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Abstract

Comparative analysis of metagenomes can be used to detect sub-metagenomes (species or gene 

sets) that are associated with specific phenotypes (e.g., host status). The typical workflow is to 

assemble and annotate metagenomic datasets individually or as a whole, followed by statistical 

tests to identify differentially abundant species/genes. We previously developed subtractive 

assembly (SA), a de novo assembly approach for comparative metagenomics that first detects 

differential reads that distinguish between two groups of metagenomes and then only assembles 

these reads. Application of SA to type 2 diabetes (T2D) microbiomes revealed new microbial 

genes associated with T2D. Here we further developed a Concurrent Subtractive Assembly 

(CoSA) approach, which uses a Wilcoxon rank-sum (WRS) test to detect k-mers that are 

differentially abundant between two groups of microbiomes (by contrast, SA only checks ratios of 

k-mer counts in one pooled sample versus the other). It then uses identified differential k-mers to 

extract reads that are likely sequenced from the sub-metagenome with consistent abundance 

differences between the groups of microbiomes. Further, CoSA attempts to reduce the redundancy 

of reads (from abundant common species) by excluding reads containing abundant k-mers. Using 

simulated microbiome datasets and T2D datasets, we show that CoSA achieves strikingly better 

performance in detecting consistent changes than SA does, and it enables the detection and 

assembly of genomes and genes with minor abundance difference. A SVM classifier built upon the 

microbial genes detected by CoSA from the T2D datasets can accurately discriminates patients 

from healthy controls, with an AUC of 0.94 (10-fold cross-validation), and therefore these 

differential genes (207 genes) may serve as potential microbial marker genes for T2D.
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1 Introduction

The human body is host to trillions of bacteria cells, outnumbering human cells by 1.3 to 1 

(in contrast to the widely cited 10:1 ratio), according to a recent estimate [40]. Moreover, the 

genes encoded by human microbiome are hundreds of times more than the human 

complement [47]. It has been reported that those microorganisms are involved in ~20% of 
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human malignancies [6]. The gut microbiota has been linked to a variety of conditions 

including inflammatory bowel disease [23], cardiovascular disease [19], rheumatoid arthritis 

[38], Parkinson’s disease [37], autism spectrum disorder [16], colon cancer [9, 39], and liver 

cirrhosis [34], among others. However, only 10 microbes are designated to be carcinogenic 

to human beings by the International Agency for Cancer Research (IACR) [6]. Therefore, it 

is intriguing to explore microbes that are directly related to the development of human 

diseases.

The development of next generation sequencing has pushed the advancement of 

metagenomics, which presents us a great opportunity to identify microorganisms that are 

enriched or depleted during disease and explore possible mechanisms behind the 

association. The human microbiome project has shown the association between the shifts in 

our microbiota and diseases such as obesity [17] and periodontitis [15]. Although the change 

in identify of the species (or abundance) does not ensure a causal role for the microbes, we 

can narrow down the set of candidate genomes or genes by such studies. One new trend of 

microbiome research is microbiome-wide association studies (MWAS), which are analogous 

to genome-wide association studies (GWAS) [20]. MWAS may take a case-control 

approach, revealing the association between microbiomes and human diseases. However, the 

limitation of this approach is that it cannot distinguish whether the microbiome drives the 

disease, the disease drives the microbiome, or both are modified by confounding factors. On 

the other hand, longitudinal studies may allow researchers to test whether changes in the 

microbiome precede or follow the development of disease [5, 11].

