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Abstract

The analysis of large ensembles of time series is a fundamental challenge in different domains of 

biomedical image processing applications, specifically in the area of functional MRI data 

processing. An important aspect of such analysis is the ability to reconstruct community network 

structures based on interactive behavior between different nodes of the network which are captured 

in such time series. In this study, we start with a previously proposed novel approach that applies 

the linear Granger Causality concept to very high-dimensional time series. This approach is based 

on integrating dimensionality reduction into a multivariate time series model. If residuals of 

dimensionality reduced models can be transformed back into the original space, prediction errors 

in the high–dimensional space may be computed, and a large scale Granger Causality Index 

(lsGCI) is properly defined. The primary goal of this study was then to present an approach for 

recovering network structure from such lsGCI interactions through the application of pair-wise 

clustering. We specifically focus on a clustering approach based on topographic mapping of 

proximity data (TMP) for this purpose. We demonstrate our approach with a simulated network 

composed of five pair-wise different internal networks with varying strengths of community 

structure (based on the number of inter-network vertices). Our results suggest that such pair-wise 

clustering with TMP is capable of reconstructing the structure of the original network from lsGCI 

matrices that record the interactions between different nodes of the network when there is 

sufficient disparity between the intra- and inter-network vertices.
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1. MOTIVATION/PURPOSE

To analyze large ensembles of time series is a fundamental challenge in many domains of 

biomedical image processing applications, ranging from microarray gene expression 

analysis to functional MRI data processing. A basic problem in quantifying directed 

information transfer is the consideration of effective connectivity in very high-dimensional 

systems. Currently, high-dimensional systems are transformed into a lower dimensional 

system, e.g. by Principal or Independent Component Analysis (PCA, ICA), and the 

connectivity structure of derived components is studied. Here the drawback is that a revealed 

interaction cannot be readily transferred back into the original high-dimensional space. 

Thus, directed interactions between the original network nodes are not revealed, which 

limits the interpretation of identified interaction patterns. Granger Causality (GC) is a 

suitable concept for assessing connectivity structures between time series. One popular 

approach uses principles of prediction [1], whereby application of a straightforward 

generalization to general time series models is enabled, providing an appropriate definition 

of prediction errors. Instead of analyzing interactions between derived components, a large 

scale GC (lsGC) approach preserves the interpretability of the original network nodes. The 

idea of that approach is the integration of a dimension reduction into a multivariate time 

series model, which allows computation of prediction errors in the original high-dimensional 

space.

An important aspect of such analysis is the need to recover the original community network 

structures based on interactive behavior between different nodes of the network as captured 

by lsGCI. Given an lsGCI matrix that describes interactions between different nodes of a 

network, a pair-wise clustering approach could identify macro-networks of internal nodes 

thereby reconstructing the original community network structure. Such an approach could be 

particularly useful for biomedical image processing applications, specifically in processing 

functional MRI data, where such analysis with lsGCI could reveal macro-networks within 

the brain. In this work, we pursue a pair-wise clustering approach based on the topographic 

mapping of proximity (TMP) data algorithm for purposes of recovering the community 

structure of a simulated network with five pair-wise different internal networks, as shown in 

Figure 1 and discussed in the following sections.

2. DATA

To compare the lsGCI with the conventional Granger Causality Index (GCI), we considered 

a time series dimensionality that can be approached by both methods. We realized 50–

dimensional stationary multivariate autoregressive (MVAR) processes of order two and 

various time series lengths between 125 and 1000. Thereby, the entire network structure was 

given by five pair-wise different internal networks N1, …, N5 with ten nodes each (Fig. 1). 

The corresponding autoregressive (AR) parameters were chosen according to the AR-model 

of Baccala et al. [2], Fig. 4, and were scaled by factor 0.5 to ensure the stationarity of the 

entire process. The internal networks, or communities, Nk incorporate 20 directed vertices 

by setting the associated first order AR-parameter to 0.2. The in- and out-degree of each 

node equals two. Finally, there is a variable number V of randomly generated directed 

vertices from nodes of N1 to nodes of N2, from nodes of N2 to nodes of N3, etc. (see Fig. 1). 
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Exemplarily, the corresponding adjacency matrices are shown in Fig. 2 for V = 5 and V = 

20. All noise variables of the MVAR processes were i.i.d. N(0,1).

3. METHODS

A D-dimensional, pth order MVAR process is given by , n 
= 1, …, N, with AR-parameters Ar ∈ ℝD×D and a zero mean, uncorrelated noise process E. 

