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Abstract

We review RNA interference (RNAI) of insect pests and its potential for implementing sterile insect
technique (SIT)-related control. The molecular mechanisms that support RNAi in pest species are
reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster
Meigen and Homo sapiens L. The underlying genes that enable RNAI are generally conserved across
taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM
system for targeting populations of insects for control purposes, if RNAi effector molecules can be
delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders
and review to what extent taxonomy, genetics, and differing methods of double-stranded (ds) RNA
synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the
secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector
molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects can-
not be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects
acquire dsRNA from their environment require further research, but the evidence to date suggests
that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in
intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the
gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate
the potential for RNAI.

RNAI and the sterile insect technique (SIT)

et al., 2015; Yu et al,, 2016), and prevent pesticide resis-
tance in insect pests (Figueira-Mansur et al., 2013; Guo

Established methods of insect control are under continual
review and development in order to keep track of new
knowledge, changing legislation, regulatory concerns, and
the maintenance of efficacy (e.g., in the face of increased
resistance to pesticides) (Gross, 2013; Tabashnik et al.,
2014). In this context, the development of new methods
for insect control is of key importance and there has been
intense interest in the utility of gene silencing methods
induced by RNA interference (RNAi). RNAi can induce
mortality (Yang & Han, 2014; Cao et al., 2015; Abd El
Halim et al., 2016; Christiaens et al., 2016; Hu et al., 2016;
Malik et al., 2016), create beneficial phenotypes for insect
control (Salvemini et al., 2009; Shukla & Palli, 2012; Peng
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et al., 2015; Wei et al., 2015; Bona et al., 2016; Sandoval-
Mojica & Scharf, 2016). Therefore, the potential for RNAi
as a basis for future pest management strategies holds great
promise (Huvenne & Smagghe, 2010; Gu & Knipple, 2013;
Scott et al., 2013; Baum & Roberts, 2014; Kim et al,,
2015). The purpose of this review is to summarize the
mechanisms by which gene silencing is achieved, describe
the ways in which it is currently being used, and to explore
the many factors that affect the efficacy of RNAI in this
context.

RNAI can be used to achieve knock-down of the level of
gene expression in specific target genes. This is done via
the introduction, by various means, of double-stranded
RNA (dsRNA) into the cells of the target species (Fire
et al,, 1998). The evidence suggests that RNAI is facilitated
by the canonical small interfering RNA (siRNA) pathway,
which results in mRNA degradation (Figure 1). In our
review of the mechanisms of RNAI in pest insects we draw
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Figure 1 The canonical siRNA pathway.

R2D?2 Cytoplasmic long double-stranded RNAs
are processed into 21-bp duplex siRNAs by

R2D2 Dicer endonucleases. Dicer then
complexes with various molecules to form
a RISC loading complex (RLC) (the
proposed RLC variant found in Drosophila
melanogaster is shown here; Liang et al.,
2015). The RLC introduces siRNA to an
Argonaute protein, which degrades a
single ‘passenger’ strand of the duplex,
whilst binding its cognate partner to form
an RNA induced silencing complex

(RISC). The RISC then utilizes the
<<<<<<<<<( nucleotide sequence of the bound ‘guide’
—— Degraded mRNA

strongly from the well-described canonical siRNA pathway
in Drosophila melanogaster Meigen and Homo sapiens L.

It has been increasingly realized that a classic method of
insect control, the sterile insect technique (SIT) (Knipling,
1955) could, in principle, be implemented through RNAi
(Whyard et al., 2015). The SIT relies upon the production
of large numbers of sterile insects for release (usually
males) that subsequently mate with wild individuals,
resulting in sterile matings and a reduction in the pest
population size (Knipling, 1998; Krafsur, 1998). The key
to SIT is the effective production of large numbers of ster-
ile individuals. This crucial step is also a potential weakness
of the approach. For example, the induction of sterility
through irradiation results in well-documented costs to
insect performance, and hence control potential (Hooper,
1972; Toledo et al., 2004; Guerfali et al., 2011). Newer
developments based on SIT that avoid irradiation, e.g.,
genetically engineered ‘self-limiting’ insects (Thomas
et al., 2000), can be highly effective (Harris et al., 2011;
Carvalho et al., 2015; Gorman et al., 2016) but rely upon
the release of genetically engineered insects, which may
not be possible in all countries.

The principles by which RNAi might offer an alternative
route for the induction of sterility, as well as other poten-
tially useful manipulations for insect control, were recently

strand to scan cellular mRNAs, which it
targets for knockdown via degradation.

investigated in a study using Aedes aegypti (L.) (Whyard
et al,, 2015). The scenario envisaged by Whyard et al.
(2015) requires knockdown of at least two genes in the tar-
get insects. First, females would be targeted through silenc-
ing of a gene in the sexual differentiation cascade to turn
them into pseudomales, i.e., genetic females which are
phenotypically male (Pane et al., 2002; Salvemini et al.,
2009; Shukla & Palli, 2012; Liu et al., 2015). Next, genes
that could induce male (and pseudomale) sterility would
be targeted in order to produce a 100% sterile male release
cohort (Whyard et al., 2015). However, two equally
important conditions must be met before this technique
can be applied in the field, as described below.

The primary condition of RNAi-based SIT is that the
sex reversal target must reliably produce a male-only
cohort. There are clear benefits of releasing only one sex in
SIT programmes, for example it can avoid both assortative
mating between released insects and any pest-related dam-
age caused by females. The second condition is to ensure
that silencing of neither the sex reversal nor the sterility
target unduly reduces insect performance. Evidence sug-
gests that these conditions can be met, although further
supporting research is required.

