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Abstract

We investigate the applicability of a computational framework, called mutual connectivity analysis 

(MCA), for directed functional connectivity analysis in both synthetic and resting-state functional 

MRI data. This framework comprises of first evaluating non-linear cross-predictability between 

every pair of time series prior to recovering the underlying network structure using community 

detection algorithms. We obtain the non-linear cross-prediction score between time series using 

Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores 

characterize the underlying functionally connected networks within the resting brain, which can be 

extracted using non-metric clustering approaches, such as the Louvain method. We first test our 

approach on synthetic models with known directional influence and network structure. Our 

method is able to capture the directional relationships between time series (with an area under the 

ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 

± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-

state fMRI data, where results are compared to the motor cortex network recovered from a motor 

stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). 

We conclude that our MCA approach is effective in analyzing non-linear directed functional 

connectivity and in revealing underlying functional network structure in complex systems.
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1. INTRODUCTION

Over the past few decades, there has been significant growth in studies aimed at exploring 

connectivity in the human brain. To this end, various methods for analyzing functional MRI 

(fMRI) data, such as independent component analysis (ICA) [1] or seed-based functional 

connectivity analysis [2] have been developed. These approaches have certain drawbacks. 

For instance, seed-based approaches obtain a measure of connectivity for a few manually 

selected regions using linear cross-correlation analysis, which fails to capture non-linear 

information transfer between time series. ICA based methods do not obtain a directed 

connectivity score between every pair of voxel time courses in the brain. In this work, we 

use non-linear cross-prediction from one time series to another to obtain an influence score 

between them resulting in a non-linear, directed functional connectivity measure. These 

resulting scores are then used to recover the underlying network structure using non-metric 

clustering approaches. Previously, we investigated the use of local models to serve as time 

series predictors within this framework, discussed the conceptual relations of our approach 

to Convergent Cross-Mapping (CCM) [3], and demonstrated the applicability to fMRI data 

analysis [4]. Here, we demonstrate that this approach can be generalized to other non-linear 

predictors.

We use Generalized Radial Basis Functions (GRBF) neural networks as non-linear 

predictors used to establish the degree of dynamic coupling between two time series based 

on their cross-predictability. Subsequently, we use the information obtained based on the 

cross-predictability of the time series to recover the underlying network structure using non-

metric clustering approaches, such as the Louvain method [5].

To quantitatively evaluate the performance of our approach, we test the ability of our method 

to quantify the influence a time series has on other time series and successfully recover 

network structure in a synthetic system model, where the ground truth is known by 

construction of the system. To evaluate the quality of recovered influence scores we 

calculate the Area Under the Receiver Operator Characteristic curve (AUC) against the 

known ground truth of the synthetic model. Agreement between the recovered network 

structure and the known network structure of the model is indicated by the Rand Index [6]. 

Here, we investigate the effect of training sequence time series length on the quality of 

network recovery.

We perform our analysis on resting-state fMRI data, which results in the recovery of a 

number of networks. We compare the recoverability of the motor-cortex network using 

resting-state data with the network recovered as a result of stimulating the motor cortex with 

a finger-tapping motor task stimulation experiment. The agreement between the two 

networks is quantified using the Dice Coefficient [7]. This work is embedded in our group’s 

endeavor to expedite ‘big data’ analysis in biomedical imaging by means of advanced 

machine learning and pattern recognition methods for computational radiology and 

radiomics, e.g. [8–32].
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2. DATA

2.1 Synthetic model

We generated 50 synthetic models with 50 time series, each having 2000 temporal samples 

to investigate the efficacy of MCA to reliably estimate nonlinear influence scores and 

subsequently recover the modular structure of the network. The network was designed to 

have 5 distinct modules with a total number of 50 nodes as seen in Figure 1 with few 

interactions between modules.

Each module had 10 nodes with an intra-module node degree drawn from a normal 

distribution with mean 3 and standard deviation 1.2. The inter-module node degree was 

obtained from a half Gaussian distribution with mean 0 and standard deviation 1.2. The low 

inter-module connection density as compared to the intra-module connection density was 

chosen so as to define a clear module structure. Hence, the intra-module degree is much 

higher than the intermodule degree.