In the seeking of disease-associated microbes, we should note the significant compositional 

variations of microbiota from individual to individual [10]. Regarding this interpatient 

variability, the correct strategy is to identify conserved microbial community behaviors in 

microbiota-associated diseases [15]. Microbial marker gene surveys have been used 

extensively to reveal the association of microbiota with diseases such as diabetes and 

Crohn’s disease [31]. For instance, Qin et al. identified 15 optimal marker genes from the 

gut microbiome in liver cirrhosis by comparing 98 patients and 83 healthy control 

individuals [34]. Based on only the 15 biomarkers, they were able to construct a classifier 

that can discriminate patients with a decent accuracy [34]. Similarly, gut microbiota was 

explored to detect colorectal cancer and a metagenomic classifier was trained using the 

taxonomic abundances of 22 marker species [45]. The typical workflow of these marker-

gene surveys is to assemble the metagenomes and then predict the genes, potential marker 

genes can then be identified by detecting significant differences in their distribution across 

healthy and disease populations. The analysis of differential abundance is critical for these 

surveys and computational tools have been developed for the analysis, including a recently 

developed approach that relies on a novel normalization technique and a statistical model 

accounting for undersampling [31].

Due to the complexity of microbial communities, the de novo partition of metagenomic 

space into specific biological entities remains to be difficult. To address this problem, 

researchers have utilized various features, including compositional features such as tetra-

nucleotide statistics [13] and coverage signals of genetic sequences [1, 44]. However, the 

assumptions of those methods are not universally true. For example, the methods relying on 
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abundances of genetic sequences are admittedly weak in segregating taxonomically related 

organisms [1]. In the process of exploring other features, it has been realized that utilizing 

co-abundance across multiple samples improves the resolution of genome segregation from 

metagenomic data sets [29, 2, 43]. Similarly, we should also utilize information from 

multiple samples for the sake of identifying conserved differential patterns.

We have previously introduced a method called subtractive assembly (SA) [42], which is a 

de novo method to compare metagenomes by identifying and assembling the differential 

reads. We have demonstrated that SA can recover the differential genomes by effectively 

extracting the differential reads based on sequence signatures (frequencies of k-mers). Also, 

SA can improve the quality of metagenomic assembly when only a subset of closely-related 

genomes change in their abundances between the groups of samples in comparison. 

Application of SA to gut metagenomes from women with type 2 diabetes (T2D) [17] reveals 

compositional features and a large collection of unique or abundant genes in T2D gut 

metagenomes (some of the genes identified by SA were otherwise missed by direct 

assembly of the original datasets). SA utilizes both the compositional and coverage features 

through the composition and frequency of k-mers, contributing to its superior performance. 

However, the SA method pools the samples for each group before comparison and therefore 

loses power in detecting minor but consistent changes without using information from 

individual samples. In addition, SA picks up genes in species which only appear in a few 

samples but with high abundances, as a result, many of the “differential” genes assembled 

are not actually consistently abundant across samples in the same group. Therefore 

additional profiling of gene abundance is required in order to search for genes consistently 

more abundant in one group versus the other.

In this paper, we further developed the subtractive assembly approach for the detection of 

consistently differential genomes or genes by using k-mer frequencies in individual samples 

(co-abundance). We adopted KMC 2 [7] for k-mer counting in our implementation, since 

KMC 2 is one of the fastest k-mer counting approaches, which was claimed to be twice 

faster than the strongest competitors such as Jellyfish 2 [26]. Differential reads extracted 

from individual samples were then pooled for assembly. We call our new method Concurrent 

Subtractive Assembly approach (CoSA). We observed that some reads are extremely 

redundant (those sampled from abundant common species across samples). We further 

developed a strategy to remove redundant reads based on k-mer counts: only some of the 

reads that contain highly abundant k-mers are retained for assembly. Using simulated 

datasets, we showed that CoSA achieves much better performance in detecting consistent 

changes than the original subtractive assembly (SA) approach. Moreover, we applied it to 

analyzing T2D gut metagenomes to identify microbial marker genes, based on which we 

built a classifier that accurately discriminates patients from healthy controls.

2 Materials and Methods

2.1 Overview

Concurrent Subtractive Assembly (CoSA) is designed to identify the short reads that make 

up the conserved/consistent compositional differences across multiple samples based on 

sequence signatures (k-mer frequencies), and then to only assemble the differential reads, 
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aiming to reveal the consistent differences between two groups of metagenomic samples 

(e.g., metagenomes from cancer patients vs. metagenomes from healthy controls).

