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Abstract

Cone beam computed tomography (CBCT) has found use in mammography for imaging the entire 

breast with sufficient spatial resolution at a radiation dose within the range of that of conventional 

mammography. Recently, enhancement of lesion tissue through the use of contrast agents has been 

proposed for cone beam CT. This study investigates whether the use of such contrast agents 

improves the ability of texture features to differentiate lesion texture from healthy tissue on CBCT 

in an automated manner. For this purpose, 9 lesions were annotated by an experienced radiologist 

on both regular and contrast-enhanced CBCT images using two-dimensional (2D) square ROIs. 

These lesions were then segmented, and each pixel within the lesion ROI was assigned a label – 

lesion or non-lesion, based on the segmentation mask. On both sets of CBCT images, four three-

dimensional (3D) Minkowski Functionals were used to characterize the local topology at each 

pixel. The resulting feature vectors were then used in a machine learning task involving support 

vector regression with a linear kernel (SVRlin) to classify each pixel as belonging to the lesion or 

non-lesion region of the ROI. Classification performance was assessed using the area under the 

receiver-operating characteristic (ROC) curve (AUC). Minkowski Functionals derived from 

contrast-enhanced CBCT images were found to exhibit significantly better performance at 

distinguishing between lesion and non-lesion areas within the ROI when compared to those 

extracted from CBCT images without contrast enhancement (p < 0.05). Thus, contrast 

enhancement in CBCT can improve the ability of texture features to distinguish lesions from 

surrounding healthy tissue.
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1. MOTIVATION/PURPOSE

Breast cancer is the most frequently diagnosed cancer among women and the second leading 

cause of cancer-related mortality among women [1]. In this research context, cone-beam CT 

(CBCT) has found use in mammography owing to its ability to extract three-dimensional 

(3D) image data, thus resulting in improved visualization of structures and while eliminating 

the hard compression of breasts [2]. This imaging modality also provides better coverage of 

the inferior, posterior, medial and lateral portions of the breast [3]. Finally, we note that the 

average radiation dose from cone-beam breast CT is generally within the range of that from 

conventional mammography [3].

This study was conducted to investigate the use of texture features in distinguishing between 

lesion and surrounding healthy tissue on CBCT images in the presence and absence of 

contrast enhancement. For this purpose, texture features derived from Minkowski 

Functionals were used to characterize both lesion and non-lesion areas by capturing local 

topological properties. Such Minkowski Functionals have been previously used for pattern 

recognition problems in medical imaging, such as classifying between healthy and 

pathological lung tissue on CT [4], estimating the bone strength through analysis of 

trabecular micro-architecture [5], classifying benign and malignant lesions on dynamic 

breast MRI [6], characterizing healthy and osteoarthritic patellar cartilage on phase contrast 

x-ray computed tomography [7], etc.

The goal of this work is evaluate the use of such topological descriptors in characterizing 

gray-level patterns corresponding to lesion and non-lesion areas in the presence and absence 

of contrast enhancement on CBCT. For this purpose, such features are extracted on a pixel-

wise basis within regions of interest (ROI) placed on regular and contrast-enhanced CBCT 

images. Such features are subsequently used in a machine learning task that attempts to 

predict the label pixels within the ROI, as discussed in the following sections. This work is 

embedded in our group’s endeavor to expedite ‘big data’ analysis in biomedical imaging by 

means of advanced pattern recognition and machine learning methods for computational 

radiology, e.g. [8–25].

2. DATA

The CBCT for breast imaging system employed a horizontally oriented gantry beneath a 

subject support table, which incorporated an x-ray tube with a 0.3 mm focal spot at one end 

and a high-resolution, 40×30 cm real-time flat panel detector (FPD) (Rad-70, PaxScan 

4030CB, respectively, Varian Medical Systems, Salt Lake City, Utah) at the opposite end. 

The gantry rotated 360° around the subject’s breast, acquiring 300 pulsed projection images 

at ~8 ms each. The system was designed and built in compliance with the national and 

international safety standards for medical equipment.

After acquisition of pre-contrast CBCT data, a bolus injection of 1ml/kg body weight of low 

osmolar, nonionic, 300–350 mgI/ml iodinated contrast agent was administered for 

acquisition of contrast-enhanced CBCT images. Specialized 3D visualization software 
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constructed a 3D model of the breast from the acquired images taken during the rotational x-

ray sequence.

In the manner described above, pre-contrast and post-contrast CBCT exams from 9 female 

patients were analyzed as part of this IRB-approved study. Two of the patients had benign 

lesions while the rest had malignant lesions; the primary lesion in each study was annotated 

with volumes of interest (VOI) by an experienced radiologist. Following annotation, the 

central slice of each lesion was chosen for further analysis. For the extraction of local 

volumetric features at every pixel on the central slice, the 4 slices above and below the 

central slice were also used. In 7 of the VOIs, this central slice consisted of an 83×83 square 

ROI that encapsulated the lesion; the 2 remaining cases had ROI of 103×103 pixels 

encapsulating the lesion. The voxel resolution of the image data analyzed was 

0.27×0.27×0.27mm3.