In the case of high-dimensional data, a simple AR estimation is not possible as 

computational capacity rapidly meets its limits. Thus, in a first stage PCA serves as a 

preprocessing step for dimension reduction: X = WY, with Y = (Y(1), …, Y(N)), the 

principal component (PC) matrix X ∈ ℝD×N, and the mixing matrix W ∈ ℝD×D. Let XC and 

WC be the reduced PC and mixing matrices consisting of the first C rows of X and W, 

respectively. XC(n) is now MVAR–modeled, and the modeled time series X̂C(n) is 

afterwards transformed back into the original HD space via left multiplication of the pseudo 

inverse WC+
 of WC. The residuals of the whole model are then gained by Ê = WC+

X̂C − Y. 

For GCI computations, the processing of the reduced data Yd−, where the dth row of Y is 

deleted, can be performed in two different ways:

a. Multi PCA (mPCA): for every Yd− a separate PCA is performed, i.e. 

, where  and  are calculated anew by PCA for each d. 

After reducing  to dimension C and estimating the corresponding AR 

model, the modeled series  can be calculated.

b. Single PCA (sPCA): only one PCA is applied before eliminating rows of Y, and 

modifications of the mixing matrix W are used for the dimension reduction of 

Yd−, i.e. W is reduced to  by eliminating the last D − C rows 

and the dth column. Now  serves for the AR parameter 

estimation resulting in the modeled series .

The residuals amount to . The lsGCI from d1 to d2 is then 

defined by, , where Σ̂d2 and  are the d2-th diagonal 

entries of the covariance matrices Ê and Êd1−.

A detailed comparison of both approaches revealed that sPCA outperforms mPCA not only 

in matters of computational effort but also of correct network detection [3]. Therefore the 

following analyses were performed with the sPCA approach.

To further evaluate the interpretability of the original network structure from lsGCI results 

obtained previously, we investigated the use of a pair-wise clustering approach and evaluated 

its ability to accurately group internal network nodes of N1 − N5. Specifically, we used a soft 

topographic vector quantization algorithm which supported the topographic mapping of 

proximity (TMP) data, which can be seen as an extension of Kohonen’s self-organizing map 

to arbitrary distance measures. The TMP algorithm processed the data based on a 

dissimilarity matrix and the topographic neighborhood by a matrix of transition probabilities 
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[4]. A detailed mathematical derivation of this algorithm and its cost function can be found 

in [5–6].

In this work, the dissimilarity matrix of distance measures was constructed from the lsGCI 

matrix that documented directed interactions between different nodes of the community 

network. The lsGCI matrix was then normalized to the interval [0 1] where 0 indicates no 

interaction between nodes while 1 indicated maximum adjacency. This was accomplished 

with a piece-wise continuous function f defined as

for any two nodes i and j in the network. The lsGCI cut-off value that indicates adjacency 

between nodes is represented by θ here. Since θ cannot be determined without knowing the 

ground truth of the network, it was optimized in this work using the adjusted rand index [7–

8] for maximal clustering quality. In this work, we explore using the 90th, 95th and 100th 

percentile of the distribution of lsGCI values. The normalized lsGCI matrix was then 

converted to a dissimilarity matrix M as

where τ was an empirical constant. We note here that any monotonically declining transform 

could be used here, and the choice of an exponential function was empirical. In this work, 

we explore the effect of τ = {1, 5, 10} on the adjusted rand index achieved with the 

clustering algorithm. Finally the dissimilarity was symmetrized by averaging it with its 

transpose. Diagonal elements of the dissimilarity matrix were set to zero; while self-

interaction in the nodes was not considered in our simulated network, this step was required 

for the clustering algorithm.

4. RESULTS

Fig. 3 shows the clustering quality achieved with different number of retained sPCA 

components, different time series lengths i.e. N = {1000, 500, 300} and inter-community 

vertices V = 1 when different values were specified for θ. As seen here, the best clustering 

quality was observed when θ was specified as the maximum value of the lsGCI distribution 

(100th percentile). This was used for further experiments.