Through RNAi of transformer-2, Salvemini et al.
(2009) were able to produce a Ceratitis capitata
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Figure 2 Categories of RNAi response. Cell autonomous RNAi is gene silencing in response to cytoplasmic dsRNA of viral or experimental
origin. Non-cell autonomous RNAi occurs in response to an extracellular signal, and is subcategorized by the origin of that signal as either
environmental (eRNAI), or systematic RNAi. eRNAi occurs when a cell takes up environmental dsRNA molecules and elicits a gene
silencing response. Systemic RNAi is initiated in a secondary cell when a silencing signal is received from a primary cell. Systemic RNAi can
be a by-product of either non-cell autonomous RNAi or eRNAi in a primary cell, and if the secondary cell further propagates the signal,

this can induce global gene silencing.

(Wiedemann) cohort which was 95.6% phenotypically
male. Karyotypic analysis of phenotypically male flies
(n = 20) demonstrated that they were 55% genetically
female. Most importantly, pseudomales were observed
completing male-specific courtship rituals, which should
allow them to attract and copulate with females (Briceno
& Eberhard, 2003). Gabrieli et al. (2016) report that RNAi
of innexin-5 in C. capitata produced spermless, sterile
males. Spermless males remained sexually competitive
with wild-type rivals and were able to induce similar post-
mating responses. It is possible that simultaneous RNAi of
transformer-2 and innexin-5 (or conserved homologous
genes in diverse species) could produce a male-only, sterile
cohort that could be used for SIT. However, it is important
to note that simultaneous gene silencing is unpredictable
(Table 2) and that Gabrieli et al. (2016) and Salvemini
et al. (2009) microinjected insect eggs with dsRNA, a tech-
nique that is incompatible with large-scale SIT.

Microinjection of dsRNA has been demonstrated to
induce RNAI in several insects (Paim et al.,, 2013; Peng
et al.,, 2015; Xue et al., 2015; Yu et al., 2016). However,
SIT programmes may require the production and release
of up to a billion insects per week (Alphey et al., 2010) and
injection techniques cannot be used to treat insects in such
numbers. Therefore, RNAi may provide a useful tool for
implementing SIT if gene silencing can be induced via
environmental dsRNA (eRNAi) (Whangbo & Hunter,
2008).

Cell autonomous RNAi defines gene silencing in
response to intracellular dsRNA of experimental or viral

origin. Non-cell autonomous RNAi defines gene silencing
in response to an extracellular signal, and is further divided
into systemic RNAi or eRNAi based on the nature of that
signal. eRNAI describes gene silencing in response to prox-
imal dsRNA molecules, whereas systemic describes RNAi
gene silencing in response to a signal received from a prox-
imal cell. Therefore, both non-cell autonomous RNAi and
eRNAIi occur in a primary cell in direct response to
dsRNA, whereas systemic RNAI is initiated in a secondary
cell in response to an as yet undefined signal received from
a primary cell (Figure 2). eRNAI can be achieved via the
introduction of dsRNAs via food (Asokan et al., 2014;
Coleman et al., 2015; Li et al., 2015b; Sandoval-Mojica &
Scharf, 2016) or through topical delivery (Toprak et al.,
2013; Whyard et al., 2015). For reasons that are as yet not
entirely clear, the capacity of insects to express systemic
RNAi and eRNAI varies both within and between species
(Baum & Roberts, 2014; Li et al., 2015a; Shukla et al.,
2016; Sugahara et al., 2017).

Many factors affect the efficiency of gene silencing
induced by eRNAi. Some are intrinsic properties of the
insects themselves (genetic differences, feeding habits,
etc.), but others correspond to the nature of dsRNA effec-
tor molecules and their state at the point of encounter/
entry to the host. In this review, we first describe the mech-
anisms of RNAI in detail, highlight examples of its use in
different pest species, and in the concluding section con-
sider the factors affecting eRNA, in an attempt to discover
whether there are emergent properties that might be useful
in the planning of SIT strategies.
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RNAi is facilitated through the canonical siRNA pathway, culminating
in the degradation of target mRNA

Small interfering RNAs (siRNAs) are short (ca. 21 nt) dou-
ble-stranded RNA molecules that are cleaved from long,
cytoplasmic dsRNA transcripts (Figure 3). siRNAs belong
to a large family of small non-coding RNAs (ncRNAs) that
facilitate different modes of gene silencing. ncRNA species
include small interfering RNAs (siRNA), microRNAs
(miRNA), PIWI-interacting RNAs (piRNA), trans-acting
RNAs (tasiRNAs), repeat-associated RNAs (rasiRNAs),
and small-scan RNAs (scnRNAs) (Kuramochi-Miyagawa
et al., 2001; Kim et al., 2009, 2015). While the origin and
function of each ncRNA species is distinct (Bartel, 2004;
Gasciolli et al., 2005; Babiarz et al., 2008; Kim et al., 2009)
their actions are facilitated by homologous molecular
mechanisms.

ncRNAs can only initiate gene silencing when bound to
an Argonaute protein as part of an RNA-induced silencing
complex (RISC). When assembled in a RISC, exo-siRNAs
target viral mRNAs for knockdown as part of an immune
response (Lan et al., 2016a,b). In contrast, endo-siRNAs
target endogenously transcribed mRNAs in order to
achieve gene regulation (Babiarz et al.,, 2008; Okamura
et al.,, 2008). exo-siRNAs function through the canonical
siRNA pathway, inducing cleavage of target mRNAs (Elba-
shir et al., 2001a; Song et al., 2004), while endo-siRNAs
inhibit the translation of target molecules (Hannon,
2002).