2.2 k-mer counting

CoSA is a k-mer-based method, and therefore the first step is the counting of all k-mers in 

metagenomic samples. For comparative metagenomic studies, the sheer size of the datasets 

is a fundamental challenge. We employed KMC 2 for k-mer counting. We specified the 

maximal value of a count (the cs flag) as 65,536 instead of 255 by default. On one hand this 

helps identify the more frequently observed differential k-mers by using a larger cut-off 

value; on the other hand we can store each count using a 16-bit unsigned integer, which 

demands a reasonable amount of memory or disk space when dealing with billions of k-

mers.Meanwhile, we exclude k-mers occurring less than two times by the ci option based on 

the fact that a large number of singletons are products from sequencing errors, as previously 

employed by both BFCounter [28] and khmer [46].

After k-mer counting with KMC 2, CoSA goes through the outputs of KMC by using the 

KMC API and stores all observed k-mers in a hash table, implemented using the libcuckoo 

library (downloaded from https://github.com/efficient/libcuckoo). Libcuckoo [25] provides a 

high-performance concurrent hash table, by which we can efficiently update the hash table 

using multiple threads. With the k-mers in the hash table, CoSA accesses the outputs of 

KMC again and writes to disk the counts of the k-mers based on their orders in the hash 

table for every sample. By storing the counts on the disk, we can load the counts of k-mers 

in batches and therefore significantly reduce the memory requirement for recording the 

counts of all k-mers in every sample.

2.3 Identification of differential k-mers using Wilcoxon rank-sum test

CoSA by default loads 107 k-mers into a two-dimensional array each time and iteratively 

tests if the frequencies of each k-mer are differential between the two groups of samples. To 

compare k-mers in different metagenomic samples, we calculate the frequency of each k-

mer in each metagenomic sample. In case the frequency of a rare k-mer is extremely small, 

we compute the frequency of a k-mer as the number of occurrences per million k-mers. Then 

the normalized frequencies are used for WRS test (a nonparametric test), for which we 

employ the “mannwhitneyutest” function from ALGLIB (http://www.alglib.net). The WRS 

test is used to detect k-mers that have different frequencies in one group of the samples (e.g., 

the patient group) than the other group of samples (e.g., the healthy control) with statistical 

significance. The k-mers that pass the test (p-value cut-off is set to 0.05 by default) are 

identified as differential k-mers.

We tested different k-mer sizes empirically. Bigger k-mer size increases the memory 

assumption by CoSA, but has very little impact on the results of extracted reads and 

downstream application of the reads. We therefore set the default k-mer size to 23.

2.4 Identification of differential reads based on differential k-mers

Reads that are composed of differential k-mers tend to be from differential genomes. Thus, 

we extract differential reads in each sample based on the differential k-mers using a voting 
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strategy. With the voting threshold as 0.5, for example, a read is considered to be differential 

if 50% of its k-mers belong to differential k-mers. We empirically tested the voting threshold 

and found a value in the range of 0.3 ~ 0.8 gives a good balance between the number of 

extracted reads and efficiency of the differential gene assembly. However, users may change 

this parameter (−v) in their own applications of CoSA.

2.5 Reduction of reads redundancy

We noticed that some k-mers are extremely abundant in the extracted reads file (these k-

mers are likely from the reads sampled from abundant species that are common across many 

samples). When the differential reads contain these k-mers, the distribution of k-mers is 

skewed and this can challenge the assembly algorithm. To address this issue, we reduced the 

reads redundancy by excluding reads that contain highly abundant k-mers. The reads 

redundancy removal relies on a list of highly abundant k-mers prepared based on k-mer 

counts. A read is determined to be redundant if it contains many k-mers on the abundant k-

mer list. Specifically, for each read, the fraction of abundant k-mer (over all k-mers) is 

computed and used for determing the fate of the read: if the fraction is smaller than a 

random number between 0 and 1 generated by the program, the read is retained; otherwise, it 

is discarded. In this way, a read that has a higher ratio of abundant k-mers will have a higher 

chance to be discarded.

