Published in final edited form as:

Bio Protoc. 2014 July 5; 4(13): . doi:10.21769/BioProtoc.1172.

Murine in vivo CD8+ T Cell Killing Assay

Myoungjoo V. Kim^{1,*}, Weiming Ouyang², Will Liao³, Michael Q. Zhang⁴, and Ming O. Li⁵
¹Department of Immunobiology, Yale University School of Medicine, New Haven, USA

²Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, USA

³Genomics, New York Genome Center, New York, USA

⁴Molecular and Cellular Biology Department, University of Texas at Dallas, Richardson, USA

⁵Department of Immunology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA

Abstract

Antigen-specific killing ability of effector CD8⁺ T cells is critical for protective immunity against infection. Here, we describe *in vivo* cytotoxic T cell assay to examine effector function of antigen-specific CD8⁺ T cells. Mice infected with Listeria monocytogenes (*L. monocytogenes*) expressing chicken ovalbumin as a model antigen mount ovalbumin-specific CD8⁺ T cell responses. Effector CD8⁺ T cell function *in vivo* is determined by mixed transfer of OVA peptide-pulsed target cells with control target cells into the previously immunized mice. Difference in CFSE expression levels clearly marks two distinct populations: Antigen-pulsed target cells-CFSE^{low} vs. unpulsed target cells-CFSE^{hi}. The frequencies between antigen-pulsed target cells and control target cells are used as readouts of antigen-specific killing.

Materials and Reagents

- 1. Splenocytes from a wild type mouse
- 2. PBS (Thermo Fisher Scientific, catalog number: BP399-20)
 Note: 10× solution, diluted to 1× in house in distilled water and sterilized by autoclave.
- **3.** RBC lysis buffer (eBioscience, catalog number: 00-4333-57)
- **4.** HBSS without Ca^{2+} and Mg^{2+} (Life Technologies, Gibco[®], catalog number: 14175-095)
- **5.** RPMI-1640 medium (Life Technologies, Gibco[®], catalog number: 11875-119)
- **6.** Fetal bovine Serum (Atlanta Biologicals, catalog number: S11055H)
- 7. Penicillin/streptomycin (Gemini Bio-Products, catalog number: F52M00E)
- **8.** L-Glutamine (Life Technologies, Gibco®, catalog number: 25030-081)

^{*}For correspondence: myoungjoo.kim@yale.edu.

¹The gradient separation is sensitive to agitation. Try not to shake the tube.

- **9.** Trypan blue solution (Life Technologies, Gibco[®], catalog number: 15250-061)
- **10.** OVA_{257–264} synthetic peptide (Sigma-Aldrich, catalog number: S7951)
- **11.** 5(6)-Carboxyfluorescein diacetate N-succinimidyl ester (CFSE) (Sigma-Aldrich, catalog number: 21888)
- 12. Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, catalog number: D-8418
- 13. Collagenase D (Sigma-Aldrich, catalog number: C-5138)
- **14.** Percoll (Sigma-Aldrich, catalog number: P-1644)
- **15.** Complete RPMI-1640 media (see Recipes)
- **16.** 100% percoll solution (see Recipes)

Equipment

- 1. Centrifuge (Thermo Fischer Scientific, SorvallTM Legend RT)
- 2. 37 °C water bath
- **3.** Hemocytometer
- 4. 15 ml and 50 ml Falcon tubes
- **5.** 6 well plates (USA Scientific, CytoOne[®], catalog number: CC7682-7506)
- **6.** BD LSRII Flow Cytometer (BD)
- 7. 70 µm cell strainer (BD Biosciences, Falcon[®], catalog number: 352350)
- **8.** 5 ml polystyrene round-bottom tubes with cell-strainer cap (BD Biosciences, Falcon[®], catalog number: 352235)
- **9.** 3 ml syringe (BD, catalog number: 14-823-435)

Procedure

A. Target cell preparation under sterile tissue culture conditions

This step is for preparing peptide-pulsed target cells and stain cells with CFSE to distinguish peptide-pulsed target cells from control target cells.

- 1. $OVA_{257-264}$ peptide-loading for the target cells.
 - **a.** Splenocytes are RBC lysed followed by washing with PBS twice.
 - **b.** Resuspend cells in RPMI-1640 complete medium.
 - **c.** Count the mononuclear cells by trypan blue exclusion using a hemocytometer.
 - **d.** Resuspend cells at 5×10^6 /ml of RPMI-1640 complete medium.

- **e.** Divide the cells equally into two separate 50 ml Falcon tubesone for peptide-pulsed target cells, and the other for unpulsed target cells.
- **f.** Add OVA $_{257-264}$ peptide at 1 μ l/ml from a 200 μ M stock to peptide-pulsed target cells.
- **g.** Add an equivalent amount of PBS to the unpulsed target cells.
- **h.** Incubate the cells in a 37 °C water bath for 1 h.
- i. Wash cells twice with RPMI-1640 complete medium.
- **j.** Centrifuge the cells at 1,500 rpm for 3 min at 4 °C.
- **k.** Resuspend the cell pellet in HBSS.
- **2.** CFSE cell labeling under sterile tissue culture conditions.
 - **a.** Count all live cells by trypan blue exclusion using hemocytometer.
 - **b.** Resuspend the cells in HBSS at 5×10^7 /ml.
 - **c.** Thaw an aliquot of 5 mM stock CFSE solution.
 - **d.** Make a fresh CFSE^{low} stock solution by diluting 5 mM stock 1:10 in DMSO (a final concentration of 0.5 mM).
 - e. Incubate the unpulsed target splenocytes with the higher concentration of CFSE (CFSE^{high}): Add 1 μ l of the 5 mM stock CFSE for each milliliter of unpulsed target cells (final concentration of 5 μ M).
 - f. Incubate the pulsed target splenocytes with the lower concentration of CFSE (CFSE low): Add 1 μ l of the 0.5 mM stock CFSE for each milliliter of peptide-pulsed cells (final concentration of 0.5 μ M).
 - **g.** Pipette cells up and down to mix well and incubate in water bath for 10 min at 37 °C. Gently agitate the cells periodically.
 - **h.** Add $10\times$ the volume of pre-warmed RPMI-1640 complete medium to the CFSE-labeled cells to stop the reaction.
 - i. Pellet cells at 1,500 rpm for 3 min at 4 °C.
 - **j.** Remove the supernatant and resuspend the pellet in cold RPMI-1640 complete medium.
 - **k.** Wash the cells two more times with cold RPMI-1640 complete medium.
 - **l.** Count the mononuclear cells by trypan blue exclusion using a hemacytometer.

