GC3s and Neutrality plots of the US1, UL30 polymerse, and UL22 (glycoprotein H) genes from the
Varicellovirus genus. Figure 2a through c show the ENC-GC3s plots for the US1, UL30, and UL22 genes. For these plots, the ENC values for each of
the three genes from each varicellovirus species were calculated and plotted against the G + C content of the synonymous third position. The
black line represents the standard curve. The farther the plotted values are located from the standard curve, the influence of G + C mutation bias
is implied to be lessened. A varicellovirus species key is shown to the right of the panels. Figure 2e, f, and g show the neutrality plots for the US1,
UL30, and UL22 genes. The neutrality plots are constructed by plotting the average of the G + C content of the first and second codon positions
(GC12), against the GC3s. Each plot point value represents a varicellovirus species, and includes a regression line. The r,2 slope, and p-values are
included in each graph
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Pseudorabies virus/SuHV-1
The phylogenetic structure of SuHV-1 strains was exam-
ined next. The genome based ML tree and phylogenetic
network both recovered two basic clades, Chinese and
European/American, which have been previously identi-
fied [63] (Fig. 5a and b). The phylogenetic network how-
ever, showed that the Italian domestic dog isolated strain
ADV32751 was separated somewhat from the remaining
European/American strains (Fig. 5b). Distance analysis
showed that the genetic distance between the main
Chinese and European/American clades was 2.76%
(Fig. 5b). This comparatively large genetic distance be-
tween the two groups appears to be consistent with what
is thought to be two independent domestication events,
one in China [64], and another in modern day Turkey
roughly 9000 years before present [65]. Additional calcu-
lations showed that the distance between strain
ADV32751 and the remaining European/American
strains was 1.44% (Fig. 5b). Based on the results of the
distance calculations, we suggest that pseudorabies virus
be designated as SuHV-1.1 (Chinese), SuHV-1.2 (main
European/American), and provisional SuHV-1.3 (strain
ADV32751) (Fig. 5b). It is unclear if the ADV32751
strain contains mutations which could have enhanced
transmission to a domestic dog. Additionally, given the
distance value with respect to the SuHV-1.2 viruses, the
chance of genetic contributions from a European wild

boar strain should not be excluded. Within the Euro-
pean/American SuHV-1.2 clade, two additional group-
ings were detected, and designated 1 and 2 based on the
genetic distance (0.37%; Fig. 5b). A bootscan using
SuHV-1.2 strain NIA3 against the remaining strains
showed little to no recombination signals from either
SuHV-1.1 or 1.3 (Fig. 5c). The lack of recombination sig-
nals between the SuHV-1.2 and 1.1 subclades is not un-
expected due to geographic distances, however a recent
report showed that the Chinese pseudorabies virus strain
SC contained genomic contributions from the vaccine
strain Bartha [30]. The PHI recombination test of all the
SuHV-1 strains showed (Table 1) statistically significant
recombination within the dataset (p = <0.001).

EHV-1
The ML tree (Fig. 6a) shows a split between the wild
and domestic horse derived EHV-1. The phylogenetic
network also confirms this split (Fig. 6b). Genetic dis-
tance calculations resulted in 2.92% distance between
the wild and domestic EHV-1 clades, and we suggest
designating these EHV-1.1 (wild equine) and EHV-1.2
(domestic horse). The distance within the wild horse
EHV-1.1 clade was higher than EHV-1.2, at 0.61% vs.
0.18% respectively. An expansion of the EHV-1.2 clade
is shown in Fig. 5c, and shows three provisional clades,
with clades 1 and 2 being 0.135% distant, and clades 2
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Fig. 4 Phylogenetic, genetic distance, and recombination analysis of bovine herpesvirus 1 (BHV-1). a Maximum likelihood tree of BHV-1 genomic
sequences generated using RAxML, with BHV-5 as an outgroup. Bootstrap values over 65% are shown. Phylogenetic network (b) was produced
using Splitstree (kimura 2-parameter, gamma = 0.31376, and p-inverse = 0.45656). The genetic distance (Mega 6) between the two main BHV-1
clades (BHV-1.1 and BHV-1.2) was 1.12%. Viral strains are colored according to country of origin (green: Australia, orange: India, and light blue:
USA). Recombination bootscan analysis (RDP4) of strain B589 scanned against the remaining BHV-1 strains is shown in panel c
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and 3 0.137% distant. Two strains, NY03 and 5586, are
separated from the remaining EVH-1.2 viruses and may
represent a separate clade, however additional strains
need to be islolated before this can be determined.
EHV-1.2 strains NMKT04 and V592 occupy a position
between clades 1 and 2 may be interclade recombinants.
It is notable that EHV-1.2 strains do not appear to correl-
ate to geographic origin, and may reflect the cosmopolitan
nature of common breeds such as the Thoroughbred.
Bootstrap recombination analysis scanning EHV-1.2
group 3 strain Va02 against the remaining strains showed
no recombination from EHV-1.1 stains (Fig. 6c). When
the EHV-1 strains were examined using the PHI