2.6 Assembly of extracted reads and downstream annotations

Following the read extraction, any metagenomic assembler can be employed in subtractive 

assembly. Here, we used MegaHIT (with meta-large presets option)[ 24](version 1.0.2) to 

assemble the differential reads, to illustrate the usage of CoSA. For each group (e.g., T2D 

patients, or healthy controls), differential reads extracted from individual samples were 

pooled and assembled together by MegaHIT. We note that we only pooled reads from 

multiple samples in the same group for assembly. We used MegaHIT as it is one of the 

recently developed assemblers that are memory efficient and fast. But in principle, other 

assemblers such as IDBA-UD [33] and metaSPAdes [3] can be used as well. In order to 

identify differential genes, protein coding genes were predicted from the contigs using 

FragGeneScan [35] (version 1.30).

To estimate the abundance of the genes, all the reads from each sample were aligned against 

the gene set by using Bowtie 2 [22](version 2.2.6). We counted a gene’s abundance based on 

the counts of both uniquely and multiplely mapped reads. The contribution of multiplely 

mapped reads to a gene was computed according to the proportion of the multiplely mapped 

read counts divided by the gene’s unique abundance [34]. The read counts were then 

normalized per kilobase of gene per million of reads in each sample.

2.7 Building classifiers

After the gene abundance profile was built, we attempted to build a classifier that can 

discriminate patients from healthy controls. We first used L1-based feature selection method 

in the “scikit learn” python package [32] to select genes. After the feature selection, we built 

classifiers using Random Forest (RF) and Support Vector Machine (SVM). We used RF as it 

has been shown to be a suitable model for exploiting non-normal and dependent data such as 
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metagenomic data [18] and it was used for prediction of T2D in [17]. On the other hand, 

SVMs are widely used in computational biology due to their high accuracy and their ability 

to deal with high-dimensional and large datasets [4]. We used the SVM (linear kernal) and 

RF (10 trees) in the “scikit learn” python package. We evaluated the predictive power of a 

model as the Area Under Curve (AUC) using a tenfold cross-validation method.

We tested different p-value cut-offs and voting thresholds used in CoSA for evaluating their 

impact on the accuracy of the classifiers built from genes derived by CoSA.

2.8 Simulated and real metagenome datasets

To test the performance of CoSA in detecting minor effects, we first generated two groups of 

metagenomic datasets using five bacterial genomes from the FAMeS dataset [27] by 

MetaSim [36], with each group representing a unique population structure; and for each 

group, we simulated 10 samples.

As a showcase for CoSA, we further applied our method to the T2D cohort. The T2D cohort 

was derived from two groups of 70-year-old European women, one group of 50 with T2D 

and the other a matched group of healthy controls (NGT group; 43 participants). We did not 

use 3 samples of T2D datasets that were outliers based on neighbor-joining clustering using 

a  dissimilarity measure for k = 9 [14]. We tested our original SA approach using the T2D 

cohort, and in this study, we focused on the comparison of CoSA with SA using the T2D 

datasets. Table 1 summarizes the simulated datasets and the T2D microbiome datasets we 

used for testing.

2.9 Availability of CoSA

We implemented CoSA in C++. Because CoSA employs k-mer frequencies from individual 

samples, it introduces a new dimension for different samples and therefore increases the 

requirement of computational resources, especially for large cohort of datasets such as the 

T2D datasets. To reduce the running time and memory usage, we implemented CoSA with 

multiple threading. Also, counts of k-mers are written to disk and then loaded back in 

batches for the detection of differential k-mers (since it is impossible to load all k-mer 

counts into the memory at the same time). The software is available for download at 

sourceforge (https://sourceforge.net/projects/concurrentsa/).

3 Results

We first report the results of CoSA using simulated datasets. We then report the comparison 

of CoSA with our original SA method using the T2D cohort. Finally we report the results of 

using CoSA for extracting and charactering disease associated sub-microbiome using the 

T2D datasets.

