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ABSTRACT

As a behavioural addiction, gambling disorder (GD) provides an opportunity to characterize addictive processes without
the potentially confounding effects of chronic excessive drug and alcohol exposure. Impulsivity is an established precur-
sor to such addictive behaviours, and GD is associated with greater impulsivity. There is also evidence of GABAergic dys-
regulation in substance addiction and in impulsivity. This study therefore investigated GABA 4 receptor availability in 15
individuals with GD and 19 healthy volunteers (HV) using [''C]Ro15-4513, a relatively selective a5 benzodiazepine re-
ceptor PET tracer and its relationship with impulsivity. We found significantly higher [*'C]Ro15-4513 total distribution
volume (V7) in the right hippocampus in the GD group compared with HV. We found higher levels of the ‘Negative
Urgency’ construct of impulsivity in GD, and these were positively associated with higher [HC]Rol 5-4513 Vyin the
amygdala in the GD group; no such significant correlations were evident in the HV group. These results contrast with
reduced binding of GABAergic PET ligands described previously in alcohol and opiate addiction and add to growing ev-
idence for distinctions in the neuropharmacology between substance and behavioural addictions. These results provide
the first characterization of GABA 5 receptors in GD with [''CJRo15-4513 PET and show greater o5 receptor availability

and positive correlations with trait impulsivity. This GABAergic dysregulation is potential target for treatment.
Keywords GABA system, gambling disorder, [''C]R0o15-4513 PET.
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INTRODUCTION

There is considerable overlap between gambling disorder
(GD) (previously termed pathological gambling) with
drug and alcohol addiction with regard to clinical phe-
nomenology and treatment, comorbidity, heritability
and neurobiological profile (Clark 2014; Clark and
Limbrick-Oldfield 2013). Predicated on such evidence,
this condition was recently reclassified from an ‘impulse
control disorder’ in DSM-IV to the ‘substance-related
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and addictive disorders’ in DSM-5 (Clark 2014). As a
behavioural addiction, GD provides an opportunity to
characterize addictive processes without the potentially
confounding effects of chronic excessive drug/alcohol
exposure. Compared with drug or alcohol addiction, little
is known about the neuropharmacology of GD, and a
better characterization of its neurobiology will inform
developments in the prevention and treatment of both
substance and behavioural addictions.

Recent studies using positron emission tomography
(PET) to directly assess the dopamine and opioid systems
in GD have demonstrated some unexpected differences to
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established findings in substance addictions. For instance,
in contrast to studies in cocaine and alcohol addiction,
[*!C]raclopride and [*'C]-(+)-PHNO PET revealed no dif-
ferences in dopamine receptor DRD2/3 availability and
greater stimulant-induced dopamine release in individ-
uals with GD compared with healthy volunteers (HV;
Albein-Urios et al. 2012a,2012b; Boileau et al. 2013;
Boileau et al. 2014). A key modulator of the dopaminer-
gic system is the mu opioid receptor (MOR), and opiate
receptor antagonists have some efficacy in treating GD.
Higher MOR availability has been reported in studies by
using [''CJcarfentanil or [''C]diprenorphine PET in
cocaine, opiate and alcohol addiction (Gorelick et al
2005; Heinz et al. 2005; Williams et al. 2007; Williams
et al. 2009). However, we recently reported no difference
in [''C]carfentanil binding in individuals with GD (Mick
et al. 2015). Thus, in vivo PET imaging studies of neuro-
pharmacology suggest that GD shows important differ-
ences to substance addiction.

The GABAergic system is another key modulator of
mesolimbic dopaminergic processes but has received
scant attention in the context of addictions (Hayes et al.
2014). With the [''C]JRo15-4513 PET radiotracer, which
is relatively selective for the a5 subtype of the benzodiaz-
epine receptor, we observed in alcohol and in heroin
addiction lower levels of limbic [''C]JRo15 4513 binding,
particularly in the nucleus accumbens (NAc) and right
hippocampus (Lingford-Hughes et al. 2016; Lingford-
Hughes et al. 2012a). We have also shown that ['!C]
Rol5 4513 binding was higher in participants with a
history of tobacco smoking (Stokes et al. 2013) .

With regard to gambling, Nussbaum et al. (2011) pro-
posed that GABAergic modulation of opioid release in the
brain reward system may be important to the ‘rush’ expe-
rienced by gamblers in response to major jackpots and
that differences in this modulation could distinguish indi-
viduals with GD from non-dependent gamblers. There is
limited further evidence regarding the GABAergic system
in individuals with GD, with some inconsistent evidence
of greater GABA concentrations measured in the CSF in
GD (Nordin and Sjodin 2007; Roy et al. 1989). These
observations, as well as the growing use of GABAergic
medication such as baclofen and topiramate to treat
addiction, indicate that it is timely and important to char-
acterize the GABA, receptor system in GD (Lingford-
Hughes et al. 2012b).

A major feature common to gambling and substance-
related disorders is impaired impulse control, which may
be fundamental to both the development and mainte-
nance of addictive disorders (Bechara 2005; Lawrence
et al. 2009; Verdejo-Garcia et al. 2008). We have previ-
ously shown that Negative Urgency (NU) derived from
the UPPS-P impulsivity scale is related to dopamine
D2/3 receptor availability in GD (Clark et al. 2012) and
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also to MOR availability (Mick et al. 2015). As the main
inhibitory neurotransmitter in the human brain, the role
of GABAergic functioning in impulsivity is attracting
attention with growing preclinical evidence supporting
its involvement (Hayes et al. 2014). For instance, a GABA
agonist and antagonist in the prefrontal cortex of rats
increased and reduced, respectively, impulsive responses
in the 5-choice serial reaction time task (Murphy et al.
2012; Paine et al. 2011). GABA4 receptor binding is
lower in the anterior cingulate cortex of high-impulsive
rats compared with low-impulsive rats and is inversely
correlated with impulsive responding (Jupp et al. 2013).
Caprioli et al. reported increased impulsive behaviour in
rats following a reduction in glutamate decarboxylase
65/67, an enzyme responsible for the decarboxylation
of glutamate to GABA, gene expression in the NAc core
(Caprioli et al. 2014).

