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Background—Plasmodium vivax is one of the leading causes of malaria worldwide. Infections 

with this parasite cause diverse clinical manifestations, and recent studies revealed that infections 

with P. vivax can result in severe and fatal disease. Despite these facts, biological traits of the host 

response and parasite metabolism during P. vivax malaria are still largely underexplored. 

Parasitemia is clearly related to progression and severity of malaria caused by P. falciparum, 

however the effects of parasitemia during infections with P. vivax are not well understood.

Results—We conducted an exploratory study using a high-resolution metabolomics platform that 

uncovered significant associations between parasitemia levels and plasma metabolites from 150 

patients with P. vivax malaria. Most plasma metabolites were inversely associated with higher 

levels of parasitemia. Top predicted metabolites are implicated into pathways of heme and lipid 

metabolism, which include biliverdin, bilirubin, palmitoylcarnitine, stearoylcarnitine, 

phosphocholine, glycerophosphocholine, oleic acid and omega-carboxytrinor-leukotriene B4.

Conclusions—The abundance of several plasma metabolites varies according to the levels of 

parasitemia in patients with P. vivax malaria. Moreover, our data suggest that the host response 

and/or parasite survival might be affected by metabolites involved in the degradation of heme and 

metabolism of several lipids. Importantly, these data highlight metabolic pathways that may serve 

as targets for the development of new antimalarial compounds.
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Background

Malaria is a life-threatening vector-borne disease caused by Plasmodium parasites that 

affects millions of individuals every year (WHO, 2016). Infections with P. vivax account for 

almost half of all cases of malaria outside Sub-Saharan Africa, leading to significant 

morbidity worldwide, besides causing severe and fatal disease (Lacerda et al., 2012; 

Mahgoub et al., 2012). While many efforts have been made to understand the burden and 

host response to infections with P. falciparum (Mueller et al., 2009), the biologic 

perturbations induced by infections with P. vivax are still largely unknown. P. falciparum’s 

blood-stages invade and replicate inside of red blood cells (RBCs) at any age, whereas P. 
vivax preferentially targets reticulocytes (immature erythrocytes that typically comprise 

about 1–2% of circulating RBCs) (Lim et al., 2016). A recent study demonstrated that 

reticulocytes exhibit a more complex metabolic phenotype than mature erythrocytes, 

suggesting that Plasmodium host cell tropism of distinct species may be caused by 

differences in the parasite’s intrinsic metabolism (Srivastava et al., 2015). The P. vivax 
preference for reticulocytes contributes to lower parasitemias, which likely accounts for 

slower progression of the disease and reduced lethality rates of P. vivax malaria when 

compared with P. falciparum (Anstey et al., 2012; Howes et al., 2016; Mueller et al., 2009).

Hyperparasitemia, defined by a peripheral blood slide showing ≥4% infected RBCs, has 

been long considered as a criterion of severe falciparum malaria (Severe Malaria, 2014), 

however, the association between parasitemia and disease severity during P. vivax malaria is 

not clear. A recent study demonstrated that parasitemia is a poor predictor of three or more 
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severity criteria in P. vivax malaria patients (Siqueira et al., 2015). Nevertheless, high 

parasitemia was associated with fatal disease (Valecha et al., 2009), while another study 

demonstrated that peripheral P. vivax biomass has been underestimated and is associated 

with both systemic inflammation and disease severity (Barber et al., 2015). Indeed, 

increased parasitemia reflects the availability of an optimal nutritional environment together 

with the inability of the host to limit and control parasite growth. In this context, parasitemia 

correlates with levels of inflammatory and immunomodulatory mediators in the plasma of 

individuals with P. vivax malaria (Barber et al., 2015; Mendonça et al., 2013). Overall, these 

findings suggest that progression of P. vivax malaria can be affected by the density of 

parasites, and indicate that the metabolic response of the host and pathogen are also 

influenced by the parasite biomass during infections with P. vivax.

Metabolomics represents a powerful analytical approach to uncover the activity of 

physiological and pathological processes (Li et al., 2016) for the discovery of biomarkers of 

infectious diseases, including malaria (Park et al., 2015; Salinas et al., 2014). Nuclear 

magnetic resonance or gas/liquid chromatography coupled with mass spectrometry (GC/LC-

MS) have been applied to understand the metabolic changes in models of host-Plasmodium 
interactions in vitro (Lakshmanan et al., 2012; MacRae et al., 2013; O’Hara et al., 2014; 

Olszewski et al., 2009; Park et al., 2015; Sana et al., 2013) and in vivo (Basant et al., 2010; 

Ghosh et al., 2012, 2013; Olszewski et al., 2009; Sengupta et al., 2013; Tritten et al., 2013). 

