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Abstract We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect

technique (SIT)-related control. The molecular mechanisms that support RNAi in pest species are

reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster

Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across

taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM

system for targeting populations of insects for control purposes, if RNAi effector molecules can be

delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders

and review to what extent taxonomy, genetics, and differing methods of double-stranded (ds) RNA

synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the

secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector

molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects can-

not be used to reliably forecast the efficiency of an eRNAi response. Themechanisms by which insects

acquire dsRNA from their environment require further research, but the evidence to date suggests

that endocytosis and transport channels both play key roles. Delivery of RNAmolecules packaged in

intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the

gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate

the potential for RNAi.

RNAi and the sterile insect technique (SIT)

Established methods of insect control are under continual

review and development in order to keep track of new

knowledge, changing legislation, regulatory concerns, and

the maintenance of efficacy (e.g., in the face of increased

resistance to pesticides) (Gross, 2013; Tabashnik et al.,

2014). In this context, the development of new methods

for insect control is of key importance and there has been

intense interest in the utility of gene silencing methods

induced by RNA interference (RNAi). RNAi can induce

mortality (Yang & Han, 2014; Cao et al., 2015; Abd El

Halim et al., 2016; Christiaens et al., 2016; Hu et al., 2016;

Malik et al., 2016), create beneficial phenotypes for insect

control (Salvemini et al., 2009; Shukla & Palli, 2012; Peng

et al., 2015; Yu et al., 2016), and prevent pesticide resis-

tance in insect pests (Figueira-Mansur et al., 2013; Guo

et al., 2015; Wei et al., 2015; Bona et al., 2016; Sandoval-

Mojica & Scharf, 2016). Therefore, the potential for RNAi

as a basis for future pest management strategies holds great

promise (Huvenne & Smagghe, 2010; Gu & Knipple, 2013;

Scott et al., 2013; Baum & Roberts, 2014; Kim et al.,

2015). The purpose of this review is to summarize the

mechanisms by which gene silencing is achieved, describe

the ways in which it is currently being used, and to explore

the many factors that affect the efficacy of RNAi in this

context.

RNAi can be used to achieve knock-down of the level of

gene expression in specific target genes. This is done via

the introduction, by various means, of double-stranded

RNA (dsRNA) into the cells of the target species (Fire

et al., 1998). The evidence suggests that RNAi is facilitated

by the canonical small interfering RNA (siRNA) pathway,

which results in mRNA degradation (Figure 1). In our

review of the mechanisms of RNAi in pest insects we draw

*Correspondence: Tracey Chapman, School of Biological Sciences,

University of East Anglia, Norwich Research Park, Norwich, NR4

7TJ, UK. E-mail: tracey.chapman@uea.ac.uk

© 2017 The Authors. Entomologia Experimentalis et Applicata published by JohnWiley & Sons Ltd
on behalf of Netherlands Entomological Society Entomologia Experimentalis et Applicata 164: 155–175, 2017 155
This is an open access article under the terms of the Creative Commons Attribution License,
which permits use, distribution and reproduction in anymedium, provided the original work is properly cited.

DOI: 10.1111/eea.12575

http://orcid.org/0000-0002-2401-8120
http://orcid.org/0000-0002-2401-8120
http://orcid.org/0000-0002-2401-8120
http://creativecommons.org/licenses/by/4.0/


strongly from the well-described canonical siRNA pathway

inDrosophila melanogasterMeigen andHomo sapiens L.

It has been increasingly realized that a classic method of

insect control, the sterile insect technique (SIT) (Knipling,

1955) could, in principle, be implemented through RNAi

(Whyard et al., 2015). The SIT relies upon the production

of large numbers of sterile insects for release (usually

males) that subsequently mate with wild individuals,

resulting in sterile matings and a reduction in the pest

population size (Knipling, 1998; Krafsur, 1998). The key

to SIT is the effective production of large numbers of ster-

ile individuals. This crucial step is also a potential weakness

of the approach. For example, the induction of sterility

through irradiation results in well-documented costs to

insect performance, and hence control potential (Hooper,

1972; Toledo et al., 2004; Guerfali et al., 2011). Newer

developments based on SIT that avoid irradiation, e.g.,

genetically engineered ‘self-limiting’ insects (Thomas

et al., 2000), can be highly effective (Harris et al., 2011;

Carvalho et al., 2015; Gorman et al., 2016) but rely upon

the release of genetically engineered insects, which may

not be possible in all countries.

The principles by which RNAimight offer an alternative

route for the induction of sterility, as well as other poten-

tially useful manipulations for insect control, were recently

investigated in a study using Aedes aegypti (L.) (Whyard

et al., 2015). The scenario envisaged by Whyard et al.

(2015) requires knockdown of at least two genes in the tar-

get insects. First, females would be targeted through silenc-

ing of a gene in the sexual differentiation cascade to turn

them into pseudomales, i.e., genetic females which are

phenotypically male (Pane et al., 2002; Salvemini et al.,

2009; Shukla & Palli, 2012; Liu et al., 2015). Next, genes

that could induce male (and pseudomale) sterility would

be targeted in order to produce a 100% sterile male release

cohort (Whyard et al., 2015). However, two equally

important conditions must be met before this technique

can be applied in the field, as described below.

The primary condition of RNAi-based SIT is that the

sex reversal target must reliably produce a male-only

cohort. There are clear benefits of releasing only one sex in

SIT programmes, for example it can avoid both assortative

mating between released insects and any pest-related dam-

age caused by females. The second condition is to ensure

that silencing of neither the sex reversal nor the sterility

target unduly reduces insect performance. Evidence sug-

gests that these conditions can be met, although further

supporting research is required.