The canonical siRNA pathway requires the nucleotide
sequences of siRNA molecules and their intended
mRNA targets to exhibit almost perfect complementar-
ity (Joseph & Osman, 2012). Imperfect homology may
result in a mode of gene silencing other than mRNA
cleavage (such as translational repression; Hu et al,
2010), which is associated with other ncRNA pathways.
Perfect sequence homology is achievable in RNAi, as
the target mRNA can usually be used to design effector
dsRNA molecules with perfect matching. Therefore, the

Figure 3 siRNA biogenesis. 21-nt siRNA
duplexes are cleaved from long,
cytoplasmic dsRNA molecules by Dicer
endonucleases. Two cuts are carried out by
discrete Dicer RNAase III motifs, leaving
short 3’ overhangs on each strand (Tomari
& Zamore, 2005).

predominant mechanism of gene silencing induced by
RNAI is mRNA degradation.

siRNA biogenesis: Dicer

siRNAs are ubiquitous throughout the Eukaryota (Vau-
cheret, 2006; Fire, 2007), suggesting that defense to viral
infection via the processing of long dsRNA is well con-
served. Key effector molecules involved in siRNA biogene-
sis do vary in both form and function and have been
demonstrated to be targets of viral suppression in honey-
bees (De Smet et al., 2017). Both endo- and exo-siRNAs
are cytoplasmically processed by Dicer, a member of the
RNAase III endonuclease family (Hammond et al., 2000;
Bernstein et al., 2001). RNAase III enzymes are defined as
having two RNAase III endonuclease domains and a heli-
case domain (Sontheimer, 2005). As well as having three
conserved RNAase III motifs, the Dicers also contain a
conserved RNA-binding PAZ domain (Yan et al., 2003)
and a DUF283 domain with unknown function (Dlaki¢,
2006).

Dicer’s PAZ domain binds the 3’ overhangs of long
cytoplasmic dsRNA molecules. The captured dsRNA is
then brought into contact with Dicer’s two RNAase III
domains, each of which cleaves (or dices) a particular
strand of the molecule. Dicing produces 21-nt siRNA
duplexes with short (2 nt) overhangs at the 3’ end on each
strand (Elbashir et al., 2001a).

Many organisms (including humans) express a single
isoform of Dicer (Zhang et al., 2002). Drosophila melano-
gaster expresses two Dicer variants (Dicer 1 and Dicer 2)
that are reported to function in discrete gene silencing
pathways (Lee et al., 2004; Tomari et al., 2007), though
many details are as yet unclear. Dicer 2 binds and degrades
long dsRNA destined to become siRNA, whereas Dicer 1
binds pre-miRNA hairpin loops of ca. 60 nt and cleaves
them, creating functional miRNAs duplexes. Dicer 2 is also
instrumental for processing of siRNA in the small brown
planthopper, Nilaparvata lugens (Stal) (Lan et al., 2016a)
and the zigzag leathopper, Recilia dorsalis Motschulsky
(Lan et al., 2016b).



The RNA-induced silencing complex (RISC)

RISCs are the functional components of all ncRNA-
mediated gene silencing pathways (Maniataki & Moure-
latos, 2005; Rand et al., 2005; Hartig et al., 2007). RISCs
can be defined as an Argonaute protein bound to a single
strand of ncRNA. As there are several ncRNA and
Argonaute species, the term RISC specifies a diverse group
of ribonucleoprotein complexes.

Until complexed in a RISC, siRNAs have no effects
upon gene expression. Formation of a RISC requires free
siRNA to be captured by a RISC-loading complex (RLC)
and introduced to an Argonaute (Tomari et al., 2004;
MacRae et al., 2008). After cleaving siRNA from long
dsRNA, Dicer complexes with either transactivation
response RNA-binding protein (TRBP), or protein activa-
tor of PKR (PACT) to form the two human RLC variants
(Haase et al., 2005; Lee et al., 2006, 2013; Lau et al., 2009).
Variations in the 5’ terminal of TRBP and PACT may bias
the binding affinities of human RLC variants toward either
siRNA or miRNA, respectively (Lee et al., 2013). Dicer’s
participation in RISC loading is not required in all mam-
malian systems, as ADicer murine embryonic stem cells
remain RLC competent (Murchison et al., 2005).

In Drosophila the canonical siRNA pathway utilizes an
RLC formed by Dicer 2, R2D2 and TBP-associated factor
11 (TAF11) (Liang et al, 2015). TAF11 is not necessary
for RISC loading, as Dicer/R2D2 heterodimers form a
competent RLC. Dicer and R2D2 bind opposite poles of
siRNA before loading it into a RISC (Tomari et al., 2004).
AR2D2 and ADicer flies are therefore incapable of siRNA-
mediated gene silencing (Liu et al., 2006). Liang et al.
(2015) suggest that an optimum RLC is formed when
R2D2 and Dicer 2 form a tetrameric complex stabilized by
TAF11. Tetrameric RLCs that include TAF11 display a
10-fold increase in siRNA binding over Dicer/R2D2
heterodimers.