3.1 Evaluation of CoSA using simulated datasets

Instead of using fold change of k-mers, CoSA detects differential genomes by testing k-mer 

frequencies with Wilcoxon rank-sum test. Also, it employs k-mer frequencies concurrently 

from multiple samples for each group in comparison. In theory CoSA has the capability of 
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detecting minor but consistent changes between groups of samples. To test the performance 

of CoSA in such case, we simulated metagenomic samples using two population 

(community) structures (Table 2). The Streptococcus thermophilus LMD-9 genome is two 

times more in population one (P1) than in population two (P2) in terms of relative 

abundance. Similarly, Prochlorococcus marinus NATL2A is the differential genome that is 

two times more abundant in P2 than in P1. Since there is only a fold change of two for the 

differential genomes, it is hard to detect the minor effects through fold change of k-mers (as 

a result SA performed poorly on this simulated dataset; see below).

We evaluated CoSA with different parameters, including p-value cut-off and number of 

samples for each group in comparison. First, we compared the efficacy of read extraction 

using either 5 or 10 samples for each population. The results show that CoSA extracted more 

reads from the differential genomes by using more samples (Figure 1). For example, using a 

p-value cut-off of 0.005, CoSA extracted 593,739 (99.98%) out of 593,858 short reads 

(expected) for the S. thermophilus LMD-9 genome when 10 samples were used (see Table 

2). When using only 5 samples for each population, CoSA could only extract 471,786 

(79.44%) reads. Meanwhile, CoSA extracted very few reads from the non-differential 

genomes in both cases. Using a lower p-value cut-off of 0.001 (see Table 2 for the results) 

reduced the number of extracted reads from both differential and non-differential genomes. 

But CoSA still extracted most of the reads from the differential genomes. In conclusion, 

CoSA effectively extracted reads from differential genomes with a minor fold change 

whereas a minimal number of reads were extracted from non-differential genomes. We note 

that a very stringent p-value cut-off (e.g., 0.001) works well for this simulated case; 

however, for real microbiome datasets that have more complex population structure, a less 

stringent p-value cut-off might be needed for differential reads extraction (because of the 

sharing of k-mers among species) as shown in the application of CoSA to the T2D 

microbiomes (see below).

We further compared the assembly quality for the differential genomes with different 

number of samples, with the help of QUAST [12] and MUMer [21]. For the S. thermophilus 
LMD-9 genome in the same sample as above, we recovered 95.76% of the reference genome 

when 10 samples per population were used; but only 73.32% of the genome were assembled 

when we used 5 samples for each group (see Figure 2 for the comparison). Not only we 

assembled a higher fraction of the genome for the differential genomes, but also we obtained 

fewer but longer contigs. We produced 84 contigs with N50 of 51,061 using 10 samples and 

1,280 contigs with N50 of 1,180 using 5 samples. With more samples, CoSA is capable of 

better assembling the differential genomes. By contrast, our original SA approach relies on 

ratios of k-mers to detect differential reads and only a small fraction (19.64%) of the genome 

can be assembled using the reads it extracted.

3.2 Evaluation of CoSA using the T2D microbiomes

As shown in the above, CoSA was able to detect minor, but conserved differential genomes 

using the simulated datasets. Here we applied CoSA to the T2D microbiome cohort. As 

shown in Table 3, CoSA has resulted in a greater reduction of the sequencing data (retaining 

8.99% of the total bases) than the original SA reads (which retained 17.59% of the original 
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sequencing data). Extracted reads were then used for assembly and gene annotation. 

Although reads extraction by CoSA resulted in a smaller collection of microbial genes than 

the SA approach (since CoSA retained much fewer reads than SA), genes from CoSA tend 

to be more consistently differential across the samples between the groups. We pooled the 

genes derived from CoSA (1,008,068 genes) and SA (1,648,016 genes), resulting a 

collection of 2,656,084 genes, and futher quantified the abundances of the genes in this 

collection. The gene abundance profile was then used for WRS test between the patient and 

the healthy control groups, with correcting for multiple testing using false discovery rate (q-

value) computed by the tail area-based method of the R fdrtool package [41]. Table 3 

summaries the test results, indicating that CoSA produced more significantly differential 

genes than SA. We note that none of the genes derived by SA had q-value less than 0.05. 