Through RNAi of transformer-2, Salvemini et al.

(2009) were able to produce a Ceratitis capitata
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Figure 1 The canonical siRNA pathway.

Cytoplasmic long double-stranded RNAs

are processed into 21-bp duplex siRNAs by

Dicer endonucleases. Dicer then

complexes with various molecules to form

a RISC loading complex (RLC) (the

proposed RLC variant found inDrosophila

melanogaster is shown here; Liang et al.,

2015). The RLC introduces siRNA to an

Argonaute protein, which degrades a

single ‘passenger’ strand of the duplex,

whilst binding its cognate partner to form

an RNA induced silencing complex

(RISC). The RISC then utilizes the

nucleotide sequence of the bound ‘guide’

strand to scan cellular mRNAs, which it

targets for knockdown via degradation.
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(Wiedemann) cohort which was 95.6% phenotypically

male. Karyotypic analysis of phenotypically male flies

(n = 20) demonstrated that they were 55% genetically

female. Most importantly, pseudomales were observed

completing male-specific courtship rituals, which should

allow them to attract and copulate with females (Brice~no

& Eberhard, 2003). Gabrieli et al. (2016) report that RNAi

of innexin-5 in C. capitata produced spermless, sterile

males. Spermless males remained sexually competitive

with wild-type rivals and were able to induce similar post-

mating responses. It is possible that simultaneous RNAi of

transformer-2 and innexin-5 (or conserved homologous

genes in diverse species) could produce a male-only, sterile

cohort that could be used for SIT. However, it is important

to note that simultaneous gene silencing is unpredictable

(Table 2) and that Gabrieli et al. (2016) and Salvemini

et al. (2009)microinjected insect eggs with dsRNA, a tech-

nique that is incompatible with large-scale SIT.

Microinjection of dsRNA has been demonstrated to

induce RNAi in several insects (Paim et al., 2013; Peng

et al., 2015; Xue et al., 2015; Yu et al., 2016). However,

SIT programmes may require the production and release

of up to a billion insects per week (Alphey et al., 2010) and

injection techniques cannot be used to treat insects in such

numbers. Therefore, RNAi may provide a useful tool for

implementing SIT if gene silencing can be induced via

environmental dsRNA (eRNAi) (Whangbo & Hunter,

2008).

Cell autonomous RNAi defines gene silencing in

response to intracellular dsRNA of experimental or viral

origin. Non-cell autonomous RNAi defines gene silencing

in response to an extracellular signal, and is further divided

into systemic RNAi or eRNAi based on the nature of that

signal. eRNAi describes gene silencing in response to prox-

imal dsRNA molecules, whereas systemic describes RNAi

gene silencing in response to a signal received from a prox-

imal cell. Therefore, both non-cell autonomous RNAi and

eRNAi occur in a primary cell in direct response to

dsRNA, whereas systemic RNAi is initiated in a secondary

cell in response to an as yet undefined signal received from

a primary cell (Figure 2). eRNAi can be achieved via the

introduction of dsRNAs via food (Asokan et al., 2014;

Coleman et al., 2015; Li et al., 2015b; Sandoval-Mojica &

Scharf, 2016) or through topical delivery (Toprak et al.,

2013; Whyard et al., 2015). For reasons that are as yet not

entirely clear, the capacity of insects to express systemic

RNAi and eRNAi varies both within and between species

(Baum & Roberts, 2014; Li et al., 2015a; Shukla et al.,

2016; Sugahara et al., 2017).

Many factors affect the efficiency of gene silencing

induced by eRNAi. Some are intrinsic properties of the

insects themselves (genetic differences, feeding habits,

etc.), but others correspond to the nature of dsRNA effec-

tor molecules and their state at the point of encounter/

entry to the host. In this review, we first describe themech-

anisms of RNAi in detail, highlight examples of its use in

different pest species, and in the concluding section con-

sider the factors affecting eRNAi, in an attempt to discover

whether there are emergent properties that might be useful

in the planning of SIT strategies.

Systemic RNAi

Cell autonomous RNAi

Environmental RNAi

Primary cell Secondary cellSignal

Signal

Signal

Signal

Signal
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Figure 2 Categories of RNAi response. Cell autonomous RNAi is gene silencing in response to cytoplasmic dsRNA of viral or experimental

origin. Non-cell autonomous RNAi occurs in response to an extracellular signal, and is subcategorized by the origin of that signal as either

environmental (eRNAi), or systematic RNAi. eRNAi occurs when a cell takes up environmental dsRNAmolecules and elicits a gene

silencing response. Systemic RNAi is initiated in a secondary cell when a silencing signal is received from a primary cell. Systemic RNAi can

be a by-product of either non-cell autonomous RNAi or eRNAi in a primary cell, and if the secondary cell further propagates the signal,

this can induce global gene silencing.
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Mechanism of RNAi

RNAi is facilitated through the canonical siRNA pathway, culminating
in the degradation of target mRNA

Small interfering RNAs (siRNAs) are short (ca. 21 nt) dou-

ble-stranded RNA molecules that are cleaved from long,

cytoplasmic dsRNA transcripts (Figure 3). siRNAs belong

to a large family of small non-coding RNAs (ncRNAs) that

facilitate different modes of gene silencing. ncRNA species

include small interfering RNAs (siRNA), microRNAs

(miRNA), PIWI-interacting RNAs (piRNA), trans-acting

RNAs (tasiRNAs), repeat-associated RNAs (rasiRNAs),

and small-scan RNAs (scnRNAs) (Kuramochi-Miyagawa

et al., 2001; Kim et al., 2009, 2015). While the origin and

function of each ncRNA species is distinct (Bartel, 2004;

