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Abstract

We demonstrate an approach to measure the information flow between each pair of time series in 

resting-state functional MRI (fMRI) data of the human brain and subsequently recover its 

underlying network structure. By integrating dimensionality reduction into predictive time series 

modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information 

flow suggestive of causal influence at an individual voxel level, unlike other multivariate 

approaches. This method quantifies the influence each voxel time series has on every other voxel 

time series in a multivariate sense and hence contains information about the underlying dynamics 

of the whole system, which can be used to reveal functionally connected networks within the 

brain. To identify such networks, we perform non-metric network clustering, such as accomplished 

by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor 

and visual cortex from resting state human brain fMRI data and compare it with the network 

recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice 

Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two 

networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis 

on network recovery. We conclude that our approach is capable of detecting causal influence 

between time series in a multivariate sense, which can be used to segment functionally connected 

networks in the resting-state fMRI.
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1. INTRODUCTION

The development in our understanding of complex systems has directly influenced studies 

analyzing connectivity between different regions in the brain [1]. Of particular interest is the 

quantification of causal influence that different regions exert on one another. Methods such 

as Dynamic Causal Modelling (DCM) [2] and Structural Equation Modelling (SEM) [3] 

demonstrate how such interactions can be estimated. One common shortcoming of these 

methods is that they are unable to obtain a causality score between every pair of voxel time 

series in the brain, i.e., the common situation that the number of time series by far exceeds 

the number of temporal acquisitions. Instead, such methods are limited to the analysis of a 

small number of pre-selected regions. This is because the above methods encounter 

problems of underdetermined systems or exponential growth of models to be tested, if 

influence scores at a voxel level should be obtained. We demonstrate the use of large-scale 

Granger Causality (lsGC) [4] to investigate causal influence at a voxel resolution scale in 

resting-state fMRI, and we illustrate how this information can be used to extract underlying 

brain network structures using non-metric clustering approaches. This work is embedded in 

our group’s endeavor to expedite ‘big data’ analysis in biomedical imaging by means of 

advanced machine learning and pattern recognition methods for computational radiology 

and radiomics, e.g. [5–29].

Our lsGC analysis method overcomes the problem of an underdetermined system by first 

incorporating a dimensionality reduction step retaining high variance principal components, 

followed by modelling the system using Vector Auto-Regression (VAR) [31]. As Principal 

Component Analysis (PCA) [32] is a linear dimension reduction scheme, we can back-

project the prediction errors – obtained from VAR modelling – into the original high-

dimensional space of voxel time series and thus calculate Granger Causality (GC) indices at 

a voxel resolution scale. This measure of influence likely contains information about 

underlying information transfer between functionally connected times series in the brain. 

This influence flow is conditioned on the information present in all the time series by taking 

the first few high variance components and performing a multivariate analysis [33], leading 

to a lsGC index between every pair of voxel time series. Thus, we can represent the human 

brain as a directed graph with voxels being the nodes and the influence score (lsGC index) 

being the edge weights. We extract the underlying network structure from the indices by 

performing graph-theoretical approaches for community detection, such as non-metric 

clustering by the Louvain method [34]. The resulting network, obtained from the resting-

state fMRI time series is compared with the network obtained from the task stimulation 

sequence using the Dice Coefficient (DC) [35]. We also investigate the effect of the number 

of retained principal components on the robustness of network recovery.

2. DATA

An MRI data set from a healthy male, aged 52 years, was obtained at the Rochester Center 

for Brain Imaging (Rochester, NY, USA). The scan was acquired using a 3.0 Tesla, Siemens 

Magnetom TrioTim scanner, using the fMRI scan parameters echo time (TE) = 23 

milliseconds, repetition time (TR) = 1650 milliseconds, 96 × 96 acquisition matrix, flip 

angle of 84°. Two sequences of images were obtained: 1) Resting-state acquisition, where 
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the subject was asked to lie down still with his eyes closed, while 250 volumes under resting 

state were obtained. 2) Visuomotor stimulation, where the subject had to perform a finger 

tapping task in the presence of an alternating visual stimulus, where 110 volumes were 

acquired. The task sequence was used to aid in localizing the motor and visual cortex of the 

subject. The study protocol also included high resolution structural imaging using a T1-

weighted Magnetization-Prepared Rapid Gradient Echo (MP-RAGE) sequence (TE = 3.44 

ms, TR= 2530 ms, isotropic voxel size of 1mm, flip angle = 7°). The scanned individual had 

given written consent as per protocol approved by the IRB.