In this study, we therefore used [''CJR015-4513 PET
to measure GABA, receptor availability in GD and its
relationship with impulsivity. Based on our previous stud-
ies showing lower [''C]JRo15-4513 binding in the NAc in
both alcohol and in opiate addiction, we hypothesized
that GD would similarly be associated with lower levels
in the NAc. In addition, based on the preclinical evidence,
we hypothesized that impulsivity, specifically the NU trait,
in GD would be associated with higher [''C]JRo15-4513
binding; we have shown that [''C]JRo15-4513 is sensitive
to GABA and low levels of GABA are associated with
higher [''CJR015-4513 binding (Stokes et al. 2014).

MATERIALS AND METHODS
Participants

Study participants comprised of 15 male treatment-
seeking individuals with GD (DSM-1IV) (34.8 £ 7.5 years,
four current and two ex-smokers (mean * standard devi-
ation (SD)) and 19 male age-matched HV (31.7
+ 7.5 years, six current and three ex-smokers). Individ-
uals with GD were recruited from the National Problem
Gambling Clinic, Central North West London NHS Foun-
dation Trust, UK, and participated in the study either
before (n=7) or during (n= 8) their 8-week programme
of cognitive-behavioural therapy. HV were recruited by
advertisements in daily newspapers or from our database.
Written informed consent was obtained before participa-
tion in the study, which was approved by West London
Research Ethics Committee and the Administration of
Radioactive Substances Advisory Committee, UK.
Following a detailed telephone eligibility interview,
participants attended a screening visit to assess their
current and previous medical and psychiatric health.
with  the
Massachusetts Gambling Screen (6.7 £ 1.9; a score of 5

Disordered gambling was assessed
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or more indicates GD) and the Problem Gambling
Severity Index (16.9 £ 3.5; a score of 8 or above indicates
disordered gambling). All individuals with GD had a
recent history of active gambling with length of absti-
nence ranging from 3 to 158 days (63 +49 days). HV
had no current or past history of psychiatric disorders
(ICD-10 or DSM-IV Axis I diagnostic criteria). As depres-
sion and anxiety disorders are common comorbidities in
GD, a history of these was permitted, but not a current
depression or anxiety disorder. Past recreational drug
use was allowed (>10 times in lifetime but never met
criteria for abuse or dependence: seven HV: five cannabis,
one cannabis and stimulants and one cannabis, halluci-
nogens and sedatives; four GD: two cannabis and two
cannabis, stimulants and cocaine), but abstinence from
illicit drugs 2 weeks before and during study participation
was required. Current or past diagnosis of substance
dependence, except nicotine, was an exclusion criterion
for both groups. Participants were asked not to drink
more than 21 UK units of alcohol (166¢g) per week
2 weeks before and during the study. Urine drug
screens (for cocaine, amphetamine, methamphetamine,
morphine, methadone, benzodiazepines and tetrahydro-
cannabinol) and alcohol breath analyses were performed
at screening and PET scanning days. Cigarette smoking
was not allowed 1 hour prior to each magnetic resonance
(MR) or PET scan. All participants had laboratory
(haematology, clinical chemistry and clotting
parameters) within normal range. None of the partici-
pants took regular medication.

Depressive symptoms were measured by using the
Beck Depression Inventory and anxiety with the
Spielberger State/Trait Inventory. Tobacco use was evalu-
ated in the smokers with the Fagerstrom Test for Nicotine
Dependence. To assess impulsivity, participants completed
the UPPS-P Impulsive Behavior Scale (Cyders et al. 2007),
a 59 item self-report questionnaire with five subscales:
Negative Urgency (NU), Positive Urgency, Lack of Plan-
ning (LoP), Lack of Perseverance and Sensation Seeking.

MR and PET imaging

On the screening day, a structural magnetic resonance
imaging (MRI) was performed on a 3T MR scanner
(Magnetom Trio Syngo MR B13 Siemens 3 T; Siemens
AG, Medical Solutions), including a volumetric T1-
weighted magnetization-prepared rapid
gradient-echo sequence. All structural images were

acquisition

reviewed by an experienced neuroradiologist for unex-
pected findings of clinical significance and structural var-
iation that might affect quantitative image analysis, and
none were observed. Participants also completed a func-
tional MRI battery (Paterson et al. 2015) and performed
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a neurocognitive assessment whose results will be
described elsewhere.

For the [''C]R015-4513 PET scan, we followed our
previous protocol (Lingford-Hughes et al. 2012a). Briefly,
each participant underwent a 90-minute [''CJRo15-
4513 PET acquisition. PET data were reconstructed into
23 frames (4x15, 4x60, 2x150, 10x300 and
3 x 600 seconds) and corrected for head motion by using
normalized mutual information rigid-body registration of
each frame realignment to frame 16. A hierarchical
probabilistic atlas of 119 regions (Tziortzi et al. 2014)
was non-rigidly registered to PET space by using reverse
deformation parameters derived from the normalization
of the coregistered structural MRI to a standard template.
Atlas fits were checked visually, and PET dynamic data
were sampled in each region of interest (ROI) to generate
time-activity curves, combining left and right ROIs to
generate single time-activity curves where laterality was
not hypothesized, i.e. in amygdala and orbitofrontal cor-
tex (OFC). A parent plasma input function was derived
by calibrating the continuous online blood counts to dis-
crete samples and correcting for plasma fraction and
radiolabelled metabolites collected at intervals through-
out the scan. The [''C]R015-4513 V; in each ROI could
then be quantified by using a 2-tissue-compartmental
model. This was shown, by parsimony criteria, to describe
appropriately the ligand kinetics in the range of ROIs con-
sidered (Myers et al. 2016a). In this dataset, spectral
analysis to partition this signal was not applied since we
have shown the total V; to represent robustly a.5 subtype
binding (Myers et al. 2016a; Myers et al. 2012). All image
and kinetic analysis procedures were carried out by using
MIAKAT™ (Imanova Ltd, UK).