Dicer’s role in siRNA biogenesis and RISC loading elic-
its potent gene silencing, in a manner which cannot yet be
imitated precisely with artificially synthesized siRNA
molecules. siRNAs that are enzymatically Diced from
240-bp dsRNA constructs produce more effective gene
silencing than artificially synthesized siRNA duplexes of
equivalent sequence (Bolognesi et al., 2012). Whyard et al.
(2009) also found that synthetic siRNA induced less potent
RNAi than did enzymatically diced molecules.

siRNAs associate with Argonaute proteins from the Ago Clade

Based on analysis of nucleotide sequence homology, the
Argonaute proteins form two clades. The Ago clade is the
largest and took its name from Arabidopsis Agol mutants
(Carmell et al., 2002). The Agos are bilobed proteins with
a central PIWI endonuclease domain flanked by RNA-
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binding PAZ (a feature shared with the Dicer enzymes),
and MID domains at the N- and C-terminals, respectively
(Wang et al., 2008, 2009). A smaller Argonaute subclade
(the PIWIs) was named for the Drosophila P-element-
induced Wimpy testis protein (Aravin et al., 2006). Agos
are expressed globally and associate with siRNA and
miRNA to form RISCs. Until recently PIWIs (which asso-
ciate with piRNAs) were thought to be restricted to the
germline (Grishok et al., 2001; Morel et al., 2002; Tomari
et al., 2007). However, evidence of their additional role in
somatic gene silencing is now emerging (Morazzani et al.,
2012; Schnettler et al., 2013).

Many organisms express a range of Ago proteins that
associate with discrete ncRNA species. In D. melanogaster,
for example, siRNA complexes with Ago2, miRNA associ-
ates with Agol (Tomari et al.,, 2007), and piRNA with
PIWI proteins (Vagin et al., 2006; Malone et al., 2009).
Although it is generally accepted that Ago2 is required for
RNAI in the insects, silencing of Agol in Leptinotarsa
decemlineata Say cells does inhibit gene silencing (Yoon
et al., 2016). Humans, on the other hand, express four
Ago proteins, all of which bind siRNA. However, only
when complexed with Ago2 is siRNA capable of forming a
functional RISC (Liu et al., 2004).

Guide strand genesis
Ago2 degrades a single ‘passenger’ strand of each siRNA
duplex presented by an RLC (Matranga et al., 2005; Rand
et al., 2005; Leuschner et al., 2006; Wang et al., 2009). In
humans and D. melanogaster Ago2 initiates the release of
the passenger strand by cleavage, creating two single-
stranded molecules of 9 and 12 nt (Matranga et al., 2005;
Noland & Doudna, 2013). In humans the fragmented pas-
senger strand is then degraded in the cytoplasm by C3PO
(Ye et al., 2011). It also appears that C3PO aids passenger
strand digestion in D. melanogaster and may also enhance
gene silencing through RISC activation (Liu et al., 2009).
Once the passenger strand has been released, the remain-
ing ‘guide’ strand complexes with Ago2 to form the RISC.
The thermodynamic properties of duplexed siRNA
molecules appear to influence which strand is destined to
be integrated into a RISC. The two strands of the siRNA
duplex have to be separated from each other by helicases,
which try to unwind the duplex from both ends. The ends
can have different stability depending on the GC content
on the last 3-5 base pairs and the strand that has the 5" end
at the less strongly paired end has a higher chance to
become the guide strand (Khvorova et al., 2003; Schwarz
et al., 2003; Tomari et al., 2004). Both human RLC vari-
ants are capable of sensing the thermodynamics of
duplexed siRNA and reorientating the molecule prior to
RISC loading (Noland et al., 2011; Noland & Doudna,
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2013), which may facilitate strand selection by Argonaute.
The Dicer/R2D2 RLC seen in Drosophila also configures
siRNA according the thermodynamics of the molecule
(Liu et al., 2006).

RISCs utilize the guide strand to identify potential mRNA targets
Ago2’s N-terminal PAZ domain binds the 3’ end of the
guide strand, whereas the C-terminal MID domain binds
the 5 phosphate (Wang et al., 2008). The guide strand is
orientated with its phosphate backbone toward Ago2’s
PIWI domain and the free nucleotides facing outwards.
The RISC then utilizes the guide strand to scan cellular
mRNA through Watson and Crick base pairing. Cognate
mRNA, which base pairs with the guide, is targeted for
knockdown (Filipowicz, 2005; Noland & Doudna, 2013).
Each RISC is therefore capable of highly selective mRNA
targeting based upon the nucleotide sequence of its intrin-
sic guide.

Cleavage of targeted mRNA

In the final stage of RNAI, cleavage of targeted mRNA
occurs in the region bound by the center of the guide
strand between residues 10 and 11 (Elbashir et al., 2001b;
Haley & Zamore, 2004). The resulting 5 and 3’ mRNA
fragments are then degraded by discrete cytoplasmic
enzymes (Orban & Izaurralde, 2005). Within Ago2’s PTWI
domain is an aspartate-aspartate-glutamate (DDE) motif
which is conserved in RNAase-H related enzymes (Song
et al., 2004). This motif is critical for mRNA degradation,
as mutation of these residues results in loss of slicing ability
(Liu et al., 2004).

dsRNA as an experimental gene silencing device

In 1990, Napoli et al. (1990) developed petunias that
expressed a hybrid chalcone synthase transgene (CHS).
The authors predicted that expression of the transgene
would supplement naturally occurring CHS and produce
flowers with deep violet colouring (Napoli et al., 1990).
Unexpectedly, 42% of the flowers exhibited an unpig-
mented, white phenotype. This led the authors to hypothe-
size that the transgene must somehow be inhibiting the
expression of its naturally occurring orthologue.