3. METHODS

3.1 Pre-processing

The effects of initial saturation were eliminated by removing the first 10 volumes of the 

acquisition. The volumes were then motion-corrected and the brain was extracted. To 

remove effects of signal drifts, linear detrending was performed by high pass filtering (0.01 

Hz). Subsequently, the slices were registered to the standard MNI152 template [36]. In 

addition, the ventricle mask based on the standard MNI152 template was used to eliminate 

time series in the corresponding regions. Finally, the time series were normalized to zero 

mean and unit standard deviation to focus on signal dynamics rather than amplitude [37]. 

The motor task sequences were further processed using the standard (FEAT) [38] boxcar 

design in order to test, where the BOLD signal correlated with the stimulation. The z-

statistic images obtained were thresholded at z>4 with a corrected cluster significance 

threshold of p<0.01. This results in a map of regions corresponding to the visual and motor 

cortex for each individual, referred to as ‘localization aid’ in this study.

3.2 Large-scale Granger causality

We use large-scale Granger Causality [4] to obtain a casual influence score between every 

pair of voxel time series in the resting state human brain. Large-scale Granger Causality 

works on the principle of Granger Causality, which obtains the casual influence of time 

series xr on time series xs by quantifying the improvement in prediction of xs in the presence 

of xr. Large-scale Granger Causality obtains an influence score between every pair of voxels 

in a multivariate sense. The limitation with using a multivariate approach to Granger 

Causality, without incorporating dimensionality reduction, on large systems like the brain, is 

that the prediction model cannot estimate model parameters as the system is undetermined. 

We show how using lsGC approach, this problem can be overcome.

Consider the ensemble of time series X , where N is the number of time series and T 
the number of temporal samples. Let X = (x1, x2, x3, …, xN)T be the whole 

multidimensional system, xn  a single time series with n ∈ {1,2, …, N}, where xn = 
(xn(1), xn(2), …, xn(T)). lsGC obtains a multivariate GC score by first decomposing X into 

its first p high-variance principal components Z using Principal Component Analysis 

(PCA), i.e.,
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Following this, we model Z using Vector Auto-Regressive (VAR) modelling of order m and 

compute the estimate  by using the m auto-regression  parameter matrices obtained 

from VAR modelling of Z. To obtain the influence of time series xr on all other time series, 

we remove the information of xr from the transformation matrix W, obtain  and model 

 as its VAR estimate. In this manner, lsGC obtains a causality score between every 

pair of time series in a multivariate sense.

The errors of the two estimates are projected into the original high-dimensional space using 

the respective inverse PCA transformation. After the errors are obtained, we quantify the 

prediction quality by comparing the variance of the prediction errors obtained with and 

without consideration of xr. If the variance of the prediction error of a given time series, say 

xs, decreases with using xr, then we say that xr Granger-causes xs [4].

 is the GC index for the influence of xr on xs, which is stored in the affinity matrix A 
at position (A)sr.  is the error in predicting xs, when xr was not considered, and is 

the error when xr was used.

3.3 Non-metric clustering

The affinity matrix A, whose coefficients are the large-scale Granger causality indices, can 

be represented as a network graph, from which the underlying network structure can be 

extracted using non-metric clustering approaches, such as the Louvain method [34]. 

Functionally connected regions within the brain can be extracted using this information. 

This method optimizes the modularity of a network by dividing the network into modules 

that have strong intra-module and weak inter-module connections.

The underlying network structure information present in the affinity matrix A, can be 

extracted using Louvain method which finds high modularity communities in the network. 

Modularity, which is a measure of the strength of the intra-module links as compared to the 

inter-modules links, can be used to decompose a complex network into clusters (or 

modules).