However, studies of human malaria are limited to evaluation of plasma from patients 

infected with P. falciparum (Lakshmanan et al., 2012; Surowiec et al., 2015; Sengupta et al., 

2016) or urine from patients infected with P. vivax (Sengupta et al., 2011).

In view of the lack of understanding about host-pathogen interactions during infections with 

P. vivax, we used a high resolution metabolomics platform to investigate the associations 

between parasitemia and the plasma metabolome from patients with P. vivax malaria. The 

abundance of several metabolites varied according to the levels of parasitemia, whereby top 

predicted metabolites are involved in the metabolism of heme and lipids. This indicates that 

perturbations of these metabolic pathways are linked to the dynamics of parasite burden, and 

they may have an impact on the host response and parasite survival.

Methods

Study population and clinical evaluation

In this study, we used retrospective plasma samples obtained from patients with P. vivax 
malaria at the Fundação de Medicina Tropical Dr Heitor Vieira Dourado (FMT-HVD), as 

reported previously (Melo et al., 2014; Siqueira et al., 2015). Plasma samples were obtained 

under standard laboratorial procedures and stored at −80 ºC. Samples were shipped in dry 

ice to the Clinical Biomarkers Laboratory at Emory University, where they were also stored 

at −80 ºC. Briefly, all patients underwent an initial clinical characterization and physical 

examination followed by antimalarial treatment according to appropriate guidelines. At 

admission, laboratorial evaluation consisted of full blood count and biochemical analyses 

(hemoglobin, alanine aminotransferase, aspartate aminotransferase and creatinine), as 

reported (Melo et al., 2014; Siqueira et al., 2015). Diagnosis and quantification of 

parasitemia were performed with thick blood smear (TBS) microscopy. Each blood slide 
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was analyzed independently at least two times, whereby the number of asexual and sexual 

parasites were quantified by counting either 500 leukocytes or 500 parasites. Parasitemia 

was determined by the mean of two readings of parasites and the white blood cell counts 

from total blood. Mono-infections with P. vivax were confirmed by PCR (Melo et al., 2014; 

Siqueira et al., 2015). Patients were classified into three categories of parasitemia: low (10–

999 parasites/μL), moderate (1,000–9,999 parasites/μL) and high (> 10,000 parasites/μL) 

according to previous studies (Ketema and Bacha, 2013; Kotepui et al., 2015).

Liquid chromatography and high-resolution mass spectrometry

Sample processing and high-resolution mass spectrometry analysis was performed as 

described previously (Park et al., 2012; Soltow et al., 2013; Go et al., 2015b; Jin et al., 2016; 

Walker et al., 2016; Cribbs et al., 2016; Li et al., 2017). Acetonitrile (2:1, v/v) was added to 

65 μL of plasma containing 14 stable isotope internal standards ([13C6]-D-glucose, [15N]-

indole, [2-15N]-L-lysine dihydrochloride, [13C5]-L-glutamic acid, [13C7]-benzoic acid, 

[3,4-13C2] cholesterol, [15N]-L-tyrosine, [trimethyl-13C3]-caffeine, [15N2]-uracil, 

[3,3-13C2]-cystine, [1,2-13C2]-palmitic acid, [15N, 13C5]-L-methionine, [15N]-choline 

chloride, and 2′-deoxyguanosine-15N2,13C10-5′-monophosphate). Proteins were removed 

by centrifugation (13,200 x rpm at 4 °C) for 10 min. The resulting supernatant was 

transferred to an autosampler vial for LC-MS analysis, using a LTQ Velos Orbitrap mass 

spectrometer (Thermo Fisher). Injection volume was 10 μl for each run. Reverse phase 

chromatography was accomplished using a 100x2.1mm, 5 μM C18 column (Higgins 

Analytical) and, an acetonitrile gradient (where FA = 2% formic acid, W = water, ACN = 

acetonitrile). During the first 2 minutes, the gradient consisted of 5% FA, 60% W and 35% 

ACN, followed by an 8 min gradient of 5% FA, 0% W and 95% ACN. During the first 6 

min, the flow rate was 0.35 ml/min and then changed to 0.5 ml/min for the remaining 4 min. 