- **m.** Wash the cells with cold PBS.
- **n.** Resuspend each cell populations in PBS at 6.7×10^6 /ml.
- o. Combine an equal volume (~equal numbers) of peptide-pulsed CFSE^{low} cells with unpulsed CFSE^{hi} cells and proceed with flow cytometry analysis (Figure 1a).
- **B.** Intravenous injection of target splenocytes

To investigate OVA^{257–264}-specific CD8⁺ T cell killing ability, peptide-pulsed and unpulsed target cells were mixed at a 1:1 ratio and transferred to the previously immunized mice.

- 1. Recipient mice were infected with 5,000 colony-forming units (CFU) of *Listeria monocytogenes* expressing chicken ovalubmin (LM-OVA) 7 days intravenously before the CFSE-labeled cell injection.
- 2. Inject intravenously 300 μ l of the combined cell populations into the tail vein of each recipient. Each recipient should receive approximately 1×10^7 peptide-pulsed target cells combined with 1×10^7 unpulsed target cells.
- **3.** Wait for 4 h.
- **C.** Preparation of splenocytes and lymphocytes in the liver for flow cytometry analysis

This step is analyzing antigen-specific killing ability in the liver and the spleen by flow cytometric analysis of CFSE^{low} and CFSE^{hi} cell populations.

- 1. Prepare splenocytes for flow cytometry analysis.
 - **a.** Wash once with PBS, and 2–300 μl into a 5 ml round bottom tubes through the cell strainer.
- **2.** Isolate lymphocytes from the liver.
 - **a.** Harvest livers from the recipients and place them on ice.
 - **b.** Make a fresh collagenase D solution by diluting 20 mg/ml stock 1: 20 in PBS (a final concentration of 1 mg/ml).
 - **c.** Chop liver with a blade on a slide glass and transfer them into a 50 ml falcon tube.
 - **d.** Add 7 ml of collagenase D (1 mg/ml) and vortex well.
 - **e.** Incubate in water bath for 30 min at 37 °C. Vortex every 15 min.
 - f. Put tubes on ice and add supernatant on 70 μm filter on a well of a 6 well plate. Grind chunks of the chopped liver with flat portion of 3 ml syringe. Wash the tube with 5 ml of PBS and repeat grinding.

g. Transfer them to a 50 ml Falcon tube and spin down at 2,000 rpm for 5 min at 4 $^{\circ}$ C.

- Make fresh 44% and 66% percoll solution: Make 44% final concentration by diluting 100% percoll in PBS, and make 66% final concentration by diluting 100% percoll in RPMI-1640 medium.
- i. Resuspend pellet in 7 ml of 44% percoll, and load them on 3 ml of 66% percoll in 15 ml tube.

Note: The gradient separation is sensitive to agitation. Try not to shake the tube.

- **j.** Centrifuge at 3,000 rpm for 30 min at 4 °C without brake.
- **k.** Transfer the interphase lymphocytes to a new 15 ml tube.
- **l.** Pellet cells at 2,000 rpm for 5 min at $4 \,^{\circ}$ C.
- **m.** Wash once with PBS, and transfer $2-300 \mu l$ into a 5 ml round bottom tubes through the cell strainer.
- **3.** Proceed to flow cytometry analysis with spleen and liver samples (Figure 1b).

Recipes

1. Complete RPMI-1640 medium

10% FBS

1% Penicillin/streptomycin with L-Glutamine

2. 100% percoll solution

90% of percoll

10% of 10× PBS

Acknowledgments

The protocol was adapted from a previously described study (Manjunath *et al.*, 2001). This work was supported by the Starr Cancer Consortium (13-A123 to M.O.L. and M.Q.Z.), the Rita Allen Foundation (M.O.L.), the NBRPC (2012CB316503 to M.Q.Z.), and the NIH (HG001696 to M.Q.Z.).

References

- Ingulli E. Tracing tolerance and immunity in vivo by CFSE-labeling of administered cells. Methods Mol Biol. 2007; 380:365–376. [PubMed: 17876106]
- Kim MV, Ouyang W, Liao W, Zhang MQ, Li MO. The transcription factor Foxo1 controls centralmemory CD8⁺ T cell responses to infection. Immunity. 2013; 39(2):286–297. [PubMed: 23932570]

Figure 1. CFSE expression in antigen-pulsed target cells and unpulsed target cells a. Peptide-pulsed CFSE low and unpulsed CFSE hi splenocytes were mixed at a 1:1 ratio before transferring to the recipients. b. The mixture of peptide-pulsed and unpulsed splenocytes was transferred into the mice predisposed with LM-OVA at day 7 post infection. The spleen and the liver of the recipients were harvested after 4 h to determine percentages of CFSE low and CFSE hi cells among CFSE $^{+}$ cells.