Statistical analysis

Demographic differences between groups, and injected
mass/activity, were analysed by using independent-
samples t-tests (two-tailed). An omnibus mixed-model
ANCOVA tested [''C]R015-4513 Vy as a function of
ROI (four levels) and Group (HV and GD) including age
and smoking as covariates. Results are presented as
mean + SD. Correlations between V; values and clinical
variables were performed by using Spearman's rank
correlation coefficients.

Based upon our previous findings in alcohol and opi-
ate dependence for the [''C]JRo15-4513 PET analysis,
we selected right hippocampus and NAc as a priori ROIs,
and we chose two additional a priori ROIs based upon
their established role in impulse control: OFC and amyg-
dala (Goldstein and Volkow 2002; Jentsch and Taylor
1999; Ko et al. 2015; Nikolova et al. 2016). As previous
work (Clark et al. 2012; Michalczuk et al. 2011) has

shown that NU, as a mood-related subgroup of

Addiction Biology, 22, 1601-1609



1604 Inge Mick et al.

impulsivity, is most strongly associated with GD, we chose
to test for correlations between UPPS-P NU and a priori
selected brain regions. Correlations were considered sig-
nificant at p <0.05, and for the group comparisons, if
ROIs are to be treated as independent, multiple compari-
son correction adjusts the significance value to

p<0.0125.

RESULTS
Participants' characteristics

Demographic, clinical, and impulsivity data are summa-
rized in Table 1. There were no differences in age, intelli-
gence quotient, smoking status or amount of alcohol
consumed per week. Individuals with GD had greater
of depression (Beck Depression Inventory:
p=0.013) and anxiety [Spielberger Trait Anxiety Inven-
tory (STAI): p=0.001; Spielberger State Anxiety Inven-
tory (SSAI): p=0.014] and Alcohol Use Disorders
Identification Test (AUDIT) score (p =0.037) than HV, al-
though none of the participants reached a clinically sig-

levels

nificant threshold in either group.

PET measures

There were no significant differences (p > 0.05) between
the groups for injected [''CJR015-4513 mass HV: 2.98
+ 1.06 ug versus GD: 3.19 £ 1.24 pg nor for injected ra-
dioactivity HV: 352 + 77 MBq versus GD 356 + 90 MBq.
The omnibus ANCOVA including age and smoking
(Fagerstrom Test for Nicotine Dependence) for the a priori

regions revealed a significant main effect of Group
(F1.28=6.1, p=0.020), with greater mean V; in individ-
uals with GD compared with HV. This was driven by sig-
nificant group differences in the [''CJRo15-4513 total
distribution volume (V) in the right hippocampus [t
(32)=2.7; p=0.011], which survives Bonferroni correc-
tion for multiple comparisons (Table 2). We did not show
any significant difference in the NAc, OFC or amygdala
(p>0.05). There was also a significant main effect of
smoking (F;,5=4.8, p=0.037), such that Fagerstrom
scores correlated negatively with mean Vacross the four
ROIs (r;=—0.36; p=0.041). In both groups, there was
no significant correlation between Alcohol Use Disorders
Identification Test scores and [''CJR015-4513 Vy There
was also no significant correlation between ‘length of ab-
stinence’ and [''C]JR015-4513 Vy There was no signifi-
cant difference between those that had started and not
started their cognitive-behavioural treatment (p > 0.05)
in [''C]JR015-4513 V7 in any of the a priori ROIs.

Relationship between PET measures, impulsivity and
anxiety

Individuals with GD showed significantly higher impul-
sivity scores in UPPS-P NU (p < 0.001) and LoP subscales
(p=0.028) compared with HV (Table 1). Non-parametric
correlations were run between [''C]R015-4513 Vy and
UPPS-P NU and revealed in the GD group, significant pos-
itive correlations in the amygdala (r,=0.67; p=0.006),
right hippocampus (r;=0.53; p=0.038) and NAc
(rg=0.57; p=0.034; Table 3) (Fig. 1). There were no

Table 1 Participants' characteristics, clinical and impulsivity measures, mean % SD.

HVn=19 GDn=15 Significance (two-tailed)

Age 31.7£7.5 34.8+7.5 0.245

10 114.0+13.5 116.5+12.2 0.502
CPGI 0.2+0.5 16.9+3.5 0.001*
Gambling abstinence (days) - 63.3£50.0 -
AUDIT 42+28 6.5%3.5 0.037*
Alcohol (units/ week) 9.0%8.0 125174 0.182
Current smoking status (smoker/ex-smoker) 6/3 4/2 0.957
FTND 1.0£1.8 24+23 0.266
Cigarettes (per day) 6.0t£5.8 50x7.1 0.793

BDI 1.3+£2.8 49+5.0 0.013*
STAI 31.0+£9.0 42.5+9.9 0.001*
SSAI 26.0£5.1 36.3+13.8 0.014*
UPPS-P NU 21.7£5.8 30.7+6.2 0.001*
UPPS-P PU 20.7£6.9 25.0+8.0 0.130
UPPS-P LoP 20.2+4.7 24.3+5.6 0.028*
UPPS-P LoPe 18.2+4.4 21.1+4.8 0.076
UPPS-P SS 34.3+8.1 33.3+£7.7 0.722

GD, individuals with gambling disorder; HV, healthy volunteers; AUDIT, Alcohol Use Disorders Identification Test; BDI, Beck Depression Inventory; CPGI,
Canadian Problem Gambling Inventory; FTND, Fagerstrom Test for Nicotine Dependence; GUQ, Gambling Urges Questionnaire; NART, National Adult
Reading Test; SSAI, Spielberger State Anxiety Inventory; STAI, Spielberger Trait Anxiety Inventory. *Significant difference between groups.
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Table 2 Comparison between groups of [HC]Rol 5-4513 Vyin a priori defined brain regions, mean % SD.