Fig. 4 shows the clustering quality achieved with different number of retained sPCA 

components, different time series lengths i.e. N = {1000, 500, 300}, and inter-community 

vertices V = 1 when different values are specified for τ. As seen here, the best clustering 

quality was observed for τ = 5, which was used for further experiments.

Fig. 5 shows the clustering quality achieved with different number of retained sPCA 

components and time series lengths N = {1000, 500, 300} for different numbers of inter-

community vertices, i.e. V = {1, 5, 20}. Clustering quality was highest for N = 1000 samples 
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when more than 10 sPCA components were retained and significant disparity was 

maintained between the number of intra- and inter-community vertices (top sub-plot of Fig. 

5). As the number of inter-community vertices approached the number of intra-community 

vertices, clustering quality significantly declined (bottom sub-plot of Fig. 5). However, 

regardless of how many inter-community vertices were used, clustering quality was higher 

for larger N.

5. DISCUSSION

We have previously shown PCA to be an appropriate choice for extending linear GCI to 

high-dimensional time series [3]. PCA reduces high-dimensional time series into lower-

dimensional time series of principal components. Hereby, time series are mapped into a 

lower dimensional space and are subsequently modeled by an AR model. The thereby 

emerging residuals are transformed back into the original high-dimensional space, which 

offers a better interpretability of results and enables analysis of interactions between 

components of the original time series vs. between derived components (principal 

components). Alternative dimensionality reductions could also be considered if a back-

transformation of the model residual from a temporary lower-dimensional space to the 

original high-dimensional space is allowed.

It was previously shown in [3] that an embedded dimension reduction appears to degrade the 

quality of the network identification when enough time series samples are available, 

although classical GCI was also found to yield comparable performance. For shorter time 

series an embedded PCA seems to result in an improvement, most likely due to smaller AR 

parameter matrices and reduced estimator variances. Both sPCA and mPCA approaches 

were investigated in [3]; sPCA was found to outperform mPCA in terms of computational 

effort required as well as correct network detection.

In the current study, we investigated the ability of a TMP-based clustering algorithm to 

cluster intra-community nodes and reconstruct the community network structure from lsGCI 

matrices. As seen in Fig. 5, the best results in terms of clustering quality were achieved 

when distinct differences in inter-community and intra-community vertices were 

incorporated in the network community structure. Thus, when the number of such intra- and 

inter-community vertices were similar, it was not possible to capture the original network 

structure from lsGCI matrices alone. However, regardless of how many inter-community 

vertices were defined, clustering quality deteriorated as the time series length was shortened. 

One possible reason for this deterioration could be tied to information lost during the 

process of converting the lsGCI matrices into dissimilarity matrices. Specifically, 

information related to the direction of interactions between different nodes is lost when the 

lsGCI is symmetrized. Such information is thus ignored by the pair-wise clustering 

algorithm. This will need to be studied in further detail in future studies. We are also 

interested in evaluating other pair-wise clustering algorithms that have been previously 

proposed [9–10] for purposes of recovering community network structure from lsGCI 

matrices. Finally, we hope to extend this approach for application to processing fMRI time 

series data to explore and quantify network connectivity and structure, which have been the 

topic of interest in several other studies [11–14].
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6. CONCLUSION

This study presents a novel method to exploring effective connectivity by a Granger 

Causality approach with embedded dimension reduction. The applicability of our method to 

accurately identifying an underlying network structure has been demonstrated by 

quantitative analysis. We also present an application of clustering with the TMP algorithm 

for reconstructing network structure from lsGCI matrices. Future work will focus on 

applying our approach to various biomedical image processing tasks, such as microarray 

gene expression analysis and functional MRI data processing.

Acknowledgments

This study was supported by the grant 01GQ1202 of the Federal Ministry of Education and Research (Germany), as 
well as by the NIH grant R01-DA-034977 (USA). We would also like to thank Dr. Martina Hasenjaeger at 
University of Bielefeld, Germany for providing the implementation of the TMP clustering algorithm. This work was 
performed as a practice quality improvement (PQI) project for maintenance of certificate (MOC) of Axel 
Wismüller’s American Board of Radiology (ABR) certification. The content is solely the responsibility of the 
authors and does not necessarily represent the official views of the National Institute of Health.