Sequences and annotations of the 357,591 genes assembled by CoSA (with q-value ≤ 0.05) 

are available for download at the CoSA sourceforge project page.

3.3 Prediction of T2D using microbial genes

It has been shown that metagenomes can be used for classification and prediction of diabetes 

status [17]. Karlssons and colleagues trained a Random Forest (RF) model based on a 

training set of the NGT and T2D subjects using the profiles of species and MGCs 

(megenomic gene clusters), and evaluated its performance using a tenfold cross-validation 

approach and calculated the predictive power as the area under the ROC curve (AUC). Their 

results showed that T2D was identified more accurately with MGCs (highest AUC = 0.83) 

than with microbial species (highest AUC = 0.71), suggesting that the functional 

composition of the microbiota determined by MGCs correlates better with diabetes than the 

species composition. We applied CoSA to T2D datasets (including datasets from patients 

and healthy individuals) using different settings of parameters and compared the 

performance of classifiers built from the assembled microbial genes (from both T2D patients 

and healthy-controls). Table 4 summarizes the results. We used two different classify 

algorithms, one is SVM with linear kernel and the other is RF whose forest includes 10 

trees.

Using p-value of 0.05 and voting threshold of 0.3 (called Normal in Table 4) for reads 

extraction in CoSA followed by assembly and abundance quantification, we derived 296,979 

genes. Our collection of genes resulted in a SVM that achieved a prediction accuracy of 0.94 

(AUC), a significant improvement in the prediction accuracy as compared to the AUC 

reported in [17] (AUC=0.83).

We also tested CoSA using more stringent parameters for reads extraction (p-value = 0.001 

and voting threshold = 0.5). The reads extraction only resulted in a small reads file with 

19.13 Mbp in total. Not surprisingly we were only able to assemble and predict 249 genes 

from this small collection of sequencing reads. Interestingly, a RF model (without using 

feature selection) built from this small set of microbial genes achieved an AUC of 0.79. This 

accuracy is worse than our best model (AUC=0.94), and Karlsson’s RF model based on 

MGC (AUC=0.83), but it is much better than Karlsson’s RF model based on bacterial 

species (AUC=0.71). The advantage of using this setting (we called it Strict) is that only a 

small number of reads were extracted and only a small number of genes need to be 
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quantified and used for building classifiers, and it still achieves reasonable prediction 

accuracy.

On the other hand, a much larger collection of microbial genes may make feature selection a 

more serious problem for building predictors, and therefore compromise the accuracy of 

predictors trained using these microbial genes. For example, we applied CoSA using a 

looser setting (p-value=0.2 and voting-threshold= 0.8; called Loose in Table 4), which 

resulted in the extraction of many more reads. Not surprisingly, many more genes can be 

assembled. However, more genes to start with doesn’t necessarily result in a better classifier 

for prediction. The best classier built using this larger collection of genes achieved an AUC 

of only 0.89. Similarly, using our original subtractive assembly approach (SA), an even 

greater collection of microbial genes can be assembled. However, the best predictor built 

using this larger collection of genes only achieved an AUC of 0.85.

Sequences and annotations (by myRAST [30] and hmmscan [8]) of the 207 differential 

genes that resulted in the highest prediction accuracy (AUC=0.94) are available for 

download at the CoSA sourceforge project website. Some of the functions and associated 

pathways are consistent with what we observed based on SA [42], including murein 

hydrolases (protein ID: k87 534 1 134 +) and multidrug resistance efflux pumps (protein ID: 

k87 34893 1 275 −).

4 Discussion

We developed a pipeline based on CoSA, which efficiently extracts reads that are likely 

sequenced from differential genes across samples for the identification of conserved 

microbial marker genes. Considering the heterogeneity nature of the microbiomes across 

human subjects, it is important to have a method that can detect disease-associated features 

that are consistent across samples. Tests of our approach using both simulated and real 

microbiomes show the importance of using multiple samples for such purposes.