HVn=19 GDn=15
Mean SD Mean SD Significance (two-tailed)
Orbitofrontal cortex 6.99 + 0.75 7.18 + 0.87 0.563
Amygdala 7.44 + 0.65 7.97 + 0.87 0.058
Hippocampus R 7.44 + 0.72 8.13 + 0.74 0.011*
Nucleus accumbens 9.76 + 0.72 9.95 + 1.04 0.544

GD, individuals with gambling disorder; HV, healthy volunteers; L, left hemisphere; R, right hemisphere. HV: Amygdala n=18; GD: N. Accumbens

n = 14. *Significant at p < 0.05.

Table 3 Spearman's correlations between UPPS-P NU and [llC]Rol 5-4513 Vyin the GD and HV groups.

HV n=19

GDn=15

Correlation coefficient

Significance (two-tailed)

Correlation coefficient Significance (two-tailed)

Orbitofrontal cortex 0.08 0.731
Amygdala 0.00 0.990
Hippocampus R -0.10 0.680
Nucleus accumbens 0.46 0.050

0.51 0.052

0.67 0.006**
0.53 0.043*
0.57 0.034*

HYV, healthy volunteers; GD, individuals with gambling disorder; L, left hemisphere; R, right hemisphere. HV: Amygdala n = 18; GD: nucleus accumbens

n = 14. *Significant at p < 0.05. **Significant at p < 0.01.

significant correlations in the HV group (p > 0.05). The
differential relationship with NU in the two groups was
confirmed statistically by using a generalized linear
model, which showed a significant impulsivity X group
interaction in the amygdala (p=0.015). These interac-
tions were non-significant for right hippocampus and
NAc (p>0.05). There were no significant correlations
between [''CJR015-4513 Vy in a priori ROIs and LoP in
either of the groups.

As anxiety scores were significantly different in HV
and individuals with GD (STAL;, p=0.001 and SSAT;
p=0.014) and anxiety is related to UPPS-P NU, we also
explored correlations between trait anxiety (STAI), state
anxiety (SSAI), NU and [''CJR0o15-4513 Vy in the 4
ROIs. There was a significant positive correlation be-
tween STAI and [''CJR015-4513 V; in the amygdala
(rs=0.51; p=0.05) in the GD group, which was the only
one that survived Bonferroni correction. After controlling
for anxiety, the association between UPPS-P NU and the
amygdala [''CJR015-4513 V,; remained significant
(rg=0.63; p=0.016). There were no significant correla-
tions with trait anxiety in the HV group, and state anxi-
ety was not significantly correlated with [**CJRo15-4513
Vrin either group.

DISCUSSION

We report here the first study investigating GABA 5 recep-
tor availability in GD and show significantly greater [1'C]

© 2016 The Authors.
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Ro15-4513 V; in the right hippocampus of individuals
with GD and a positive relationship between [''C]Ro15-
4513 Vy and impulsivity. Notably, our finding of higher
[''C]R015-4513 Vyis in contrast to our previous finding
of lower levels of [*'CJRo15-4513 binding in the NAc in
alcohol and in opiate dependence and lower levels in
the hippocampus in alcohol dependence (Lingford-
Hughes et al. 2016; Lingford-Hughes et al. 2012a).
Higher [''CJR015-4513 binding reflects greater GABA
receptor availability, which may be due to increased
receptor expression or, as a consequence of Ro15-4513
being an inverse agonist, lower endogenous GABA levels
(Stokes et al. 2014). We are unable to separate these
two mechanisms within our study. Nevertheless, our
["'C]R015-4513 PET studies show clear differences in
GABA, receptor availability between substance addic-
tions and a behavioural addiction with lower levels of
[HC]Rol 5-4513 binding in both alcohol and opiate
addiction not apparent in GD (Lingford-Hughes et al.
2016; Lingford-Hughes et al. 2012a).

In our studies in substance dependence, significantly
lower [''C]R015-4513 V; was found in the hippocampus
in alcohol dependence but not in opiate dependence. In
these studies, we used spectral analysis (Myers et al.
2012) to show that these findings in alcohol dependence
were driven by the o5 subtype rather than ol; this is
consistent with the high level of a5 subtype in the hippo-
campus and selectivity of [''C]Ro15-4513 PET (Lingford-
Hughes et al. 2016). In the current study in GD, ['1C]

Addiction Biology, 22, 1601-1609
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Figure | Significantly positive correlations between Negative Ur-

gency impulsivity and [I ‘C]Ro 15-4513 Vrin individuals with gambling
disorder

Ro15-4513 V7 in each ROI was quantified by using a 2-
tissue-compartmental model, which we have shown to
be suitable to describe the a5-subtype-specific signal of
['C]JR015-4513 in most ROIs (Myers et al. 2016a)
though the contribution of other subtypes in regions with
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low GABA, o5 density, such as the cerebellum, should
also be considered.

We have previously reported higher [''C]JRo15-4513
Vy in various brain regions including the hippocampus,
in HV smokers, which was particularly evident in ex-
smokers with levels in current smokers similar to non-
smokers (Stokes et al. 2013). However, these individuals
were not heavy smokers, and in the current study, the
amount of smoking was even lower so the majority were
not dependent smokers. Given there were only a few cur-
rent smokers, we are unable to explore further the impact
of smoking on [*'CJR015-4513 Vy binding in GD.