recombination test (Table 1), statistically significant re-
combination was detected (p = <0.001). Wild equine de-
rived EHV-1 strains cause severe infections, often
neurological in both equine and non-equine captive ani-
mals [66–70], and some domestic horse EHV-1.2 strains
can also cause myeloencephalopathy [71, 72]. A SNP
(D752) within the polymerase gene of domestic horse vi-
ruses has been shown to influence the neurological disease
phenotype, and is shared among wild equine strains [73,
74]. The genomic phylogenetic analysis (Fig. 5) of the do-
mestic horse (EHV-1.2) strains did not sort the strains
based on disease phenotype, i.e. neuropathology vs abor-
tion (Fig. 6c). This finding along with data showing that
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Fig. 5 Phylogenetic, genetic distance, and recombination analysis of pseudorabies (SuHV-1). a Maximum likelihood tree of SuHV-1 genomic
sequences generated using RAxML, with BHV-1 as an outgroup. Bootstrap values over 65% are shown. Phylogenetic network (b) was produced
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Fig. 6 Phylogenetic, genetic distance, and recombination analysis of EHV-1. a Maximum likelihood tree of EHV-1 genomic sequences generated
using RAxML, with EHV-8 as an outgroup. Bootstrap values over 65% are shown. Phylogenetic network (b) was produced using Splitstree (kimura
2-parameter, gamma = 1.0360, and p-inverse = 0.4940). The genetic distance (Mega 6) between the wild equine (EHV-1.1) and domestic horse
(EHV-1.2) clades was 2.92%. (Panel c) A zoom of the domestic horse (EHV-1.2) strains from panel B shows one main grouping (a) and provisional
B and C groups. Recombination bootscan analysis (RDP4) of strain Va02 scanned against the remaining EHV-1 strains is shown in Panel d. No
recombination signals were detected from the EHV-1.1 strains. Viral strains in panels a and b are colored according to country of origin (Panel c)
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non-D752 strains [75] can cause encephalitis strongly sug-
gests multiple genes contribute to EHV-1 disease pheno-
types, as has been observed in HSV-1 [76–79].

EHV-4
Equine herpesvirus type 4 is an important equine dis-
ease, and causes rhinopneumonitis most commonly in
foals [80], however it is not a reportable disease as is
EHV-1. The phylogenetic ML tree (Fig. 7a) and phylo-
genetic network (Fig. 7b) of the available EHV-4 showed
a split into two main groups (clade 1 and 2) as has been

shown previously [32]. The genetic distance between the
two clades was 0.23%. Both the ML tree and phylogen-
etic network showed that the EHV-4 viruses, like EHV-
1, do not sort according to geographic origin and this is
likely the result of the modern movement of common
breeds globally. Recombination bootscan analysis
(Fig. 7c) scanning EHV-4 group A strain 12-I-203
against the rest showed extensive recombination from
both groups 1 and 2. Additional PHI recombination test
analysis (Table 1) detected significant amounts of recom-
bination in EHV-4 (p = <0.001).
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Fig. 7 Phylogenetic, genetic distance, and recombination analysis of EHV-4. a Maximum likelihood tree of EHV-4 genomic sequences generated
using RAxML, with EHV-1 as an outgroup. Bootstrap values over 65% are shown. Phylogenetic network (b) was produced using Splitstree (kimura
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FHV-1
Feline herpes virus type 1 (FHV-1) is thought to be main
cause of corneal ulceration [81] in cats, and can also
contribute to upper respiratory disease [82]. Recently,
several FHV-1 genomes from Australia were sequenced
and genomic analysis did not reportedly detect recom-
bination [83]. As part of our analysis of varicellovirus
phylogenetic relationships, we analyzed the available
FHV-1 genomic sequences. The ML tree and phylogenetic
network (Fig. 8a and b) suggested some strain grouping,
however, because the overall interstrain genetic distance
is low (0.0089%), we did not designate any clades.