With this model we generated the 50-dimensional time series characterizing the system 

using p-th order Vector AutoRegressive (VAR) modelling:

where x(t) ∈ ℝN × 1, x(t) = (x1(t), x2(t), x3(t), … , xN(t))T and N=50. ARj ∈ ℝN × N are the 

auto-regression (AR) model parameter matrices characterizing the influence of the nodes 

(time series) in the network on each other; for example, if node ‘a’ does not influence node 

‘b’, ARj (b, a) = 0 ∀; j ∈ {1,..., p}, where the order p=2, was used to generate the model. If 

node ‘a’ does influence node ‘b’, then ARj (b, a) ≠ 0. The coefficients of ARj (b, a) are 

chosen such that the generated time series are stationary. The time series e(t) was chosen as 

stationary uncorrelated Gaussian noise used in producing x(t). The quadratic transformation 

function g was applied to the time series (Fig. 1b). This was done to test the ability of our 

method to recover non-linear interactions in the system. The first 500 time points of the 50 

generated time series were removed to ensure stability of the time series.

This model is similar to the model presented in [33] with the added non-linear 

transformation.

2.2 Functional MRI data

This study used scans acquired from a healthy male aged 26 years with a 1.5T GE 

SIGNATM (GE, Milwaukee, WI, USA) whole-body MRI scanner. Two sequences of images 

were obtained from two slice locations, which correspond to the motor cortex. One sequence 

was obtained under resting state conditions (resting-state sequence), where the subject was 

instructed to lie still with their eyes closed. The second sequence involved a finger-tapping 

task stimulus that activated the left motor cortex (LMC), the supplementary motor area 

(SMA) and the right motor cortex (RMC), which was used to localize the motor cortex areas 

in the subject (task sequence).
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The scans were acquired with the following parameters: echo time (TE)– 40ms, echo 

repetition time (TR) – 0.5s and flip angle (FA) – 90°. 512 scans were acquired from the two 

slice locations, where each had a slice thickness of 10 mm and an in-plane resolution of 3.75 

mm x 3.75 mm.

3. METHODS

3.1 Preprocessing

Before we analyzed the data, we performed a few pre-processing steps: 1) To compensate 

for motion artifacts, registration of the fMRI time series was performed. 2) Linear de-

trending was performed to correct for signal drifts. 3) To eliminate initial saturation effects 

on the analysis, the first 24 scans were discarded. 4) The voxel time series were normalized 

to zero mean and unit standard deviation so as to focus on signal dynamics rather than 

amplitude [34].

3.2 MCA - Pair-wise affinity evaluation using Generalized Radial Basis Functions (GRBF) 
neural networks

We first build a pair-wise affinity matrix, A, generated by estimating the cross-predictability 

between every pair of voxel time courses in the brain. For example, consider two voxel time 

courses X and Y (where X, Y ∈ {Xk, k =1,...,n}).We obtain the matrix element (A)X,Y, 

which is a measure of the ability of X to predict Y and describes the degree of dynamic 

coupling between them.

To obtain (A)X,Y, we first break down X, of length l, into a set of vectors xt, t ∈ {1,2,...,l-d
+1} of dimension d, which can be interpreted as a sliding window of length d moving along 

X. The corresponding prediction target vectors for xt are vectors yt of dimension e. In this 

study, we chose d =20 and e = 1, as we are interested in predicting one point in the future. 

The set of xt and their corresponding yt are split into training (Tr) and test (Te) sets. The 

cross-prediction between series is obtained using a Generalized Radial Basis Functions 

(GRBF) network with one hidden layer. The number of neurons in the hidden layer, k, 

correspond to the number of cluster centers in the d-dimensional space of the ( ) vectors. 

We use k-means clustering to obtain the centers. The similarity of every vector ( ) with 

every cluster center is obtained using a soft-max normalized Gaussian function, which 

defines the activations of the hidden layer neurons. Training of the output weights is done by 

minimizing the mean squared error between the estimated target point  and the 

actual point , where f is the non-linear mapping obtained using the trained GRBF neural 

network.

After concatenating the estimates  to reconstruct Ŷ, the affinity matrix element (A)X,Y is 

computed as the Pearson's correlation coefficient between the prediction Ŷ and the actual 

time series Y. For more details on GRBF neural network training in this context, see [35].
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3.3 MCA - Non-metric clustering: Louvain method

The affinity matrix A contains information about the causal influence of the time series on 

each other. We can use this information to extract functionally connected regions within the 

brain. To this end, we perform community detection using the Louvain method [5]. Louvain 

method extracts the underlying network structure by finding high modularity clusters in the 

network, where modularity is a measure of the strength of the intra-module links as 

compared to the intermodules links, thus, decomposing the complex network into clusters 

(or modules) with weak inter-module links and strong intra-module connections.