Gasciolli et al., 2005; Babiarz et al., 2008; Kim et al., 2009)

their actions are facilitated by homologous molecular

mechanisms.

ncRNAs can only initiate gene silencing when bound to

an Argonaute protein as part of an RNA-induced silencing

complex (RISC). When assembled in a RISC, exo-siRNAs

target viral mRNAs for knockdown as part of an immune

response (Lan et al., 2016a,b). In contrast, endo-siRNAs

target endogenously transcribed mRNAs in order to

achieve gene regulation (Babiarz et al., 2008; Okamura

et al., 2008). exo-siRNAs function through the canonical

siRNA pathway, inducing cleavage of target mRNAs (Elba-

shir et al., 2001a; Song et al., 2004), while endo-siRNAs

inhibit the translation of target molecules (Hannon,

2002).

The canonical siRNA pathway requires the nucleotide

sequences of siRNA molecules and their intended

mRNA targets to exhibit almost perfect complementar-

ity (Joseph & Osman, 2012). Imperfect homology may

result in a mode of gene silencing other than mRNA

cleavage (such as translational repression; Hu et al.,

2010), which is associated with other ncRNA pathways.

Perfect sequence homology is achievable in RNAi, as

the target mRNA can usually be used to design effector

dsRNA molecules with perfect matching. Therefore, the

predominant mechanism of gene silencing induced by

RNAi is mRNA degradation.

siRNA biogenesis: Dicer

siRNAs are ubiquitous throughout the Eukaryota (Vau-

cheret, 2006; Fire, 2007), suggesting that defense to viral

infection via the processing of long dsRNA is well con-

served. Key effector molecules involved in siRNA biogene-

sis do vary in both form and function and have been

demonstrated to be targets of viral suppression in honey-

bees (De Smet et al., 2017). Both endo- and exo-siRNAs

are cytoplasmically processed by Dicer, a member of the

RNAase III endonuclease family (Hammond et al., 2000;

Bernstein et al., 2001). RNAase III enzymes are defined as

having two RNAase III endonuclease domains and a heli-

case domain (Sontheimer, 2005). As well as having three

conserved RNAase III motifs, the Dicers also contain a

conserved RNA-binding PAZ domain (Yan et al., 2003)

and a DUF283 domain with unknown function (Dlaki�c,

2006).

Dicer’s PAZ domain binds the 30 overhangs of long

cytoplasmic dsRNA molecules. The captured dsRNA is

then brought into contact with Dicer’s two RNAase III

domains, each of which cleaves (or dices) a particular

strand of the molecule. Dicing produces 21-nt siRNA

duplexes with short (2 nt) overhangs at the 30 end on each

strand (Elbashir et al., 2001a).

Many organisms (including humans) express a single

isoform of Dicer (Zhang et al., 2002). Drosophila melano-

gaster expresses two Dicer variants (Dicer 1 and Dicer 2)

that are reported to function in discrete gene silencing

pathways (Lee et al., 2004; Tomari et al., 2007), though

many details are as yet unclear. Dicer 2 binds and degrades

long dsRNA destined to become siRNA, whereas Dicer 1

binds pre-miRNA hairpin loops of ca. 60 nt and cleaves

them, creating functional miRNAs duplexes. Dicer 2 is also

instrumental for processing of siRNA in the small brown

planthopper, Nilaparvata lugens (St�al) (Lan et al., 2016a)

and the zigzag leafhopper, Recilia dorsalis Motschulsky

(Lan et al., 2016b).

3'3'

Dicer

DicerLong dsRNA

siRNA

Figure 3 siRNA biogenesis. 21-nt siRNA

duplexes are cleaved from long,

cytoplasmic dsRNAmolecules by Dicer

endonucleases. Two cuts are carried out by

discrete Dicer RNAase III motifs, leaving

short 30 overhangs on each strand (Tomari

& Zamore, 2005).
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The RNA-induced silencing complex (RISC)

RISCs are the functional components of all ncRNA-

mediated gene silencing pathways (Maniataki & Moure-

latos, 2005; Rand et al., 2005; Hartig et al., 2007). RISCs

can be defined as an Argonaute protein bound to a single

strand of ncRNA. As there are several ncRNA and

Argonaute species, the term RISC specifies a diverse group

of ribonucleoprotein complexes.

Until complexed in a RISC, siRNAs have no effects

upon gene expression. Formation of a RISC requires free

siRNA to be captured by a RISC-loading complex (RLC)

and introduced to an Argonaute (Tomari et al., 2004;

MacRae et al., 2008). After cleaving siRNA from long

dsRNA, Dicer complexes with either transactivation

response RNA-binding protein (TRBP), or protein activa-

tor of PKR (PACT) to form the two human RLC variants

(Haase et al., 2005; Lee et al., 2006, 2013; Lau et al., 2009).

Variations in the 50 terminal of TRBP and PACT may bias

the binding affinities of human RLC variants toward either

siRNA or miRNA, respectively (Lee et al., 2013). Dicer’s

participation in RISC loading is not required in all mam-

malian systems, as DDicer murine embryonic stem cells

remain RLC competent (Murchison et al., 2005).

In Drosophila the canonical siRNA pathway utilizes an

RLC formed by Dicer 2, R2D2 and TBP-associated factor

11 (TAF11) (Liang et al., 2015). TAF11 is not necessary

for RISC loading, as Dicer/R2D2 heterodimers form a

competent RLC. Dicer and R2D2 bind opposite poles of

siRNA before loading it into a RISC (Tomari et al., 2004).