Before a new injection, the column was subjected to solution consisting of 2% formic acid in 

acetonitrile and equilibrated to initial conditions for 2 min. Mass spectral data was acquired 

with positive electrospray ionization and the full scan of mass-to-charge ratio (m/z) ranged 

from 85 to 2000 at a resolution of 60,000. Operating conditions were used as follow: spray 

voltage of 4.5 kV, sheath gas flow 45 (arbitrary units), auxiliary gas flow of 5 (arbitrary 

units), capillary temperature of 275°C, maximum injection time of 500 milliseconds and 

AGC target of 5 x 105. Xcalibur software (Thermo Fisher Scientific) was used to convert 

raw files to .cdf format and peak detection, noise filtering, m/z, and retention time 

alignment, and feature quantification were performed with apLCMS (Yu et al., 2009) and 

xMSanalyzer (Uppal et al., 2013). Quality control samples (pooled human plasma used to 

evaluate instrument stability, without clinical significance) was included in every batch of 20 

samples, and each sample was run in triplicate. Each metabolite feature is defined by m/z 
and retention time, with intensity values associated with each replicate. Further quality 

control included the exclusion of technical replicates with overall Pearson correlation 

coefficient r <0.7. Data were averaged among analytical replicates, log2 transformed and 

normalized by the mean. Only features detected in more than 70% of all samples (3,670) 

were used in further analysis. Missing values were imputed using half mean of the feature 

across all samples.
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Five different levels of metabolite identification are observed in the scientific literature 

(Schrimpe-Rutledge et al., 2016; Schymanski et al., 2014; Sumner et al., 2007). These 

include metabolite identification through comparison of 2 or more orthogonal properties 

between experimental data and authenticated chemical standards (level 1); putatively 

annotated compounds matching to both m/z and retention time of a previously characterized 

authenticated chemical standard (level 2); putatively annotated compounds matching to m/z 
from databases (level 3); putatively characterized compound classes (level 4), and unknown 

compounds (level 5). Therefore, putative annotation (level 3) of top significant metabolite 

features was determined by m/z matching to METLIN and KEEG databases (mass accuracy 

under 10 ppm, including multiple adducts). Over forty metabolites in this dataset matched to 

our in-house library constructed with LC-MS/MS of commercially available reference 

standards (annotation of level 2 confidence), including palmitoylcarnitine, stearoylcarnitine, 

which were significantly associated with P. vivax parasitemia. The mummichog software 

(version 1.0.7) was used for pathway analysis (mass accuracy under 10 ppm) (Li et al., 

2013). The metabolomics data used in this study are available at the public repository 

Metabolomics Workbench, under the accession number ST000578.

Statistical analyses

Statistical analyses were carried out using the R Language and Environment for Statistical 

Computing (R) 3.2.0 (Ihaka and Gentleman, 1996). Only data from patients with P. vivax 
malaria were used in statistical analyses. ANOVA or Kruskal-Wallis followed by Dunn’s 

pairwise multiple comparisons procedure were used to identify significant differences 

between independent groups of parasitemia. Linear regression models adjusted by age and 

gender were used to determine the associations between plasma metabolites and parasitemia. 

False discovery rate (FDR) was computed using Benjamini-Hochberg method. Spearman’s 

rank correlations were used to evaluate associations between parasitemia and clinical 

features. Euclidian distance method and ward linkage algorithm were used for hierarchical 

clustering.

Results and Discussion

Study subjects and clinical characteristics

All individuals in this study, which included 50 females and 100 males with mean age of 

35.9 years and standard deviation of 15.3, presented symptoms of malaria and had 

confirmed mono-infection with P. vivax. Evaluation of clinical data between categorical 

groups of parasitemia identified significant differences in levels of hemoglobin (P = 0.0005), 

RBC (P < 0.0001), white blood cell (WBC) (P = 0.0055), platelets (P = 0.0211), ALT (P = 

0.033) and AST (P = 0.034). Consistent with previous reports, we also identified significant 

correlations between parasitemia and levels of clinical parameters that include hemoglobin, 

RBCs, WBCs and platelets (Ketema and Bacha, 2013; Kotepui et al., 2015; Demissie and 