3. METHODS

3.1 Feature analysis

Minkowski Functionals (MFs) are used to characterize morphological properties of binary 

images i.e. shape (geometry) and connectivity (topology) [26]. Four such features i.e. 

volume, surface, mean breadth and Euler characteristic can be calculated from binary 

volumes as follows –

where “nc“ is the total number of white voxels, “nf“ is the total number of faces, “ne“ is the 

total number of edges and “nv“ is the number of vertices. It has been shown in literature that 

morphological properties of objects in an image can be fully specified in terms of 

Minkowski Functionals [927]. Such features can be extracted from gray-level images by 

binarizing them with several thresholds and computing Minkowski Functionals on the 

resulting black & white images. In this work, the gray level distributions in each VOI was 

first quantized and then used as thresholds to calculate the 3D MF features. The results are 

shown in Figure 1.

In this study, such topological texture features were extracted locally through binarization of 

the 9×9×9 pixel3 neighborhood surrounding each pixel on the central slice of the lesion with 
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5 thresholds. This yields four 5-D feature vectors for each voxel, one vector per Minkowski 

Functional.

3.2 Classification

Once feature vectors were extracted for every pixel on the 9 lesion slices from both pre-

contrast and contrast-enhanced images, the goal was then to use them in a machine learning 

task to predict their label as lesion or non-lesion in each case. Support vector regression [28] 

with a linear kernel (SVRlin) was used for the machine learning task. In order to 

characterize unknown VOIs, models are created based on known labeled data in the training 

set. The goal is to optimize classifier parameters so that they can model the best hyperplane 

and margins between the lesion and non-lesion classes.

In order to generalize the classification performance, the classifier was optimized using a 

training set of labeld VOIs and the accuracy was calculated on an independent test set. For 

each iteration, the feature vectors were divided into a 70% training set and a 30% test set. To 

ensure that feature vectors from the same patient did not serve in both training and test sets 

simultaneously, the 70–30 split was applied to the patients that the feature vectors were 

extracted from.

The training phase employed a sub-sampling cross-validation strategy where the cost 

parameter of the classifier was optimized using the training set. Then, during the testing 

phase, the trained classifier was used to evaluate the label of the feature vectors in the test 

set. An ROC curve was generated and used to compute the area under the curve (AUC). This 

process was repeated 50 times resulting in an AUC distribution for each feature (Minkowski 

Functional). A Wilcoxon signed rank was used to compare the AUC distributions of 

different features extracted from pre-contrast and contrast-enhanced images.

The SVRlin classifier was taken from LIBSVM library and implemented in MATLAB 

R2008b. The statistical analysis was also implemented using MATLAB R2008b (The 

MathWorks, Natick, MA).

4. RESULTS

Figure 2 shows the classification performance of different Minkowski Functionals at 

distinguishing between lesion and non-lesion regions within ROIs annotated on pre-contrast 

and contrast-enhanced CBCT images. As seen, here, the best classification results were 

obtained by using Minkowski Functionals that were extracted from contrast-enhanced 

CBCT images. In fact, the classification performance with support vector regression when 

Minkowski Functionals were extracted from contrast-enhanced CBCT images was 

significantly better than when they were extracted from non-enhanced CBCT images (p < 
0.05). The highest accuracy was found for the Minkowski Functional Euler characteristic for 

both contrast-enhanced and pre-contrast CBCT images.
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5. DISCUSSION

Cone beam computed tomography (CBCT) has been recently investigated for use in 

mammography for its ability to acquire volumetric image data of the entire breast with 

sufficient spatial resolution at a radiation dose comparable to that of conventional 

mammography. The primary goal of this study was to investigate whether contrast injection 

on CBCT images could increase lesion detection accuracy. To address this problem, this 

study investigated and quantified the ability of topological texture features derived from 

Minkowski Functionals to distinguish between lesion and healthy tissue on CBCT images in 

the presences and absence of contrast enhancement.

As observed in this work, the ability of such features to accurately identify pixels as 

belonging to lesion or non-lesion (healthy tissue) regions is significantly improved in the 

presence of contrast enhancement. This is likely due to the lesion tissue enhancement 

provided by such contrast, which allows imaging markers such as texture features to capture 

lesion characteristics and distinguish them from non-enhancing healthy tissue. Such features 

have significant potential to contribute to automatic lesion detection in contrast-enhanced 

CBCT exams. The improvement in classification performance noted with texture features in 

this study could also be attributed to higher contrast resolution and the reduced tissue 

overlap in CBCT imaging.

The results presented in this work suggest that characterizing lesion morphology on contrast 

enhanced CBCT breast images using topological texture features can significantly improve 

the performance in determining the potential lesion areas. These results have significant 

clinical implications in the sense that such a topological characterization of the contrast-

enhanced lesion pattern can contribute to automatic lesion detection.

We acknowledge that the inclusion of only nine datasets was a limiting factor of this study. 

A larger collection of datasets will be required in future studies for validating the clinical 

applicability of our approach.

6. CONCLUSION

This study investigated the ability of topological texture features derived from Minkowski 

Functionals to differentiate between lesion and healthy tissue on CBCT images in the 

presence and absence of contrast enhancement. Our results show that such imaging markers 

are best able to distinguish between lesion and healthy tissue regions when contrast-

enhanced CBCT images are used.
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Figure 1. 
The central slice of an example benign and a malignant lesion; the original contrast-

enhanced CBCT images are shown on the left, the binarized images are shown on the right.
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Figure 2. 
Classification performance of Minkowski Functionals extracted from pre-contrast (blue) and 

contrast-enhanced (red) CBCT images. For each distribution, the central mark corresponds 

with the median and the edges are the 25th and 75th percentile. As seen here, Minkowski 

Functionals extracted from contrast-enhanced CBCT images are significantly better at 

distinguishing between lesion and non-lesion regions (p < 0.05).
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