ΔR2D2 and ΔDicer flies are therefore incapable of siRNA-
mediated gene silencing (Liu et al., 2006). Liang et al.

(2015) suggest that an optimum RLC is formed when

R2D2 and Dicer 2 form a tetrameric complex stabilized by

TAF11. Tetrameric RLCs that include TAF11 display a

10-fold increase in siRNA binding over Dicer/R2D2

heterodimers.

Dicer’s role in siRNA biogenesis and RISC loading elic-

its potent gene silencing, in a manner which cannot yet be

imitated precisely with artificially synthesized siRNA

molecules. siRNAs that are enzymatically Diced from

240-bp dsRNA constructs produce more effective gene

silencing than artificially synthesized siRNA duplexes of

equivalent sequence (Bolognesi et al., 2012).Whyard et al.

(2009) also found that synthetic siRNA induced less potent

RNAi than did enzymatically dicedmolecules.

siRNAs associate with Argonaute proteins from the Ago Clade

Based on analysis of nucleotide sequence homology, the

Argonaute proteins form two clades. The Ago clade is the

largest and took its name from Arabidopsis Ago1 mutants

(Carmell et al., 2002). The Agos are bilobed proteins with

a central PIWI endonuclease domain flanked by RNA-

binding PAZ (a feature shared with the Dicer enzymes),

and MID domains at the N- and C-terminals, respectively

(Wang et al., 2008, 2009). A smaller Argonaute subclade

(the PIWIs) was named for the Drosophila P-element-

induced Wimpy testis protein (Aravin et al., 2006). Agos

are expressed globally and associate with siRNA and

miRNA to form RISCs. Until recently PIWIs (which asso-

ciate with piRNAs) were thought to be restricted to the

germline (Grishok et al., 2001; Morel et al., 2002; Tomari

et al., 2007). However, evidence of their additional role in

somatic gene silencing is now emerging (Morazzani et al.,

2012; Schnettler et al., 2013).

Many organisms express a range of Ago proteins that

associate with discrete ncRNA species. In D. melanogaster,

for example, siRNA complexes with Ago2, miRNA associ-

ates with Ago1 (Tomari et al., 2007), and piRNA with

PIWI proteins (Vagin et al., 2006; Malone et al., 2009).

Although it is generally accepted that Ago2 is required for

RNAi in the insects, silencing of Ago1 in Leptinotarsa

decemlineata Say cells does inhibit gene silencing (Yoon

et al., 2016). Humans, on the other hand, express four

Ago proteins, all of which bind siRNA. However, only

when complexed with Ago2 is siRNA capable of forming a

functional RISC (Liu et al., 2004).

Guide strand genesis

Ago2 degrades a single ‘passenger’ strand of each siRNA

duplex presented by an RLC (Matranga et al., 2005; Rand

et al., 2005; Leuschner et al., 2006; Wang et al., 2009). In

humans and D. melanogaster Ago2 initiates the release of

the passenger strand by cleavage, creating two single-

stranded molecules of 9 and 12 nt (Matranga et al., 2005;

Noland & Doudna, 2013). In humans the fragmented pas-

senger strand is then degraded in the cytoplasm by C3PO

(Ye et al., 2011). It also appears that C3PO aids passenger

strand digestion in D. melanogaster and may also enhance

gene silencing through RISC activation (Liu et al., 2009).

Once the passenger strand has been released, the remain-

ing ‘guide’ strand complexes with Ago2 to form the RISC.

The thermodynamic properties of duplexed siRNA

molecules appear to influence which strand is destined to

be integrated into a RISC. The two strands of the siRNA

duplex have to be separated from each other by helicases,

which try to unwind the duplex from both ends. The ends

can have different stability depending on the GC content

on the last 3–5 base pairs and the strand that has the 50 end
at the less strongly paired end has a higher chance to

become the guide strand (Khvorova et al., 2003; Schwarz

et al., 2003; Tomari et al., 2004). Both human RLC vari-

ants are capable of sensing the thermodynamics of

duplexed siRNA and reorientating the molecule prior to

RISC loading (Noland et al., 2011; Noland & Doudna,
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2013), which may facilitate strand selection by Argonaute.

The Dicer/R2D2 RLC seen in Drosophila also configures

siRNA according the thermodynamics of the molecule

(Liu et al., 2006).

RISCs utilize the guide strand to identify potential mRNA targets

Ago2’s N-terminal PAZ domain binds the 30 end of the

guide strand, whereas the C-terminal MID domain binds

the 50 phosphate (Wang et al., 2008). The guide strand is

orientated with its phosphate backbone toward Ago2’s

PIWI domain and the free nucleotides facing outwards.

The RISC then utilizes the guide strand to scan cellular

mRNA through Watson and Crick base pairing. Cognate

mRNA, which base pairs with the guide, is targeted for

knockdown (Filipowicz, 2005; Noland & Doudna, 2013).

Each RISC is therefore capable of highly selective mRNA

targeting based upon the nucleotide sequence of its intrin-

sic guide.

Cleavage of targeted mRNA

In the final stage of RNAi, cleavage of targeted mRNA

occurs in the region bound by the center of the guide

strand between residues 10 and 11 (Elbashir et al., 2001b;

Haley & Zamore, 2004). The resulting 50 and 30 mRNA

fragments are then degraded by discrete cytoplasmic

enzymes (Orban & Izaurralde, 2005). Within Ago2’s PIWI

domain is an aspartate-aspartate-glutamate (DDE) motif

which is conserved in RNAase-H related enzymes (Song

et al., 2004). This motif is critical for mRNA degradation,

asmutation of these residues results in loss of slicing ability

(Liu et al., 2004).

dsRNA as an experimental gene silencing device

In 1990, Napoli et al. (1990) developed petunias that

expressed a hybrid chalcone synthase transgene (CHS).