Ketema, 2016; Rodrigues-da-Silva et al., 2014). Demographics and clinical characteristics of 

the study population are described in Table 1.
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Significant associations between plasma metabolites and P. vivax parasitemia

Our untargeted, high-resolution metabolomics platform measured over 20,000 metabolite 

features. After filtering by missing values, 3,670 features were used in the subsequent 

analysis. Unsupervised principal component analysis (PCA) of all samples revealed a clear 

pattern of two clusters among malaria patients and of replicates of quality control samples 

(Fig. S1), which demonstrates the robustness of the analytical method. Using the method of 

MWAS (Metabolome Wide Association Study (Bictash et al., 2010; Chadeau-Hyam et al., 

2010; Nicholson et al., 2008), we investigated the metabolic phenotypes associated with 

distinct levels of parasitemia in P. vivax malaria. Categorical comparison of the plasma 

metabolome of patients with distinct levels of parasitemia using a univariate analysis of 

variance (ANOVA) identified the differential abundance of 286 metabolite features with 

FDR < 0.05 (Fig. 1A). One-way hierarchical clustering of highly significant metabolite 

features (50 features with FDR < 0.001) demonstrates that the intensity of plasma 

metabolites is mainly reduced with higher levels of parasitemia (Fig. 2A). To gather further 

insights into the associations between plasma metabolites with distinct levels of parasitemia, 

we fitted linear regression models adjusted by age and gender using parasitemia as a 

continuous variable. This identified 368 metabolite features associated with levels of 

parasitemia with FDR < 0.05 (Fig. 1B). Of note, linear regression models resulted in twice 

as many of highly significant metabolite features (103 features with FDR <0.001), whereby 

hierarchical clustering analysis retrieved two major clusters, one small cluster of metabolites 

with intensities increasing with elevated levels of parasitemia (Fig. 2B); and one composed 

of several sub-clusters, confirming that the majority of plasma metabolites are reduced with 

increasing levels of parasitemia (Fig. 2B). Over 230 metabolite features were selected by 

both statistical methods (Fig S2). However, corrections for age and gender in linear 

regression analyses retrieved a larger number of metabolite features (Fig. 1B and Fig. S2). 

Biological factors such as age or gender influence the plasma metabolome of humans (Jové 

et al., 2015; Psychogios et al., 2011) and could impact the results from univariate ANOVA. 

Therefore, further analyses were focused on metabolite features selected by linear regression 

models, while those selected by ANOVA were retained only for comparison purposes.

By m/z matching to METLIN database (Smith et al., 2005), putative annotations (level 3) of 

top significant metabolites shown in Fig. 1 and Fig. 2 include phospholipids such as 

phosphocholine, glycerophosphocholine and several lysophosphatidylcholines (lysoPC). Of 

interest, the second most significant peak selected by linear regression (m/z - 526.3279, P-

value = 1.37E-09, FDR = 2.52E-06) matched to a cyanobacterium toxin denominated 

antillatoxin A. The possibility of compounds similar to a cyanobacterial metabolite (not 

necessarily antillatoxin) being produced by P. vivax parasites and, secreted into the 

bloodstream during the course of the infection is intriguing, as Plasmodium’s apicoplast 

enzymes share high similarity to that of cyanobacteria (Okada, 2009).

To gather another perspective about the nature of top significant metabolite features (Fig. 2), 

m/z matching was performed with the KEEG database. This returned 106 or 231 matches to 

features depicted in Fig 2A or Fig 2B, respectively (Supplementary Table 1). Several m/z 
peaks matched to more than one compound and, a large number of features did not match to 

any chemical entity in any database. Considering the challenges of metabolomics analyses, 
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such as metabolite identification, a systematic and comprehensive methodological approach 

is required for appropriate interpretation and conclusions about these data (Li et al., 2013).

Pathways of heme and lipid metabolism are associated with P. vivax parasitemia

A recent development in the metabolomics field is the mummichog software, which uses 

pathway and network patterns to prioritize metabolite annotation (Li et al., 2013). We 

examined the biological context reflected by the metabolic profiles associated with P. vivax 
parasitemia using this computational tool. The most significant pathways overrepresented by 

metabolite features selected with both ANOVA and linear regression models include the 

porphyrin and heme metabolism, carnitine shuttle and glycerophospholipid metabolism 

(Table 2). Of note, metabolite features selected with univariate ANOVA identified an 

enrichment of the bile acid biosynthesis pathway that was not identified from the 

metabolites selected by linear regression. Accordingly, this result highlight that the synthesis 

of bile acids is indeed influenced by age (Einarsson et al., 1985), which indicates an 

advantage and higher accuracy of using linear regression models adjusted for confounding 

factors such as age and gender.