Consistent with previous work, we found higher im-
pulsivity scores in individuals with GD compared with
HV (Clark et al. 2012; Michalczuk et al. 2011). Preclin-
ical studies suggest that reductions in or lower levels of
GABA are associated with greater impulsivity (Boy
et al. 2011; Murphy et al. 2012; Paine et al. 2011).
We have previously shown that [''CJRo15-4513 is sen-
sitive to GABA levels, and since it is an inverse benzo-
diazepine agonist, lower levels of GABA would be
associated with higher [''C]JRo15-4513 binding. Con-
sistent with our hypothesis that there would be a posi-
tive relationship between impulsivity and [''CJRol5-
4513 V3 we found such a relationship in subcortical
limbic regions in GD but not in HV. The relationship be-
tween [''CJR015-4513 Vyand ‘NU’ construct of impul-
sivity adds further support to the idea that mood-
related impulsivity is especially relevant to disordered
gambling (Clark et al. 2012; Nussbaum et al. 2011).
It is notable that we have found NU to be associated
with our PET studies of dopamine D2, MOR and now
GABA-A receptor in those with GD but not healthy
controls suggesting that dysregulation in these systems
has particular relevance to impulsivity in gambling
(Clark et al. 2012; Mick et al. 2015). Given the associ-
ation with NU, further exploration revealed a positive
relationship between trait anxiety and [''C]JRol5-
4513 Vy in the amygdala in the GD group only. Nota-
bly, the positive correlation with [''C|JRo15-4513 V;
and NU in the amygdala remained significant after con-
trolling for anxiety. The amygdala is a key region in-
volved in a number of processes such as emotional
processing, fear, reward valence and neuropsychiatric
disorders including addiction and anxiety (Elman et al.
2012; Janak and Tye 2015; van Holst et al. 2012).
However, evidence from neuroimaging studies using
non-specific benzodiazepine radiotracers [''C]flumazenil
PET or ['**Iliomazenil SPET about GABA, receptor
availability within the amygdala in relation to these
processes is limited and inconsistent. The most evidence
relates to anxiety where no relationship or negative
correlations have been reported in HV and both positive
and negative correlations in patients with anxiety

Addiction Biology, 22, 1601-1609



disorders (Abadie et al. 1999; Esterlis et al. 2009;
Hasler et al. 2008; Lingford-Hughes et al. 1998).

Our finding of an association between impulsivity and
GABA, receptors in vivo in individuals with GD is consis-
tent with evidence from pharmacological challenges with
GABA modulating drugs such as benzodiazepines, which
suggest that increased GABAergic neurotransmission is
associated with impulsivity (Hayes et al. 2014). Other
studies in man have explored the relationship between
GABA levels assessed with magnetic resonance spectros-
copy. Whilst GABA measured this way is predominantly
metabolic in origin (Myers et al. 2014; Myers et al
2016b), it is interesting that a lowered magnetic reso-
nance spectroscopy GABA signal ((GABA+]) in HV has
in some studies been associated with higher levels of im-
pulsivity. For instance, it has been shown that [GABA+]
levels in dorsolateral prefrontal regions negatively corre-
late with urgency impulsivity (Boy et al. 2011); low
[GABA+] in perigenual anterior cingulate cortex was as-
sociated with greater delay aversion on Cambridge gam-
bling task (Fujihara et al. 2015) and higher scores on
self-report Barratt Impulsiveness Scale-11 in one study
(Silveri et al. 2013) but not another (Janes et al. 2013).
Lower [GABA+] in the striatum is associated with poorer
impulse control in Go-NoGo task (Quetscher et al. 2015).
Such relationships add to the notion that modulating
GABA is a potential target for treatment of GD.

We acknowledge that the number of patients included
in this study is small. Based on our previous [''CJRo15-
4513 studies in alcohol and opiate dependent partici-
pants, we expected to find lower V; in the NAc. A post
hoc power calculation revealed that we would need more
than 150 additional [''CJRo15-4513 PET scans in order
to be able to detect a statistically significant group differ-
ence in the NAc. The power calculation was performed by
using the mean and SD data collected in our study, with
alpha=0.05, to show a difference with 80 percent
power. This number is beyond what is ethically accept-
able and feasible for a PET study, and we therefore did
not continue scanning.

In summary, we provide here the first evidence of
GABA, dysregulation in individuals with GD with in-
creased [''C|JR015-4513 V; in the right hippocampus.
This is different to substance dependence where we have
shown reduced [''C]JR015-4513 Vyin the NAc (Lingford-
Hughes et al. 2016; Lingford-Hughes et al. 2012a). As de-
scribed, GD was categorized in DSM-IV as an impulse
control disorder but based on shared clinical and
aetiological features is now classified as a behavioural ad-
diction in DSM-5. The current study adds to our and
other previous studies failing to show similar findings in
dopamine D2/3 receptor availability or mu opiate recep-
tor availability between GD and substance dependence
(Clark et al. 2012; Mick et al. 2015). Thus, our data
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suggest that the view that, as a behavioural addiction,
the neuropharmacology of GD would be similar to sub-
stance addiction is now less certain. However, these dif-
ferences may reflect the impact of the chronic excessive
drug/alcohol exposure on the brain as opposed to the un-
derlying addictive processes themselves. On the other
hand, our PET studies and those of others all report a re-
lationship between impulsivity in GD with dopamine
D2/3, with MOR and with GABA, receptor availability
but not control groups. These associations suggest that
pharmacological modulation may result in reduced im-
pulsivity as an approach to treatment. Future studies
are necessary to further investigate the neurobiology of
this behavioural addiction in order to clearly address sim-
ilarities and distinctions given the critical role for
GABAergic function in addictive processes and its role
in neural regulation. The evidence, albeit limited, and
our data suggest that modulation of the GABA receptor
system is a potential target for the treatment of GD.