The authors predicted that expression of the transgene

would supplement naturally occurring CHS and produce

flowers with deep violet colouring (Napoli et al., 1990).

Unexpectedly, 42% of the flowers exhibited an unpig-

mented, white phenotype. This led the authors to hypothe-

size that the transgene must somehow be inhibiting the

expression of its naturally occurring orthologue.

Research into RNAi began following the work of Napoli

et al. (1990). The first report of RNA being used to delib-

erately silence genes in an animal model came in 1995

when Guo & Kemphues (1995) injected C. elegans

embryos with ssRNA designed to base pair with, and

sequester, Par-1 mRNA. Guo & Kemphues (1995) were

successful in silencing Par-1, but they were incorrect in

their assumption that the underlying mechanism was

triggered by ssRNA.

Using improved RNA preparation techniques, Fire et al.

(1998) were able to show that Guo & Kemphues (1995)

had contaminated their single-stranded antisense RNAs

with sense transcripts. Guo & Kemphues’s (1995) ssRNAs

had therefore base-paired to form duplexes and entered

the canonical siRNA pathway. Fire et al. (1998) were able

to demonstrate that C. elegans when bathed in dsRNA

silenced genes up to 1009 more efficiently than when

bathed in ssRNA. This experiment identified dsRNA as the

critical effector molecules in previously described gene

silencing experiments and was the first time dsRNA had

purposefully been used to implement gene silencing. This

finding was the starting point of all subsequent studies of

RNAi.

Implementation of eRNAi in pest species

As outlined briefly above, microinjection of dsRNA would

not be a viable method for treating the large numbers of

insects required for SIT. However, it is thought that expo-

sure to eRNAi might provide a suitable alternative. The sus-

ceptibility of target species to eRNAi is critically important

and has been reviewed in depth by Baum & Roberts

(2014). However, insects that are naturally recalcitrant to

eRNAi are not necessarily outside consideration for this

type of gene silencing as, although yet to be demonstrated

in an insect model, methods such as electroporation can

also be used to deliver dsRNA – e.g., as described in tick

eggs (Karim et al., 2010; Ruiz et al., 2015), nymphs, and

larvae (Lu et al., 2015). Various options are outlined below.

eRNAi delivery methods: larvae

To interrupt the sexual differentiation cascade in a manner

that could be useful for SIT, RNAi must be implemented

at the relevant critical developmental stages in eggs,

embryos (Salvemini et al., 2009; Shukla & Palli, 2012; Liu

et al., 2015), or early larvae (Whyard et al., 2015). Larvae

are simple to target with eRNAi by ingestion as they eat

steadily, volubly, and are generally less mobile than adults

(hence can naturally take up dsRNA that is concentrated

within local food sources). For aquatic larvae, dissolving

dsRNA in solution and bathing the larvae within it, is the

most common method of effecting gene silencing via

eRNAi (Figueira-Mansur et al., 2013; Singh et al., 2013;

Whyard et al., 2015; Bona et al., 2016). dsRNA can be

delivered to non-aquatic larvae: (1) topically via droplet

feeding (Toprak et al., 2013), (2) by inducing the larvae to

feed upon dsRNA-expressing transgenic plants (Xiong

et al., 2013; Mamta et al., 2015; Tian et al., 2015; Hu

et al., 2016), (3) by feeding larvae dsRNA-expressing

transgenic bacteria (Zhu et al., 2011; Yang &Han, 2014; Li

et al., 2015c), and (4) by feeding larvae naked dsRNA
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overlaid onto an artificial diet (Asokan et al., 2014; Yang &

Han, 2014; Hu et al., 2016). Non-aquatic larvae, or those

that develop in relatively anoxic conditions, can also be

bathed in dsRNA solution, but the timing of exposure is

critical to avoid drowning (Whyard et al., 2009). Choi

et al. (2012) also report delivery of dsRNA via parental

feeding in a study in which nurse ant workers were

fed with dsRNA that was then passed to larvae via

regurgitation.

eRNAi delivery methods: adults

Genes that can induce sterility when knocked down can be

targeted in adult insects for use with SIT. eRNAi has been

demonstrated to successfully achieve gene silencing in

adults following ingestion of: (1) dsRNA-expressing trans-

genic plants (Coleman et al., 2015; Tzin et al., 2015; Malik

et al., 2016), (2) dsRNA-expressing transgenic bacteria (Li

et al., 2011; Taracena et al., 2015; Whitten et al., 2015),

(3) dsRNA dissolved in solution (Coy et al., 2012; Ratzka

et al., 2013; Shim et al., 2015), and (4) naked dsRNA over-

laid on diet (Yi et al., 2014; Zheng et al., 2015). In addi-

tion, topical application to adults of dsRNA (Pridgeon

et al., 2008; Killiny et al., 2014; Amiri et al., 2015) and

infection with transgenic fungi (Chen et al., 2015) are

reported. All methods have the potential for use in SIT

development. However, the use of transgenic plants may

be limited by the feeding habits of target pests, and fungi

also need to be tested for their potential to infect unin-

tended secondary targets.

An important consideration for eRNAi silencing for

insect control is the feasibility of producing and delivering

the required amount of dsRNA. Both in vitro and in vivo

methods for producing dsRNA for insect control have

been tested, as described below.