Modularity is given by:

(4)

Where Aij is the coefficient that represents the large-scale Granger causality score from 

nodes i to j,  is called the strength of connections to node i, i belongs to 

community Ci, δ(a,b) = 1 when a = b, and 0 otherwise, and .
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Optimization of modularity, Q, is carried out in an iterative process as proposed in [34]. This 

approach merges different nodes of the network into larger modules (communities) for a 

positive change in modularity. The merging terminates when further addition of nodes to 

communities decreases the modularity of the network. For fMRI data, the modules resulting 

after performing non-metric clustering correspond to different functionally connected 

regions in the resting human brain. The similarity between the motor and visual cortex 

clustering results and the localization aid obtained from the task sequence was evaluated 

using the Dice coefficient [35].

All preprocessing steps were carried out using the FMRI Expert Analysis Tool (FEAT) in 

FSL [38]. The time series analysis procedures were implemented using MATLAB 

(MathWorks Inc., Natick, MA, 2013). The Louvain method implementation was taken from 

[39].

4. RESULTS

4.1 Influence of number of principal components used on the Dice coefficient

Figure 1 shows the effect of changing the number of principal components used in obtaining 

the lsGC coefficients on the network recovery — quantified by the Dice Coefficient (DC). 

We observe that the DC increases initially with increasing number of principal components, 

until it reaches a maximum, and decreases subsequently. The initial rise in DC can be 

accounted to the fact that as the retained number of principal components increases, the 

amount of variability of the retained information on the data increases and hence the system 

is better represented with more number of principal components, where the explained 

variance is the measure of the retained variability of system. However, increasing the 

number of principal components further decreases the DC. This happens because the quality 

of the VAR parameter estimation is limited by the length of the time series, and hence, 

although the system is better represented with more principal components, we do not 

achieve good network recovery.

4.2 Network Recovery

We compare the best network recovered using the resting-state sequence with the 

localization aid in Figure 2. We coarsened the resolution of the whole brain data set by 

averaging the signal intensity information of three adjacent voxels, where a new voxel 

encompasses 3×3×3 original voxels. The total number of time series in the coarsened data 

set was 6584. The best network recovery was achieved, when 18 principal components were 

retained (DC = 0.59). As clearly seen in Figure 2, there is a strong visually perceivable 

agreement of the two networks, i.e., the task-based localization aid and the recovered visual 

and motor network.

5. NEW AND BREAKTHROUGH WORK

We demonstrate the use of large-scale Granger Causality (lsGC) to first obtain a directed 

multivariate Granger causality coefficient for every pair of voxel time series in the brain 

from resting-state fMRI data. Subsequently, we recover functionally connected networks in 

the brain by a community detection approach using non-metric clustering. Note that such a 
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whole-brain multivariate connectivity analysis is not feasible using other current approaches. 

For example, to perform exhaustive multivariate GC analysis for every pair of voxel time 

series within the brain is not feasible due to the limited number of temporal fMRI 

acquisitions, resulting in an underdetermined problem for VAR parameter estimation. 

Alternatively, one would first have to pre-select a much smaller number of brain regions and 

obtain influence scores within such a markedly simplified network only. In contrast, the 

work presented here is the first approach to introduce a method to successfully evaluate 

multivariate effective connectivity at a voxel resolution scale for whole-brain functional MRI 

data.

6. CONCLUSION

We present the applicability of our approach, called large-scale Granger Causality (lsGC) 

analysis, to recover functionally connected networks in whole-brain human resting-state 

fMRI data. This analysis reveals important information about brain connectivity by 

quantifying the directed causal influence of every voxel time series on every other voxel 

time series in a multivariate sense. Using this information, we obtain functionally connected 

networks by performing a non-metric clustering approach, using the Louvain method. We 

observe a strong agreement of the visual and motor cortex networks and the localization aid 

provided by a task-stimulation fMRI experiment. The successful recovery of functionally 

connected networks demonstrates the applicability of lsGC to explore whole-brain network 

connectivity in human resting-state fMRI data.

This work is not being and has not been submitted for publication or presentation elsewhere.
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Figure 1. 
Plot showing the variation in Dice coefficient as the number of principal components 

(explained variance) is increased. It can be noted that the dice coefficient initially increases, 

reaches a peak and subsequently decreases.
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Figure 2. 
Visual Comparison between clustering results based on large-scale Granger Causality (lsGC) 

analysis and the localization aid for motor and visual cortices identified by a task-

stimulation fMRI experiment. Dice coefficient achieved was 0.59. Recovery of the motor 

cortex and the visual cortex can be clearly observed.
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