Acknowledgements

This study was funded by the Medical Research Council
—MRC G1002226. Anna Ramos has received financial
support with a scholarship from CAPES (process number:
PDSE 99999.014476/2013-04).

The authors wish to thank the study participants and
the clinical team at Imanova Ltd., Centre for Imaging Sci-
ences. The research was supported by the National Insti-
tute for Health Research Imperial Biomedical Research
Centre. The views expressed are those of the author(s)
and not necessarily those of the NHS, the National Insti-
tute for Health Research or the Department of Health.

Authors Contribution

ARLH, DJN, LC, HBJ, EAR, RNG, DE, PARS and IM were
responsible for the study concept and design. MAM, DE
and IM contributed to the acquisition of data. JM per-
formed the PET analysis. ARLH, DJN, LC, HBJ], ADW,
JCFG, GES, EAR, SC, PRAS, JM, ACR and IM assisted with
data analysis and interpretation of findings. ACR and IM
drafted the manuscript. ARLH, DJN and LC provided crit-
ical revision of the manuscript for important intellectual
content. All authors critically reviewed the content and
approved the final version for publication.

References

Abadie P, Boulenger JP, Benali K, Barre L, Zarifian E, Baron JC
(1999) Relationships between trait and state anxiety and the
central benzodiazepine receptor: a PET study. Eur ] Neurosci
11:1470-1478.

Albein-Urios N, Martinez-Gonzalez JM, Lozano O, Clark L,
Verdejo-Garcia A (2012a) Comparison of impulsivity and
working memory in cocaine addiction and pathological

Addiction Biology, 22, 1601-1609



1608 Inge Mick et al.

gambling: implications for cocaine-induced neurotoxicity.
Drug Alcohol Depend 126:1-6.

Albein-Urios N, Martinez-Gonzalez JM, Lozano O, Clark L,
Verdejo-Garcia A (2012b) Comparison of impulsivity and
working memory in cocaine addiction and pathological gam-
bling: implications for cocaine-induced neurotoxicity. Drug Al-
cohol Depend 126:1-6.

Bechara A (2005) Decision making, impulse control and loss of
willpower to resist drugs: a neurocognitive perspective. Nat
Neurosci 8:1458-1463.

Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan PM,
Houle S, Wilson AA, Warsh J, Kish SJ, Zack M (2013) The
D2/3 dopamine receptor in pathological gambling: a positron
emission tomography study with [11C]-(+)-propyl-hexahydro-
naphtho-oxazin and [11CJraclopride. Addiction (Abingdon,
England) 108:953-963.

Boileau I, Payer D, Chugani B, Lobo DS, Houle S, Wilson AA,
Warsh J, Kish SJ, Zack M (2014) In vivo evidence for greater
amphetamine-induced dopamine release in pathological gam-
bling: a positron emission tomography study with [C]-(+)-
PHNO. Mol Psychiatry 19:1305-1313.

Boy F, Evans CJ, Edden RA, Lawrence AD, Singh KD, Husain M,
Sumner P (2011) Dorsolateral prefrontal
aminobutyric acid in men predicts individual differences in
rash impulsivity. Biol Psychiatry 70:866-872.

Caprioli D, Sawiak SJ, Merlo E, Theobald DE, Spoelder M, Jupp B,
Voon V, Carpenter TA, Everitt B], Robbins TW, Dalley JW
(2014) Gamma aminobutyric acidergic and neuronal struc-
tural markers in the nucleus accumbens core underlie trait-
like impulsive behavior. Biol Psychiatry 75:115-123.

Clark L (2014) Disordered gambling: the evolving concept of be-
havioral addiction. Ann N Y Acad Sci 1327:46-61.

Clark L, Limbrick-Oldfield EH (201 3) Disordered gambling: a be-
havioral addiction. Curr Opin Neurobiol 23:655-659.

Clark L, Stokes PR, Wu K, Michalczuk R, Benecke A, Watson BJ,
Egerton A, Piccini P, Nutt DJ, Bowden-Jones H, Lingford-
Hughes AR (2012) Striatal dopamine D(2)/D(3) receptor
binding in pathological gambling is correlated with mood-
related impulsivity. Neuroimage 63:40-46.

Cyders MA, Smith GT, Spillane NS, Fischer S, Annus AM, Peter-
son C (2007) Integration of impulsivity and positive mood to
predict risky behavior: development and validation of a mea-
sure of positive urgency. Psychol Assess 19:107-118.

Elman I, Becerra L, Tschibelu E, Yamamoto R, George E, Borsook
D (2012) Yohimbine-induced amygdala activation in patho-
logical gamblers: a pilot study. PLoS One 7:¢31118.

Esterlis I, Cosgrove KP, Batis JC, Bois F, Kloczynski TA, Stiklus SM,
Perry E, Tamagnan GD, Seibyl JP, Makuch R, Krishnan-Sarin
S, O'Malley S, Staley JK (2009) GABAA-benzodiazepine recep-
tor availability in smokers and nonsmokers: relationship to
subsyndromal anxiety and depression. Synapse (New York,
NY) 63:1089-1099.

Fujihara K, Narita K, Suzuki Y, Takei Y, Suda M, Tagawa M, Ujita
K, Sakai Y, Narumoto J, Near J, Fukuda M (2015) Relationship
of gamma-aminobutyric acid and glutamate + glutamine con-
centrations in the perigenual anterior cingulate cortex with
performance of Cambridge Gambling Task. Neuroimage
109:102-108.

Goldstein RZ, Volkow ND (2002) Drug addiction and its underly-
ing neurobiological basis: neuroimaging evidence for the in-
volvement of the frontal cortex. Am ] Psychiatry
159:1642-1652.

Gorelick DA, Kim YK, Bencherif B, Boyd SJ, Nelson R, Copersino
M, Endres CJ, Dannals RF, Frost JJ (2005) Imaging brain mu-

gamma-

© 2016 The Authors.

Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction

opioid receptors in abstinent cocaine users: time course and
relation to cocaine craving. Biol Psychiatry 57:1573-1582.

Hasler G, Nugent AC, Carlson PJ, Carson RE, Geraci M, Drevets
WC (2008) Altered cerebral gamma-aminobutyric acid type
A-benzodiazepine receptor binding in panic disorder deter-
mined by [11C]flumazenil positron emission tomography.
Arch Gen Psychiatry 65:1166-1175.

Hayes DJ, Jupp B, Sawiak SJ, Merlo E, Caprioli D, Dalley JW
(2014) Brain gamma-aminobutyric acid: a neglected role in
impulsivity. Eur ] Neurosci 39:1921-1932.

Heinz A, Reimold M, Wrase ], Hermann D, Croissant B, Mundle
G, Dohmen BM, Braus DF, Schumann G, Machulla H]J, Bares
R, Mann K (2005) Correlation of stable elevations in striatal
mu-opioid receptor availability in detoxified alcoholic patients
with alcohol craving: a positron emission tomography study
using carbon 11-labeled carfentanil. Arch Gen Psychiatry
62:57-64.

Janak PH, Tye KM (2015) From circuits to behaviour in the
amygdala. Nature 517:284-292.

Janes AC, Jensen JE, Farmer SL, Frederick BD, Pizzagalli DA,
Lukas SE (2013) GABA levels in the dorsal anterior cingulate
cortex associated with difficulty ignoring smoking-related cues
in tobacco-dependent volunteers. Neuropsychopharmacology

Official Publication of the American College of
Neuropsychopharmacology 38:1113-1120.

Jentsch JD, Taylor JR (1999) Impulsivity resulting from
frontostriatal dysfunction in drug abuse: implications for the
control of behavior by reward-related stimuli. Psychopharma-
cology (Berl) 146:373-390.

Jupp B, Caprioli D, Saigal N, Reverte I, Shrestha S, Cumming P,
Everitt BJ, Robbins TW, Dalley JW (2013) Dopaminergic and
GABA-ergic markers of impulsivity in rats: evidence for ana-
tomical localisation in ventral striatum and prefrontal cortex.
Eur J Neurosci 37:1519-1528.

Ko CH, Hsieh TJ, Wang PW, Lin WC, Yen CF, Chen CS, Yen JY
(2015) Altered gray matter density and disrupted functional
connectivity of the amygdala in adults with Internet gaming
disorder. Prog Neuropsychopharmacol Biol Psychiatry
57:185-192.

Lawrence AJ, Luty J, Bogdan NA, Sahakian BJ, Clark L (2009)
Impulsivity and response inhibition in alcohol dependence
and problem gambling. Psychopharmacology (Berl)
207:163-172.

Lingford-Hughes A, Myers J, Watson B, Reid AG, Kalk N, Feeney
A, Hammers A, Riano-Barros DA, McGinnity CJ, Taylor LG,
Rosso L, Brooks DJ, Turkheimer F, Nutt DJ (2016) Using [C]
Ro15 4513 PET to characterise GABA-benzodiazepine recep-
tors in opiate addiction: similarities and differences with alco-
holism. Neuroimage 132:1-7.

Lingford-Hughes A, Reid AG, Myers ], Feeney A, Hammers A,
Taylor LG, Rosso L, Turkheimer F, Brooks DJ, Grasby P, Nutt
DJ (2012a) A [11CJRo15 4513 PET study suggests that alco-
hol dependence in man is associated with reduced alpha5 ben-
zodiazepine receptors in limbic regions. ] Psychopharmacol
(Oxford, England) 26:273-281.

Lingford-Hughes AR, Acton PD, Gacinovic S, Suckling ], Busatto
GF, Boddington SJ, Bullmore E, Woodruff PW, Costa DC,
Pilowsky LS, Ell PJ, Marshall EJ, Kerwin RW (1998) Reduced
levels of GABA-benzodiazepine receptor in alcohol depen-
dency in the absence of grey matter atrophy. Br | Psychiatry
173:116-122.

Lingford-Hughes AR, Welch S, Peters L, Nutt DJ (2012b) BAP
updated guidelines: evidence-based guidelines for the pharma-
cological management of substance abuse, harmful use,

Addiction Biology, 22, 1601-1609



addiction and comorbidity: recommendations from BAP. ]
Psychopharmacol(Oxford, England) 26:899-952.

Michalczuk R, Bowden-Jones H, Verdejo-Garcia A, Clark L
(2011) Impulsivity and cognitive distortions in pathological
gamblers attending the UK National Problem Gambling Clinic:
a preliminary report. Psychol Med 1-11.

Mick I, Myers ], Ramos AC, Stokes PR, Erritzoe D, Colasanti A,
Gunn RN, Rabiner EA, Searle GE, Waldman AD, Parkin MC,
Brailsford AD, Galduroz JC, Bowden-Jones H, Clark L, Nutt
DJ, Lingford-Hughes AR (2015) Blunted endogenous opioid
release following an oral amphetamine challenge in patholog-
ical gamblers. Neuropsychopharmacology: official publication
of the American College of Neuropsychopharmacology .

Murphy ER, Fernando AB, Urcelay GP, Robinson ES, Mar AC,
Theobald DE, Dalley JW, Robbins TW (2012) Impulsive behav-
iour induced by both NMDA receptor antagonism and GABAA
receptor activation in rat ventromedial prefrontal cortex. Psy-
chopharmacology (Berl) 219:401-410.

Myers JF, Evans (], Kalk NJ, Edden RA, Lingford-Hughes AR
(2014) Measurement of GABA using J-difference edited 1H-
MRS following modulation of synaptic GABA concentration
with tiagabine. Synapse 68:355-362.