In vitro dsRNA synthesis

The T7 RNA polymerase (from the T7 bacteriophage) is a

highly selective enzyme that enables rapid synthesis of

RNA sequences (Tabor, 2001). For in vitro production of

dsRNA, linear DNA sequences that code for both sense

and antisense RNA transcripts flanked by the 20-nt T7

promoter are transcribed by incubation with T7 poly-

merase (Singh et al., 2013; Liu et al., 2015; Shim et al.,

2015; Whyard et al., 2015). Cognate ssRNA transcripts

then base pair to form dsRNA that can be used for eRNAi

experiments.

In vivo dsRNA synthesis by bacteria

dsRNA can be synthesized in vivo by bacteria themselves

using transgenic HT115 Escherichia coli (Migula) Castel-

lani & Chalmers (Kamath et al., 2001). The HT115 gen-

ome has been modified to be RNase deficient and to

contain a T7 polymerase under the control of lactose regu-

latory elements. Generally, target sequences flanked by two

T7 promoters at each side are introduced to L4440 plas-

mid vectors by ligation. The plasmid is then transformed

into HT115 bacteria and target DNA sequences are tran-

scribed by T7 polymerases induced by the allolactose

mimic IPTG (Whyard et al., 2009, 2015; Zhu et al., 2011;

Yang & Han, 2014; Taracena et al., 2015). A limitation of

this method is that, once introduced to target insects, the

effect is transient as the HT115 bacteria fail to colonize the

gut and become established in the insect gut microbiome.

Modified symbiotic bacteria have recently been utilized

as an alternative to HT115 E. coli (Whitten et al., 2015).

In this study, microbes from themicrobiome of target spe-

cies were reprogrammed to have similar properties to

HT115 (in that they were RNAse-deficient), but RNA

sequences were constitutively active rather than being

inducible. These symbiotic bacteria were able to repopu-

late the gut of target insects and induce a long term silenc-

ing effect. These results suggest that there is great potential

to genetically engineer naturally occurring bacteria in the

gut microbiomes of pest species for control purposes.

In vivo dsRNA synthesis by plants

The nuclear genome of plants can be modified using

Agrobacterium tumefaciens Smith & Townsend (De Block

et al., 1984; Horsch et al., 1984) to express non-endogen-

ous dsRNA. dsRNA constructs can be expressed as either a

single sequence which forms a long hairpin (hpRNA)

(Xiong et al., 2013; Guo et al., 2014; Mamta et al., 2015),

or two separate complementary transcripts which base pair

in the cytoplasm (Kumar et al., 2012). However, transfer of

target sequences into the genome of plant hosts is unpre-

dictable and dsRNA abundance in similarly prepared trans-

genic plants can vary by up to 900% (Tian et al., 2015).

The genome of plant chloroplasts can also be pro-

grammed to synthesize non-endogenous dsRNA (Jin

et al., 2015; Zhang et al., 2015a). Due to the prodigious

metabolic output of these organelles they are capable of

rapid production of large amounts of effector dsRNA

molecules. As for the gut microbiota, there is potential for

engineering chloroplasts in this manner for application to

insects through eRNAi. In the next sections we consider

the design features of dsRNAs that may render them useful

for control.

Optimum dsRNA construct design: length and GC content

There is a minimum length threshold (MLT) at which

dsRNA can induce eRNAi. The MLT has been demon-

strated to be ca. 60 bp in several insects (Bolognesi et al.,

2012; Miller et al., 2012; Ivashuta et al., 2015), although

Miyata et al. (2014) reported an MLT of ca. 100 bp. The
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MLT for eRNAi is defined by the minimum length of

dsRNA that can be absorbed by the intestine. However,

distal tissues may be capable of absorbing shorter tran-

scripts. Ivashuta et al. (2015) report an MLT of 60 bp in

Diabrotica virgifera virgifera LeConte, and the uptake of a

21-bp siRNAs by the fat body of this insect.

Once the MLT has been met, dsRNA construct length is

not an accurate predictor of RNAi potency, as constructs

of similar length can elicit diverse silencing effects (Toprak

et al., 2013; Asokan et al., 2014). Most RNAi research in

insects is carried out using dsRNA constructs of between

200–500 bp (Table 1), although successful silencing has

been achieved using constructs of up to 1 800 bp (Baum

et al., 2007).

The GC content of dsRNA negatively correlates with

eRNAi efficiency (Reynolds et al., 2004; Chan et al.,

2009). GC bonds are more stable than AU bonds and less

prone to unwinding by Dicer’s helicase domain.

Optimum dsRNA construct design: target sequence

Specific nucleotide sequences within targeted mRNAs are

intrinsically susceptible to RISC cleavage. Bolognesi et al.

(2012) report that a single homologous 21-bp sequence

can silence mRNA as efficiently as a 60-bp construct of

100% homology. RNAi potency is therefore governed

partly by the quality of 21-nt sequences contained within

dsRNA constructs.

Discrete dsRNA constructs targeting different regions of

the same mRNA molecule have been demonstrated to eli-

cit variable silencing effects (Xiong et al., 2013; Tian et al.,

2015). Neither the pole nor the mid-region of mRNA

appears to be intrinsically prone to cleavage, as susceptibil-

ity has been reported at various regions of targeted mole-

cules (Mao & Zeng, 2012; Xiong et al., 2013). Asokan

et al. (2014) targeted five unrelated mRNAs inHelicoverpa

armigera (H€ubner) and observed variation in silencing

efficiency from 21 to 95%.