Modularity is given by:

where (A)i,j is the weight that represents the influence score from nodes i to j, ki = Σj(A)i,j is 

called the strength of connections to node i, i belongs to community Ci, δ(a,b) = 1 when a = 

b, and 0 otherwise, and  The modularity is optimized by an iterative process 

as proposed in [5]. This approach merges different nodes of the network into larger 

communities (modules) if the change in modularity is positive. The merging terminates 

when further addition of nodes to communities decreases the modularity of the network.

All procedures were implemented using MATLAB 8.1 (MathWorks Inc., Natick, MA, 

2013). The Louvain method implementation was taken from [36].

4. RESULTS

4.1 Synthetic model

We tested the ability of the GRBF neural network to obtain causal influence scores for the 

synthetic models generated, where the ground truth of the actual time series connectivity is 

known by construction. Subsequently, network recovery was performed using the Louvain 

method. We used varying time series lengths of the data as a training set and tested the 

network for time series length of 1000. Network recovery accuracy using MCA was 

quantitatively evaluated by Receiver Operating Characteristic (ROC) analysis, where the 

Area Under the Curve (AUC) results and the Rand index [6] values achieved by the Louvain 

method are shown in table 1. The Rand index was calculated based on the fact that the 50 

time series formed 5 sub-network modules with 10 time series each.

4.2 Network recovery in fMRI data

Results of network recovery of motor cortex from a single resting state fMRI slice through 

non-metric clustering of the affinity matrix using our MCA framework are shown in Figure 

2. With Louvain method, we were able to recover the LMC, SMA and RMC as one module 

which demonstrates the applicability of our MCA approach to recover functionally 

connected networks in resting state fMRI data. Figure 2 shows a visual comparison between 

the recovered network and the localization aid defined by a finger-tapping motor-stimulation 

task fMRI experiment. The comparison between both yields a Dice coefficient of 0.45.
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5. NEW AND BREAKTHROUGH WORK

We demonstrate the effectiveness of Mutual Connectivity Analysis (MCA), a computational 

framework for analyzing directed functional connectivity from resting state fMRI data and 

recovering underlying network structure. Previously, [4] we studied the use of local models 

to serve as non-linear time series predictors within the MCA framework, discussed the 

conceptual relations of our approach to Convergent Cross-Mapping (CCM) [3], and 

demonstrated the applicability to fMRI data analysis [4]. Here, we demonstrate that this 

approach can be generalized to other non-linear predictors such as the GRBF neural 

network. The high AUC values for the synthetic model demonstrate the ability of our 

method to accurately recover the interdependence of time series within a complex, nonlinear 

system. In addition, our results, quantified by the Rand index values on the synthetic model 

and the Dice coefficient value on the resting-state fMRI data, suggest that such an analysis 

can reveal useful information about the underlying network structure. We conclude that our 

MCA approach can provide useful contributions to analyzing complex non-linear systems 

with potential applications in clinical neuroradiology.

6. CONCLUSION

We present an approach for obtaining influence scores between every pair of time series in 

complex systems by using a Mutual Connectivity Analysis (MCA) framework with GRBF 

neural networks as non-linear predictors, followed by extracting the underlying network 

structure through non-metric clustering approaches, such as the Louvain method. The strong 

agreement between the recovered motor cortex network and the localization aid 

demonstrates the applicability of our method to investigating functional connectivity in 

resting-state functional MRI data of the human brain.

This work is not being and has not been submitted for publication or presentation elsewhere.
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Figure 1. 
(LEFT) Network with 5 modules M1 to M5. These modules have strong intra-module and 

weak inter-module connections, so as to have a network with modular structure, making 

feasible community detection using clustering approaches. Iab (where, a ∈ {1..4} and b=a

+1) represents the inter-module connections. (RIGHT) Transformation g, values above 0.5 

and below −0.5 are mapped to 0.
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Figure 2. 
(LEFT) Localization aid for primary motor cortex regions as revealed by a motor-

stimulation task fMRI experiment. (RIGHT) Motor cortex regions recovered using our MCA 

framework. Dice coefficient achieved between the localization aid and our MCA network 

analysis results is 0.45.
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Table 1

Results on the 50 synthetic models for different training time series lengths

Length of time series used for training AUC (mean ± std) Rand Index (mean ± std)

100 0.71 ± 0.041 0.75 ± 0.039

200 0.77 ± 0.051 0.76 ± 0.049

400 0.84 ± 0.046 0.82 ± 0.058

600 0.88 ± 0.045 0.85 ± 0.058

800 0.91 ± 0.038 0.86 ± 0.064

1000 0.92 ± 0.037 0.87 ± 0.063
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