Myers JFM, Comley RA, Gunn RN (2016a) Quantification of
[11C]R015—4513 GABAAaS5 specific binding and regional
selectivity in humans. ] Cereb Blood Flow Metab. [Epub
ahead of print] DOI: 10.1177/0271678X16661339

Myers JE, Nutt DJ, Lingford-Hughes AR (2016b) Gamma-
aminobutyric acid as a metabolite: interpreting magnetic res-
onance spectroscopy experiments. ] Psychopharmacol (Ox-
ford, England) 30:422-427.

Myers JF, Rosso L, Watson BJ, Wilson SJ, Kalk NJ, Clementi
N, Brooks DJ, Nutt DJ, Turkheimer FE, Lingford-Hughes
AR (2012) Characterisation of the contribution of the
GABA-benzodiazepine alphal receptor subtype to [(11)C]
Ro15-4513 PET images. ] Cereb Blood Flow Metab
32:731-744.

Nikolova YS, Knodt AR, Radtke SR, Hariri AR (2016) Divergent
responses of the amygdala and ventral striatum predict stress-
related problem drinking in young adults: possible differential
markers of affective and impulsive pathways of risk for alcohol
use disorder. Mol Psychiatry 21:348-356.

Nordin C, Sjodin I (2007) CSF cholecystokinin, gamma-
aminobutyric acid and neuropeptide Y in pathological gam-
blers and healthy controls. ] Neural Transm(Vienna, Austria
:1996) 114:499-503.

Nussbaum D, Honarmand K, Govoni R, Kalahani-Bargis M, Bass
S, Ni X, Laforge K, Burden A, Romero K, Basarke S,
Courbasson C, Deamond W (2011) An eight component
decision-making model for problem gambling: a systems ap-
proach to stimulate integrative research. J Gambl Stud
27:523-563.

Paine TA, Slipp LE, Carlezon WA Jr (2011) Schizophrenia-like at-
tentional deficits following blockade of prefrontal cortex GABAA
receptors. Neuropsychopharmacology 36:1703-1713.

Paterson LM, Flechais RS, Murphy A, Reed L], Abbott S, Boyapati
V, Elliott R, Erritzoe D, Ersche KD, Faluyi Y, Faravelli L,

© 2016 The Authors.

Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction

GABA dysregulation in GD 1609

Fernandez-Egea E, Kalk NJ, Kuchibatla SS, McGonigle ],
Metastasio A, Mick I, Nestor L, Orban C, Passetti F, Rabiner
EA, Smith DG, Suckling J, Tait R, Taylor EM, Waldman AD,
Robbins TW, Deakin JW, Nutt DJ, Lingford-Hughes AR
(2015) The Imperial College Cambridge Manchester (ICCAM)
platform study: an experimental medicine platform for evalu-
ating new drugs for relapse prevention in addiction. Part A:
study description. ] Psychopharmacol (Oxford, England)
29:943-960.

Quetscher C, Yildiz A, Dharmadhikari S, Glaubitz B, Schmidt-
Wilcke T, Dydak U, Beste C (2015) Striatal GABA-MRS pre-
dicts response inhibition performance and its cortical electro-
physiological correlates. Brain Struct Funct 220:3555-3564.

Roy A, DeJong J, Ferraro T, Adinoff B, Gold P, Rubinow D,
Linnoila M (1989) CSF GABA and neuropeptides in patholog-
ical gamblers and normal controls. Psychiatry Res
30:137-144.

Silveri MM, Sneider JT, Crowley DJ, Covell MJ, Acharya D, Rosso
IM, Jensen JE (2013) Frontal lobe gamma-aminobutyric acid
levels during adolescence: associations with impulsivity and
response inhibition. Biol Psychiatry 74:296-304.

Stokes PR, Benecke A, Myers ], Erritzoe D, Watson BJ, Kalk N,
Barros DR, Hammers A, Nutt DJ, Lingford-Hughes AR
(2013) History of cigarette smoking is associated with higher
limbic GABAA receptor availability. Neuroimage 69:70-77.

Stokes PR, Myers JF, Kalk NJ, Watson BJ, Erritzoe D, Wilson SJ,
Cunningham V], Riano Barros D, Hammers A, Turkheimer
FE, Nutt DJ, Lingford-Hughes AR (2014) Acute increases in
synaptic GABA detectable in the living human brain: a [(1)
(1)C]JR015-4513 PET study. Neuroimage 99:158-165.

Trziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt
P, Douaud G, Jbabdi S, Behrens TE, Rabiner EA, Jenkinson M,
Gunn RN (2014) Connectivity-based functional analysis of do-
pamine release in the striatum using diffusion-weighted MRI
and positron emission tomography. Cereb Cortex (New York,
NY:1991) 24:1165-1177.

van Holst RJ, Veltman DJ, Buchel C, van den Brink W, Goudriaan
AE (2012) Distorted expectancy coding in problem gambling:
is the addictive in the anticipation? Biol Psychiatry
71:741-748.

Verdejo-Garcia A, Lawrence AJ, Clark L (2008) Impulsivity as a
vulnerability marker for substance-use disorders: review of
findings from high-risk research, problem gamblers and ge-
netic association studies. Neurosci Biobehav Rev 32:777-810.

Williams TM, Daglish MR, Lingford-Hughes A, Taylor LG, Ham-
mers A, Brooks DJ, Grasby P, Myles JS, Nutt DJ (2007) Brain
opioid receptor binding in early abstinence from opioid depen-
dence: positron emission tomography study. Br ] Psychiatry
191:63-69.

Williams TM, Davies SJ, Taylor LG, Daglish MR, Hammers A,
Brooks DJ, Nutt DJ, Lingford-Hughes A (2009) Brain opioid re-
ceptor binding in early abstinence from alcohol dependence
and relationship to craving: an [11C]diprenorphine PET study.
Eur Neuropsychopharmacol 19:740-748.

Addiction Biology, 22, 1601-1609


http://dx.doi.org/10.1177/0271678X16661339