Sfold software (Ding et al., 2005) is reported to predict

the regional susceptibility ofmRNA to RISC cleavage prior

to construct design, though data from Xiong et al. (2013)

showed predictive success to be variable. Regional

susceptibility to cleavage is likely to be defined largely by

the secondary structure of the target molecule. RNAi

potency is inversely proportional to the amount of hydro-

gen bonds formed between target and non-target

sequences (Luo & Chang, 2004). This implies that targets

that are tightly bonded to local sequences are unavailable

to the RISC complex, rendering gene silencing inefficient.

Optimum dsRNA construct design: off-target effects

Non-target mRNA with precise homology to the guide

strand of a RISC will inevitably be targeted and

degraded. Hence, it is important to consider the poten-

tial for inadvertently silencing any other genes within

the same or different species that contain these

sequences. Such off-target effects (OTEs) can affect

endogenous genes of the experimental target (Kulkarni

et al., 2006; Ma et al., 2006; Zhang et al., 2010; Toprak

et al., 2013), predators of the target species following

consumption (Garbian et al., 2012), and closely related

species (Zhu et al., 2012). Singh et al. (2013) found that

sequences of continuous homology greater than 19 nt

were required to induce OTEs in target (Aedes) and

non-target (Drosophila) species. Ulrich et al. (2015)

report that OTEs are equally probable in conserved and

non-conserved amino acid sequences.

It is important to minimize the potential for OTEs by

careful design of dsRNAs. ‘E-RNAi’ (Horn & Boutros,

2010) and ‘SnapDragon’ (Harvard Medical School, 2016)

are examples of software that automatically design

dsRNAs for use with RNAi and search for OTEs in a selec-

tion of well-referenced genomes. If dsRNAs are designed

manually then dsCheck (Naito et al., 2005) can be used to

predict potential OTEs. However, it is difficult to fully

anticipate off-target matching for sequences that have not

yet been described.

Genetic attributes which facilitate eRNAi – the Caenorhabditis
elegans example

The nematode Caenorhabditis elegans (Maupas) was the

first species in which RNAi was successfully implemented

(Fire et al., 1998) and has been used extensively to investi-

gate genetic mechanisms underlying gene silencing. This

research has uncovered five systemic interference defective

(SID) genes that facilitate RNAi (Feinberg &Hunter, 2003;

Jose & Hunter, 2007; Jose et al., 2012). SID2 is an intesti-

nal transmembrane protein that is thought to indepen-

dently endocytose vesicular dsRNA from the gut lumen,

before it is processed in the cytoplasm by Dicer (McEwan

et al., 2012). SID2 proteins are essential for eRNAi in

C. elegans as they allow for passage of ingested dsRNA

molecules and enable eRNAi when transgenically

expressed in recalcitrant species (Winston et al., 2007).

SID1 is a ubiquitously expressed transmembrane protein

that is essential for systemic RNAi (Winston et al., 2002;

Jose et al., 2009). SID1’s precise mode of action is yet to be

elucidated, but it transmits silencing signals between cells,

either in the form of long dsRNAs, free siRNAs, or siRNA

bound by RISCs.

In C. elegans, RNAi is propagated by RNA-dependent

RNA polymerases (RdRp) (Sijen et al., 2001). RdRps bind

primary cytoplasmic RNA transcripts and utilize them to

synthesize secondary dsRNAs, which then re-enter the

siRNA pathway extending the period of gene knockdown
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(Pak & Fire, 2007). Many viruses also encode RdRps,

which allow for the proliferation of viral RNAs (Pan et al.,

2016).

The wealth of information about the mechanism of

RNAi gained from the study ofC. elegans has been of great

use for elucidating homologous mechanisms in pest spe-

cies. The transfer of enabling mechanisms, such as SID1

gene functionality, to species that lack them has also pro-

vided insights into gene silencing mechanisms that might

exist in some pest species.

Genetic attributes that facilitate eRNAi in the insects

Orthologues of SID genes are found across insect taxa

but are absent from the Diptera (Huvenne & Smagghe,

2010), members of which represent some of the world’s

most significant agricultural and medical pests. An

orthologue of SID1 facilitates systemic RNAi in Apis

mellifera L. (Aronstein et al., 2006) and Miyata et al.

(2014) suggest that two SID orthologues are involved

in, if not essential to, eRNAi in D. v. virgifera. On this

basis, the presence or absence of SIDs has been used by

some researchers to predict the capacity of different

insect species to effect gene silencing via eRNAi

(Tomoyasu et al., 2008; Tian et al., 2009). However, the

presence of SIDs is not fully predictive of eRNAi poten-

tial – several studies have demonstrated that dipterans,

which lack SIDs as noted above, are eRNAi competent

(Table 1). In contrast, Bombyx mori (L.) possesses three

SID orthologues, yet is not competent for eRNAi (Li

et al., 2015d).

SIDs are not the only molecules that contribute to

dsRNA uptake as eRNAi is facilitated by endocytic path-

ways in some insect species. For example, Bactrocera

dorsalis (Hendel) (Li et al., 2015b) and Tribolium casta-

neum (Herbst) (Xiao et al., 2015) are refractory to

eRNAi following challenge with the endocytic inhibitor

Bafilomycin A1 (Xu et al., 2003). Refractoriness to

eRNAi can also be induced in Bactrocera and Tribolium

if orthologues of the chc (clathrin heavy chain) gene

(Bazinet et al., 1993) are downregulated (Li et al.,

2015b; Xiao et al., 2015). It has recently been suggested

that SIDs and endocytic mediators synergistically facili-

tate eRNAi in L. decemlineata (Cappelle et al., 2016).