The time and space complexity of CoSA is related to the number of datasets and the size of 

each dataset. The running time and memory cost is small for small datasets such as the 

simulated microbiome datasets. However, the computational time and memory usage can be 

substantial for large cohorts of datasets such as the T2D datasets. The total running time of 

CoSA for the simulated datasets was 44 mins (38 mins for k-mer counting and 6 mins for 

the detection of differential k-mers and therefore differential reads), and the peak memory 

usage was 2G. However, for the large T2D cohort, the running time for k-mer counting was 

6.9 hours and the next step of detecting differential k-mers and reads took 27.5 hours. The 

peak memory usage for the T2D datasets was also substantial, which was 229Gb. 

Considering the increasing capacity of sequencing technologies, we will further investigate 

other strategies to reduce the memory usage and running time of CoSA.

In the current implemention of CoSA, WRS test is applied to k-mer counts normalized by 

the total k-mers (which is equivalent to the total reads) in each sample, for the detection of 

k-mers with differential abundances across healthy-controls and patients. This choice is 

mostly driven by the practical conveniency. Our results showed that this simple strategy of 
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normalization worked well in practice. However, it has been shown that such a 

normalization approach may have limitations for applications in detecting metagenome-wise 

marker-gene surveys [31]. We will explore the possibility of using other normalization 

techniques such as the cumulative-sum scaling approach in CoSA.
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Fig. 1. 
CoSA effectively extracted reads from differential genomes. The upper and lower subfigures 

refer to read extraction for one of the samples of population 1 and 2, respectively. The x-axis 

shows the 5 different species; fac: Ferroplasma acidarmanus fer1, lga: Lactobacillus gasseri 
ATCC 33323, ppe: Pediococcus pentosaceus ATCC 25745, pmn: Prochlorococcus marinus 
NATL2A, ste: Streptococcus thermophilus LMD-9. Bars of different colours (purple, yellow, 

cyan) indicate separate runs of CoSA using different parameters or different number of 

samples while the grey bars indicate simulated reads for each genome. The y-axis shows the 

number of reads extracted (or expected shown in gray bars).
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Fig. 2. 
Evaluation of the assembly quality of the differential genomes. The results indicate that 

CoSA outperforms SA for detecting minor but consistent effect when multiple samples are 

used, and that using more samples by CoSA results in better assembly of the differential 

genomes (CoSA-10, 10 samples were used; CoSA-5, 5 samples were used).
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Table 1

Summary of the simulated and T2D datasets.

Simulated T2D and healthy

Number of datasets 20 93

Total bps 2.29Gbp 225.30Gbp

Number of k-mers 9,112,554 4,121,225,700
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Table 2

Evaluation of CoSA using simulated datasets: community structure and reads extraction.

Population Reads extracted/simulated

P1a P2 P1 P2

Ferroplasma acidarmanus fer1 1b 1 0/38,568 c 19/38,569

Lactobacillus gasseri ATCC 33323 2 2 122/75,528 77/76,152

Pediococcus pentosaceus ATCC 25745 4 4 178/146,787 25/147,199

Prochlorococcus marinus NATL2A 8 16 8/295,230 587,980/588,579

Streptococcus thermophilus LMD-9 16 8 590,820/593,858 0/297,227

a
simulated population 1;

b
relative abundance of the F. acidarmanus genome in population 1;

c
0 reads were extracted out of 38,568 reads from the F. acidarmanus genome in P1.
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Table 3

Summary of subtractive assembly results of the T2D datasets.

CoSA* SA

Total base pair in extracted reads 11.59 Gbp (8.99%) 22.68 Gbp (17.59%)

# of predicted genes a 1,008,068 1,648,016

# of significant genes (q-value ≤ 0.07) 563,743 285,666

# of significant genes (q-value ≤ 0.05) 357,591 0

*
p-value=0.2 and voting threshold=0.8 were used for reads extraction;

a
only counted genes assembled from extracted reads from patients (but not healthy individuals).
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