References

1. Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. 
Econometrica. 1969; 37(3):424–438.

2. Baccala LA, Sameshima K. Partial directed coherence: a new concept in neural structure 
determination. Biological Cybernetics. 2001; 84(6):463–474. [PubMed: 11417058] 

3. Pester B, Leistritz L, Witte H, Wismueller A. Exploring Effective Connectivity by a Granger 
Causality Approach with Embedded Dimension Reduction. Biomedizinische Technik/Biomedical 
Engineering. Sep 7.2013 

4. Wismüller A, Lange O, Auer D, Leinsinger G. Model-Free Functional MRI Analysis for Detecting 
Low-Frequency Functional Connectivity in the Human Brain. Proceedings of SPIE. 2010; 
7624:1M1–1M6.

5. Graepel T, Obermayer K. A Stochastic Self-Organizing Map for Proximity Data. Neural 
Computation. 1999; 11:139–155. [PubMed: 9950727] 

6. Saalbach A, Twellmann T, Nattkemper TW, Wismüller A, Ontrup J, Ritter H. A Hyperbolic 
Topographic Mapping for Proximity Data. Artificial Intelligence and Applications. 2005; 2005:106–
111.

7. Rand WM. Objective criteria for the evaluation of clustering methods. Journal of the American 
Statistical Association. 1971; 66(336):846–850.

8. Hubert L, Arabie P. Comparing partitions. Journal of Classification. 1985; 2(1):193–218.

9. Hofmann, T., Buhmann, J. Multidimensional scaling and data clustering. In: Tesauro, G.Touretzky, 
D., Leen, T., editors. Advances in Neural Information Processing Systems 7. Cambridge, MA: MIT 
Press; 1995. p. 459-466.

10. Kohonen T, Somervuo P. How to make large self-organizing maps for nonvectorial data. Neural 
Networks. 2002; 15:945–952. [PubMed: 12416685] 

11. Wismüller A, Meyer-Bäse A, Lange O, Auer D, Reiser MF, Sumners DW. Model-free functional 
MRI analysis based on unsupervised clustering. Journal of Biomedical Informatics. 2004; 37(1):
10–18. [PubMed: 15016382] 

12. Meyer-Bäse A, Lange O, Wismüller A, Ritter H. Model-free functional MRI analysis using 
topographic independent component analysis. International journal of neural systems. 2004; 14(4):
217–228. [PubMed: 15372699] 

13. Meyer-Bäse A, Saalbach A, Lange O, Wismüller A. Unsupervised clustering of fMRI and MRI 
time series. Biomedical Signal Processing and Control. 2007; 2(4):295–310.

Wismüller et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Wismüller A, Dersch DR, Lipinski B, Hahn K, Auer D. Hierarchical Clustering of Functional MRI 
Time-Series by Deterministic Annealing. Medical Data Analysis in Lecture Notes in Computer 
Science. 2000; 1933:49–54.

Wismüller et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Network structure with five internal networks (communities) and a variable number V of 

inter-community-vertices.
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Figure 2. 
Adjacency matrices of networks with different numbers of inter-community vertices. Black 

squares indicate a directed vertex between two nodes. The community structure is stronger 

for V = 5 and comparably weak for V = 20.
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Figure 3. 
Adjusted rand index representation of clustering quality with TMP for different values of θ, 

i.e. 100th percentile (top), 95th percentile (middle) and 90th percentile (bottom) of lsGCIs. In 

each sub-plot, curves are shown for N = 1000 (-), N = 500 (--) and N = 300(···).
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Figure 4. 
Adjusted rand index representation of clustering quality with TMP for τ = 10 (top), 

5(middle) and 1 (bottom). In each sub-plot, curves are shown for N = 1000 (-), N = 500 (--) 

and N = 300(···).
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Figure 5. 
Adjusted rand index representation of clustering quality with TMP when different numbers 

of vertices are specified between inter-community nodes N1 − N5 (V = 1 (top), V = 5 

(middle) and V = 20 (bottom)). In each sub-plot, curves are shown for N = 1000 (-), N = 500 

(--) and N = 300 (···).
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