Research into RNAi began following the work of Napoli
et al. (1990). The first report of RNA being used to delib-
erately silence genes in an animal model came in 1995
when Guo & Kemphues (1995) injected C. elegans
embryos with ssRNA designed to base pair with, and
sequester, Par-1 mRNA. Guo & Kemphues (1995) were
successful in silencing Par-1, but they were incorrect in
their assumption that the underlying mechanism was
triggered by ssRNA.

Using improved RNA preparation techniques, Fire et al.
(1998) were able to show that Guo & Kemphues (1995)
had contaminated their single-stranded antisense RNAs
with sense transcripts. Guo & Kemphues’s (1995) ssRNAs
had therefore base-paired to form duplexes and entered
the canonical siRNA pathway. Fire et al. (1998) were able
to demonstrate that C. elegans when bathed in dsRNA
silenced genes up to 100x more efficiently than when
bathed in ssRNA. This experiment identified dsSRNA as the
critical effector molecules in previously described gene
silencing experiments and was the first time dsRNA had
purposefully been used to implement gene silencing. This
finding was the starting point of all subsequent studies of
RNAI.

Implementation of eRNAi in pest species

As outlined briefly above, microinjection of dsRNA would
not be a viable method for treating the large numbers of
insects required for SIT. However, it is thought that expo-
sure to eRNAi might provide a suitable alternative. The sus-
ceptibility of target species to eRNAI is critically important
and has been reviewed in depth by Baum & Roberts
(2014). However, insects that are naturally recalcitrant to
eRNAI are not necessarily outside consideration for this
type of gene silencing as, although yet to be demonstrated
in an insect model, methods such as electroporation can
also be used to deliver dsSRNA — e.g., as described in tick
eggs (Karim et al, 2010; Ruiz et al.,, 2015), nymphs, and
larvae (Lu et al., 2015). Various options are outlined below.

eRNAi delivery methods: larvae

To interrupt the sexual differentiation cascade in a manner
that could be useful for SIT, RNAi must be implemented
at the relevant critical developmental stages in eggs,
embryos (Salvemini et al., 2009; Shukla & Palli, 2012; Liu
et al.,, 2015), or early larvae (Whyard et al., 2015). Larvae
are simple to target with eRNAi by ingestion as they eat
steadily, volubly, and are generally less mobile than adults
(hence can naturally take up dsRNA that is concentrated
within local food sources). For aquatic larvae, dissolving
dsRNA in solution and bathing the larvae within it, is the
most common method of effecting gene silencing via
eRNAI (Figueira-Mansur et al., 2013; Singh et al.,, 2013;
Whyard et al., 2015; Bona et al., 2016). dsRNA can be
delivered to non-aquatic larvae: (1) topically via droplet
feeding (Toprak et al., 2013), (2) by inducing the larvae to
feed upon dsRNA-expressing transgenic plants (Xiong
et al.,, 2013; Mamta et al., 2015; Tian et al., 2015; Hu
et al,, 2016), (3) by feeding larvae dsRNA-expressing
transgenic bacteria (Zhu et al., 2011; Yang & Han, 2014; Li
et al., 2015¢), and (4) by feeding larvae naked dsRNA



overlaid onto an artificial diet (Asokan et al., 2014; Yang &
Han, 2014; Hu et al., 2016). Non-aquatic larvae, or those
that develop in relatively anoxic conditions, can also be
bathed in dsRNA solution, but the timing of exposure is
critical to avoid drowning (Whyard et al., 2009). Choi
et al. (2012) also report delivery of dsRNA via parental
feeding in a study in which nurse ant workers were
fed with dsRNA that was then passed to larvae via
regurgitation.

eRNAi delivery methods: adults

Genes that can induce sterility when knocked down can be
targeted in adult insects for use with SIT. eRNAi has been
demonstrated to successfully achieve gene silencing in
adults following ingestion of: (1) dsSRNA-expressing trans-
genic plants (Coleman et al., 2015; Tzin et al., 2015; Malik
et al,, 2016), (2) dsRNA-expressing transgenic bacteria (Li
et al., 2011; Taracena et al., 2015; Whitten et al., 2015),
(3) dsRNA dissolved in solution (Coy et al., 2012; Ratzka
et al., 2013; Shim et al., 2015), and (4) naked dsRNA over-
laid on diet (Yi et al., 2014; Zheng et al., 2015). In addi-
tion, topical application to adults of dsRNA (Pridgeon
et al., 2008; Killiny et al., 2014; Amiri et al., 2015) and
infection with transgenic fungi (Chen et al., 2015) are
reported. All methods have the potential for use in SIT
development. However, the use of transgenic plants may
be limited by the feeding habits of target pests, and fungi
also need to be tested for their potential to infect unin-
tended secondary targets.

An important consideration for eRNAi silencing for
insect control is the feasibility of producing and delivering
the required amount of dsRNA. Both in vitro and in vivo
methods for producing dsRNA for insect control have
been tested, as described below.

In vitro dsRNA synthesis

The T7 RNA polymerase (from the T7 bacteriophage) is a
highly selective enzyme that enables rapid synthesis of
RNA sequences (Tabor, 2001). For in vitro production of
dsRNA, linear DNA sequences that code for both sense
and antisense RNA transcripts flanked by the 20-nt T7
promoter are transcribed by incubation with T7 poly-
merase (Singh et al., 2013; Liu et al., 2015; Shim et al,,
2015; Whyard et al., 2015). Cognate ssRNA transcripts
then base pair to form dsRNA that can be used for eRNAi
experiments.