Scavenger receptors have also been demonstrated to

facilitate systemic RNAi in D. melanogaster (Saleh et al.,

2009) and eRNAi in Schistocerca gregaria Forssk�al

(Wynant et al., 2014).

Recent evidence suggests that an intracellular mode of

dsRNA degradation, other than the siRNA pathway, may

exist in some insect species (Shukla et al., 2016). Shukla

et al. (2016) demonstrated that cell lines of L. decemlin-

eata and Spodoptera frugiperda (JE Smith) were both

capable of dsRNA uptake, although only the cells of

Leptinotarsa produced 21-bp siRNA-like transcripts.

Apparently dsRNA was degraded in endosomes within

the cells of Spodoptera, as demonstrated by pH-induced

fluorescence of CypHer5E-labelled molecules. Accord-

ingly, Yoon et al. (2016) report that dsRNA may escape

endosomes through acidification in L. decemlineata, facil-

itating induction of the RNAi process in that insect.

These types of practical studies, along with comparative

transcriptomic analyses (such as Swevers et al., 2013),

may help us to understand the divergence in eRNAi

potency between insects.

Orthologues of RdRps have not been reported in the

Insecta. Several insects can nevertheless exhibit sustained

RNAi for prolonged periods (Paim et al., 2013; Coleman

et al., 2015; Khajuria et al., 2015), suggesting a system of

signal amplification. Hemipterans appear to have a

robust RNAi amplification system, as gene silencing has

been demonstrated for 4 days (Rebijith et al., 2016),

6 days (Coleman et al., 2015), and 8 days (Tzin et al.,

2015) after feeding with dsRNA. Coleman et al. (2015)

also report that nymphs born from RNA-treated mothers

exhibited RNAi for 10 days post-feeding, suggesting that

genetic variation between life-history stages might influ-

ence signal amplification.

Insects that produce RNAses in salivary and midgut

secretions or in haemolymph can degrade dsRNAs and

thus limit the extent of gene silencing (Allen & Walker,

2012; Liu et al., 2012; Garbutt et al., 2013; Yang & Han,

2014; Shukla et al., 2016). Yang &Han (2014) suggest that

RNAi is more efficient in H. armigera if dsRNAs are

encapsulated in bacteria when they traverse the gut, as this

bypasses potent digestive RNAases in midgut secretions.

Das et al. (2015) present a similar idea, but suggest that

vectoring dsRNA in carbon quantum dot nanoparticles

provides protection, not from nucleolytic enzymes, but

from damage incurred through extreme pH in the alimen-

tary canal ofA. aegypti.

Conclusion

In this review we have described the detailed mecha-

nisms underlying gene silencing by dsRNA, and consid-

ered the use of this approach for use with SIT.

Currently, the available data are scant and insufficient to

design all aspects of eRNAi studies in pest species in a

predictive context. We have emphasized several factors

that must be considered in the design and implementa-

tion of such techniques (Table 2) in order to try to

address these omissions.

Knowledge of eRNAi in key areas, such as themost basic

mechanisms that enable insects to acquire dsRNA from
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their environment, is lacking. SIDs and endocytosis both

play roles individually and synergistically, but overall the

picture of their modes of action is far from clear. Packag-

ing of dsRNA in intermediate carriers such as bacteria or

nanoparticles may overcome refractoriness to eRNAi in

some cases. However, certain insects may remain refrac-

tory to eRNAi even if dsRNA is successfully packaged and

transported across the gut, as discrete modes of dsRNA

degradation such as endosomal acquisition may mitigate

the silencing process.

SIT strategies rely on mass rearing, which in some

cases has knock-on effects for insect quality and perfor-

mance (Sørensen et al., 2012). The consequences of

mass rearing manifest differently across taxa, which is

why Chambers (1977) suggested comprehensive quality

control measures for all such programs. SIT individuals

generated (by any means) from mass-reared popula-

tions are likely to perform differently than untreated

controls. All SIT techniques should be judged according

to the performance of individuals in the field, which

very often will differ to those in the laboratory or fac-

tory (Mayer et al., 1998; Carvalho et al., 2015). The

goal of eRNAi-SIT is to produce mass-reared insects

that are at least equal in quality to the currently avail-

able alternatives.

The potential of an eRNAi approach is being increas-

ingly realized and groups such as the SITplus partnership

are developing this technology to combat the spread of

pest insects (CSIRO, 2015). The production of dsRNA for

large-scale eRNAi treatments may be expensive. HT115

E. coli (see ‘In vivo dsRNA synthesis’ section above) may

represent the most viable option currently available, but

economy of scale does present a challenge that needs to be

addressed.

As suggested by the transformer-2/innexin-5 model,

eRNAi could be used in the future to successfully

implement gene silencing, and create insects for appli-

cation of SIT in the field. There is evidence that other

gene targets could also be utilized in an eRNAi-SIT sys-

tem. A possible outcome when the sexual differentia-

tion cascade is targeted with RNAi is a combination of

arrested phenotypic female development in some indi-

viduals, and sex-reversal in others. This has been

demonstrated by Shukla & Palli (2012) in T. casta-

neum, where parental RNAi of transformer produced a

cohort of 91.1% males, 8.9% pseudomales, and 0%

females. This outcome is not optimal for SIT as nearly

half the population was lost, but it did produce a com-

patible male-only cohort. More recently, eRNAi of

spermatogenic targets has been demonstrated to induce

sterility by up to 60% in B. dorsalis while maintaining

mating competitiveness (Dong et al., 2016).
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