Reticulations within the phylogenetic network implied
the presence of recombination between the FHV-1
strains. Bootscan recombination analysis (Fig. 8c), as
well the PHI recombination test (Table 1; p = <0.001)
detected recombination signals. The difficulty in detect-
ing recombination is likely due to the low interstrain
genetic distance (0.0089%), and it is possible that as
additional strains are sequenced, more recombination
may be more readily identified. It would be surprising if
recombination was not detected in FHV-1, as herpesvi-
ruses have been shown to be highly recombinagenic
[29, 31, 84, 85].
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CHV-1
Until very recently, only three CHV-1 strains, collected
between 1985 and 2000 from the UK had been se-
quenced [86], however a short time ago, a CHV-1 strain
from Brazil was deposited into GenBank. The overall
genetic distance between the three UK strains was very
low, at 0.005% (Table 1; Fig. 9a). The CHV-1 strain from
Brazil (strain BTU-1) was 0.34% distant from the three
UK viruses, with an overall interstrain distance of 0.20%

for the four viruses (Table 2; Fig. 9a). We performed a
similarity plot using the MSA (multiple sequence align-
ment) without an outgroup, and found a deep trough at
approximately 9 kb from the left end of the genome
(Fig. 9b). The similarity trough corresponded to the
UL50 deoxyuridine triphosphatase gene. Distance ana-
lysis comparing the UL50 protein sequences from the
four CHV-1 viruses showed that the Brazilian BTU-1
strain UL50 was 12.2% distant compared to the UK
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gamma = 0.75049, and no p-inverse value). The genetic distance (Mega 6) between group A and group B was 0.34% (Panel a). A genomic similarity plot
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strains (Table 4). Further blast searches (data not shown)
determined that even though the BTU-1 strain UL50
protein sequence was 12.2% distant, it appeared closest
to the remaining CHV-1 strains, rather than FHV-1.
Bootscan recombination analysis using the UK derived
0194 strain as a reference only detected recombination
signals from the other UK viruses, and none from BTU-
1 (Fig. 9c). Curiously, the PHI recombination test did

not detect statistically significant recombination (Table 1;
p = 0.3082), and may be due to the small size of the data-
set. Based on the data, we hypothesize that the BTU-1
strain may be the result of a recombination event be-
tween canine herpesvirus 1, and an unknown varicello-
virus. It would be unlikely that positive selection would
only affect a single gene in the virus to such a large ex-
tent (12.2% distance), however the possibility cannot be
eliminated. Because the UL50 sequence most closely re-
sembles the remaining CHV-1 viruses, it is likely that
the unknown virus originated from an animal of the
Caniformia suborder, which includes Brazilian species
such as the maned wolf, bush dog, pampas fox, tayra,
striped hog-nosed skunk, and crab-eating racoon.

Varicella zoster virus
The Varicella-Zoster virus (VZV) causes chickenpox as
well as shingles, and the phylogeny of VZV clades has
been extensively studied [29]. We treated our analysis of
VZV as an update, as additional strains have been se-
quenced and uploaded into GenBank. A ML tree and
phylogenetic network using CeHV-9 (simian varicella
virus) as the outgroup were constructed and are found
in Fig. 10. The phylogenetic network suggests six clades,
which are denoted numerically as described previously

Table 4 UL47 to UL54 maximum likelihood based protein
distances of CHV-1 strain BTU-1 compared to UK derived viruses

Protein Percent
distance

UL47 0.78

UL48 0.23

UL49 0.12

UL49A 0

UL50 12.2

UL51 2.1

UL52 1.63

UL53 1.2

UL54 0

a b

Fig. 10 Phylogenetic, genetic distance, and recombination analysis of VZV. a Maximum likelihood tree of VZV genomic sequences generated
using RAxML, with CeHV-9 as an outgroup. Bootstrap values over 65% are shown. A Phylogenetic network (b) was produced using Splitstree
(kimura 2-parameter, gamma = 0.50800, and p-inverse = 0.19700). There are seven clades A-G, and the overall genetic distance (Mega 6, pairwise
deletion) was 0.136%. Viral strains in panels a and b are colored according to country of origin (Panel a)
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[29]. (Fig. 9b). PHI recombination analysis confirmed
statistically significant recombination among the VZV
strains (Table 1; p = <0.001%).

Conclusions
In conclusion, this is the first genome based phylogen-
etic study of the entire Varicellovirus genus. In this
study, we present a number of unique findings including
results suggesting that a phylogenetic stricture exists be-
tween the ungulate viruses and the primate and carni-
vore viruses, a possible link between genome G + C
content and intraspecies strain genetic diversity, the de-
tection of recombination in all of the varicellovirus spe-
cies including FHV-1, and that the Brazilian CHV-1
strain BTU may contain a genetic signal from an un-
known varicellovirus in the UL50 gene. We also propose
a clade nomenclature standardization for varicello-
viruses. This work helps to deepen the understanding of
varicellovirus genomics and evolution.

Additional file

Additional file 1: Table S1. Accession numbers for the sequences used
in the present study. The species, isolation host, strain designation,
genome size, country of isolation, isolation source, collection date, and
accession number for each sequence is provided. Table S2. Unscaled F
values. The the only reported F values were those which included cut-
offs that result in two groups for all viruses. Table S3. Rescaled F values.
The rescaled values of F simply indicates the relative size of F. The total
value is on a scale from 0 to 3, with 3 meaning that the separation is as
good as possible for all three viruses. (ZIP 42 kb)
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