In vivo dsRNA synthesis by bacteria

dsRNA can be synthesized in vivo by bacteria themselves
using transgenic HT115 Escherichia coli (Migula) Castel-
lani & Chalmers (Kamath et al., 2001). The HT115 gen-
ome has been modified to be RNase deficient and to

SIT and RNAi 161

contain a T7 polymerase under the control of lactose regu-
latory elements. Generally, target sequences flanked by two
T7 promoters at each side are introduced to L4440 plas-
mid vectors by ligation. The plasmid is then transformed
into HT115 bacteria and target DNA sequences are tran-
scribed by T7 polymerases induced by the allolactose
mimic IPTG (Whyard et al., 2009, 2015; Zhu et al., 2011;
Yang & Han, 2014; Taracena et al,, 2015). A limitation of
this method is that, once introduced to target insects, the
effect is transient as the HT115 bacteria fail to colonize the
gut and become established in the insect gut microbiome.

Modified symbiotic bacteria have recently been utilized
as an alternative to HT115 E. coli (Whitten et al., 2015).
In this study, microbes from the microbiome of target spe-
cies were reprogrammed to have similar properties to
HT115 (in that they were RNAse-deficient), but RNA
sequences were constitutively active rather than being
inducible. These symbiotic bacteria were able to repopu-
late the gut of target insects and induce a long term silenc-
ing effect. These results suggest that there is great potential
to genetically engineer naturally occurring bacteria in the
gut microbiomes of pest species for control purposes.

Invivo dsRNA synthesis by plants

The nuclear genome of plants can be modified using
Agrobacterium tumefaciens Smith & Townsend (De Block
et al,, 1984; Horsch et al., 1984) to express non-endogen-
ous dsRNA. dsRNA constructs can be expressed as either a
single sequence which forms a long hairpin (hpRNA)
(Xiong et al., 2013; Guo et al,, 2014; Mamta et al., 2015),
or two separate complementary transcripts which base pair
in the cytoplasm (Kumar et al., 2012). However, transfer of
target sequences into the genome of plant hosts is unpre-
dictable and dsRNA abundance in similarly prepared trans-
genic plants can vary by up to 900% (Tian et al., 2015).

The genome of plant chloroplasts can also be pro-
grammed to synthesize non-endogenous dsRNA (Jin
et al., 2015; Zhang et al., 2015a). Due to the prodigious
metabolic output of these organelles they are capable of
rapid production of large amounts of effector dsRNA
molecules. As for the gut microbiota, there is potential for
engineering chloroplasts in this manner for application to
insects through eRNAI. In the next sections we consider
the design features of dsRNAs that may render them useful
for control.

Optimum dsRNA construct design: length and GC content

There is a minimum length threshold (MLT) at which
dsRNA can induce eRNAi. The MLT has been demon-
strated to be ca. 60 bp in several insects (Bolognesi et al.,
2012; Miller et al., 2012; Ivashuta et al., 2015), although
Miyata et al. (2014) reported an MLT of ca. 100 bp. The
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MLT for eRNAi is defined by the minimum length of
dsRNA that can be absorbed by the intestine. However,
distal tissues may be capable of absorbing shorter tran-
scripts. Ivashuta et al. (2015) report an MLT of 60 bp in
Diabrotica virgifera virgifera LeConte, and the uptake of a
21-bp siRNAs by the fat body of this insect.

Once the MLT has been met, dsRNA construct length is
not an accurate predictor of RNAIi potency, as constructs
of similar length can elicit diverse silencing effects (Toprak
et al., 2013; Asokan et al., 2014). Most RNAI research in
insects is carried out using dsRNA constructs of between
200-500 bp (Table 1), although successful silencing has
been achieved using constructs of up to 1 800 bp (Baum
et al., 2007).

The GC content of dsRNA negatively correlates with
eRNAi efficiency (Reynolds et al, 2004; Chan et al.,
2009). GC bonds are more stable than AU bonds and less
prone to unwinding by Dicer’s helicase domain.

Optimum dsRNA construct design: target sequence

Specific nucleotide sequences within targeted mRNAs are
intrinsically susceptible to RISC cleavage. Bolognesi et al.
(2012) report that a single homologous 21-bp sequence
can silence mRNA as efficiently as a 60-bp construct of
100% homology. RNAi potency is therefore governed
partly by the quality of 21-nt sequences contained within
dsRNA constructs.

Discrete dsRNA constructs targeting different regions of
the same mRNA molecule have been demonstrated to eli-
cit variable silencing effects (Xiong et al., 2013; Tian et al.,
2015). Neither the pole nor the mid-region of mRNA
appears to be intrinsically prone to cleavage, as susceptibil-
ity has been reported at various regions of targeted mole-
cules (Mao & Zeng, 2012; Xiong et al., 2013). Asokan
et al. (2014) targeted five unrelated mRNAs in Helicoverpa
armigera (Hibner) and observed variation in silencing
efficiency from 21 to 95%.

Sfold software (Ding et al., 2005) is reported to predict
the regional susceptibility of mRNA to RISC cleavage prior
to construct design, though data from Xiong et al. (2013)
showed predictive success to be variable. Regional
susceptibility to cleavage is likely to be defined largely by
the secondary structure of the target molecule. RNAi
potency is inversely proportional to the amount of hydro-
gen bonds formed between target and non-target
sequences (Luo & Chang, 2004). This implies that targets
that are tightly bonded to local sequences are unavailable
to the RISC complex, rendering gene silencing inefficient.

Optimum dsRNA construct design: off-target effects
Non-target mRNA with precise homology to the guide
strand of a RISC will inevitably be targeted and

degraded. Hence, it is important to consider the poten-
tial for inadvertently silencing any other genes within
the same or different species that contain these
sequences. Such off-target effects (OTEs) can affect
endogenous genes of the experimental target (Kulkarni
et al., 2006; Ma et al., 2006; Zhang et al., 2010; Toprak
et al.,, 2013), predators of the target species following
consumption (Garbian et al., 2012), and closely related
species (Zhu et al., 2012). Singh et al. (2013) found that
sequences of continuous homology greater than 19 nt
were required to induce OTEs in target (Aedes) and
non-target (Drosophila) species. Ulrich et al. (2015)
report that OTEs are equally probable in conserved and
non-conserved amino acid sequences.

It is important to minimize the potential for OTEs by
careful design of dsRNAs. ‘E-RNA{’ (Horn & Boutros,
2010) and ‘SnapDragon’ (Harvard Medical School, 2016)
are examples of software that automatically design
dsRNAs for use with RNAi and search for OTEs in a selec-
tion of well-referenced genomes. If dsRNAs are designed
manually then dsCheck (Naito et al., 2005) can be used to
predict potential OTEs. However, it is difficult to fully
anticipate off-target matching for sequences that have not
yet been described.

Genetic attributes which facilitate eRNAi — the Caenorhabditis
elegans example

The nematode Caenorhabditis elegans (Maupas) was the
first species in which RNAi was successfully implemented
(Fire et al,, 1998) and has been used extensively to investi-
gate genetic mechanisms underlying gene silencing. This
research has uncovered five systemic interference defective
(SID) genes that facilitate RNAi (Feinberg & Hunter, 2003;
Jose & Hunter, 2007; Jose et al., 2012). SID2 is an intesti-
nal transmembrane protein that is thought to indepen-
dently endocytose vesicular dsRNA from the gut lumen,
before it is processed in the cytoplasm by Dicer (McEwan
et al.,, 2012). SID2 proteins are essential for eRNAi in
C. elegans as they allow for passage of ingested dsRNA
molecules and enable eRNAi when transgenically
expressed in recalcitrant species (Winston et al., 2007).
SID1 is a ubiquitously expressed transmembrane protein
that is essential for systemic RNAi (Winston et al., 2002;
Jose et al., 2009). SID1’s precise mode of action is yet to be
elucidated, but it transmits silencing signals between cells,
either in the form of long dsRNAs, free siRNAs, or siRNA
bound by RISCs.

In C. elegans, RNAI is propagated by RNA-dependent
RNA polymerases (RdRp) (Sijen et al., 2001). RdRps bind
primary cytoplasmic RNA transcripts and utilize them to
synthesize secondary dsRNAs, which then re-enter the
siRNA pathway extending the period of gene knockdown
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(Pak & Fire, 2007). Many viruses also encode RdRps,
which allow for the proliferation of viral RNAs (Pan et al.,
2016).

The wealth of information about the mechanism of
RNAI gained from the study of C. elegans has been of great
use for elucidating homologous mechanisms in pest spe-
cies. The transfer of enabling mechanisms, such as SID1
gene functionality, to species that lack them has also pro-
vided insights into gene silencing mechanisms that might
exist in some pest species.

Genetic attributes that facilitate eRNAI in the insects

Orthologues of SID genes are found across insect taxa
but are absent from the Diptera (Huvenne & Smagghe,
2010), members of which represent some of the world’s
most significant agricultural and medical pests. An
orthologue of SID1 facilitates systemic RNAi in Apis
mellifera L. (Aronstein et al., 2006) and Miyata et al.
(2014) suggest that two SID orthologues are involved
in, if not essential to, eRNAI in D. v. virgifera. On this
basis, the presence or absence of SIDs has been used by
some researchers to predict the capacity of different
insect species to effect gene silencing via eRNAI
(Tomoyasu et al., 2008; Tian et al., 2009). However, the
presence of SIDs is not fully predictive of eRNAi poten-
tial — several studies have demonstrated that dipterans,
which lack SIDs as noted above, are eRNAi competent
(Table 1). In contrast, Bombyx mori (L.) possesses three
SID orthologues, yet is not competent for eRNAi (Li
et al., 2015d).

SIDs are not the only molecules that contribute to
dsRNA uptake as eRNAi is facilitated by endocytic path-
ways in some insect species. For example, Bactrocera
dorsalis (Hendel) (Li et al., 2015b) and Tribolium casta-
neum (Herbst) (Xiao et al, 2015) are refractory to
eRNAI following challenge with the endocytic inhibitor
Bafilomycin Al (Xu et al, 2003). Refractoriness to
eRNAI can also be induced in Bactrocera and Tribolium
if orthologues of the chc (clathrin heavy chain) gene
(Bazinet et al., 1993) are downregulated (Li et al.,
2015b; Xiao et al.,, 2015). It has recently been suggested
that SIDs and endocytic mediators synergistically facili-
tate eRNAI in L. decemlineata (Cappelle et al., 2016).
Scavenger receptors have also been demonstrated to
facilitate systemic RNAI in D. melanogaster (Saleh et al.,
2009) and eRNAi in Schistocerca gregaria Forsskal
(Wynant et al., 2014).

Recent evidence suggests that an intracellular mode of
dsRNA degradation, other than the siRNA pathway, may
exist in some insect species (Shukla et al., 2016). Shukla
et al. (2016) demonstrated that cell lines of L. decemlin-
eata and Spodoptera frugiperda (JE Smith) were both

capable of dsRNA uptake, although only the cells of
Leptinotarsa produced 21-bp siRNA-like transcripts.
Apparently dsRNA was degraded in endosomes within
the cells of Spodoptera, as demonstrated by pH-induced
fluorescence of CypHer5E-labelled molecules. Accord-
ingly, Yoon et al. (2016) report that dsRNA may escape
endosomes through acidification in L. decemlineata, facil-
itating induction of the RNAI process in that insect.
These types of practical studies, along with comparative
transcriptomic analyses (such as Swevers et al., 2013),
may help us to understand the divergence in eRNAi
potency between insects.

Orthologues of RdRps have not been reported in the
Insecta. Several insects can nevertheless exhibit sustained
RNAI for prolonged periods (Paim et al., 2013; Coleman
et al.,, 2015; Khajuria et al., 2015), suggesting a system of
signal amplification. Hemipterans appear to have a
robust RNAi amplification system, as gene silencing has
been demonstrated for 4 days (Rebijith et al., 2016),
6 days (Coleman et al., 2015), and 8 days (Tzin et al,
2015) after feeding with dsRNA. Coleman et al. (2015)
also report that nymphs born from RNA-treated mothers
exhibited RNAI for 10 days post-feeding, suggesting that
genetic variation between life-history stages might influ-
ence signal amplification.

Insects that produce RNAses in salivary and midgut
secretions or in haemolymph can degrade dsRNAs and
thus limit the extent of gene silencing (Allen & Walker,
2012; Liu et al., 2012; Garbutt et al., 2013; Yang & Han,
2014; Shukla et al., 2016). Yang & Han (2014) suggest that
RNAI is more efficient in H. armigera if dsRNAs are
encapsulated in bacteria when they traverse the gut, as this
bypasses potent digestive RNAases in midgut secretions.
Das et al. (2015) present a similar idea, but suggest that
vectoring dsRNA in carbon quantum dot nanoparticles
provides protection, not from nucleolytic enzymes, but
from damage incurred through extreme pH in the alimen-
tary canal of A. aegypti.

Conclusion

In this review we have described the detailed mecha-
nisms underlying gene silencing by dsRNA, and consid-
ered the use of this approach for use with SIT.
Currently, the available data are scant and insufficient to
design all aspects of eRNAi studies in pest species in a
predictive context. We have emphasized several factors
that must be considered in the design and implementa-
tion of such techniques (Table 2) in order to try to
address these omissions.

Knowledge of eRNAI in key areas, such as the most basic
mechanisms that enable insects to acquire dsRNA from



their environment, is lacking. SIDs and endocytosis both
play roles individually and synergistically, but overall the
picture of their modes of action is far from clear. Packag-
ing of dsRNA in intermediate carriers such as bacteria or
nanoparticles may overcome refractoriness to eRNAi in
some cases. However, certain insects may remain refrac-
tory to eRNAIi even if dsRNA is successfully packaged and
transported across the gut, as discrete modes of dsRNA
degradation such as endosomal acquisition may mitigate
the silencing process.

SIT strategies rely on mass rearing, which in some
cases has knock-on effects for insect quality and perfor-
mance (Serensen et al., 2012). The consequences of
mass rearing manifest differently across taxa, which is
why Chambers (1977) suggested comprehensive quality
control measures for all such programs. SIT individuals
generated (by any means) from mass-reared popula-
tions are likely to perform differently than untreated
controls. All SIT techniques should be judged according
to the performance of individuals in the field, which
very often will differ to those in the laboratory or fac-
tory (Mayer et al, 1998; Carvalho et al., 2015). The
goal of eRNAI-SIT is to produce mass-reared insects
that are at least equal in quality to the currently avail-
able alternatives.

The potential of an eRNAi approach is being increas-
ingly realized and groups such as the SITplus partnership
are developing this technology to combat the spread of
pest insects (CSIRO, 2015). The production of dsRNA for
large-scale eRNAI treatments may be expensive. HT115
E. coli (see ‘In vivo dsRNA synthesis’ section above) may
represent the most viable option currently available, but
economy of scale does present a challenge that needs to be
addressed.

As suggested by the transformer-2/innexin-5 model,
eRNAi could be used in the future to successfully
implement gene silencing, and create insects for appli-
cation of SIT in the field. There is evidence that other
gene targets could also be utilized in an eRNAi-SIT sys-
tem. A possible outcome when the sexual differentia-
tion cascade is targeted with RNAi is a combination of
arrested phenotypic female development in some indi-
viduals, and sex-reversal in others. This has been
demonstrated by Shukla & Palli (2012) in T. casta-
neum, where parental RNAI of transformer produced a
cohort of 91.1% males, 8.9% pseudomales, and 0%
females. This outcome is not optimal for SIT as nearly
half the population was lost, but it did produce a com-
patible male-only cohort. More recently, eRNAi of
spermatogenic targets has been demonstrated to induce
sterility by up to 60% in B. dorsalis while maintaining
mating competitiveness (Dong et al., 2016).
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