Some of the top predicted metabolites such as biliverdin, bilirubin, bilirubin-glucoronoside 

and bilirubin beta-diglucuronide are involved in porphyrin and heme metabolism (Table 2). 

The m/z peak matching to bilirubin was annotated with a confidence level 2, as this feature 

also matched to retention time and m/z of an authenticated chemical standard characterized 

previously in our laboratory (Go et al., 2015a). These metabolites exhibited higher 

abundance in the plasma of patients with increased levels of parasitemia (Fig. 3). Of interest, 

malaria has been characterized by hemolysis of both infected and uninfected erythrocytes 

(Fonseca et al., 2016; Joyner et al., 2016; Severe Malaria, 2014), leading to the release of 

cell-free hemoglobin and further heme prosthetic groups (Pamplona et al., 2007). The 

relatively low parasitemia observed in infections with P. vivax, and their preference to 

reticulocytes questions the relative contributions of parasite burden to hemolysis, especially 

of uninfected RBCs. However, several studies indicate that P. vivax exhibits a lower 

threshold of parasitemia associated with fever (Anstey et al., 2009; Karyana et al., 2008), 

and induces a greater inflammatory response when compared to P. falciparum (Karunaweera 

et al., 1992; Hemmer et al., 2006; Anstey et al., 2007). Moreover, the stability of RBCs are 

profoundly affected during active disease (Handayani et al., 2009; Lee et al., 2014). 

Noteworthy, patients with P. vivax malaria exhibit elevated levels of cell-free hemoglobin in 

plasma (Barber et al., 2016) and up-regulate levels of heme oxygenase-1 (HO-1) (Mendonça 

et al., 2013), which breaks down heme into biliverdin, carbon monoxide and iron. Levels of 

HO-1 and several other immunomodulatory and inflammatory mediators also correlate with 

P. vivax parasitemia during severe disease (Mendonça et al., 2013). Our data extend these 

findings, indicating that the abundance of metabolites generated by the metabolism of heme 

change according to levels of blood parasitemia. This association can be complex and affect 

the host in different ways. Heme oxygenase-1 is crucial for the survival of mouse models of 

malaria (Pamplona et al., 2007; Seixas et al., 2009), antagonizing the pathogenic effects of 

free heme, such as oxidative stress (Vinchi et al., 2013) and excessive inflammation (Dutra 

et al., 2014). However, another perspective is given by the direct immunomodulatory 

properties of biliverdin and bilirubin (Liu et al., 2008; Wegiel and Otterbein, 2012) and the 
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fact that Plasmodium parasites also metabolize heme into bilirubin (Okada, 2009). This has 

the potential to impact the function of leukocytes recruited to limit replication and facilitate 

parasite evasion.

Previous studies identified the differential abundance of serum lipids in malaria patients 

(Mesquita et al., 2016; Visser et al., 2013), however the mechanisms underlying this 

phenomenon are not clear. Our data provide insights into this process by demonstrating 

significant associations between parasitemia and pathways such as the carnitine shuttle and 

glycerophospholipid metabolism (Table 2). The abundance of metabolites putatively 

annotated as palmitoylcarnitine, stearoylcarnitine, heptadecanoyl carnitine and docosa-

pentaenoyl carnitine decreased with higher levels of P. vivax parasitemia (Fig. 3). Both 

palmitoylcarnitine and stearoylcarnitine were also confirmed (annotation confidence level 2) 

by matched retention time and m/z to authenticated chemical standards characterized 

previously in our laboratory (Uppal et al., 2017). Of interest, those metabolites are involved 

in the carnitine shuttle pathway. The transfer of long-chain fatty acids across the inner 

mitochondrial membrane for β-oxidation is mediated by the carnitine shuttle pathway, 

whereas decreased abundance of related metabolites identified here might reflect increased 

uptake of host fatty acids by the parasite. Consistent with this hypothesis, we observed that 

levels of putatively annotated metabolites such as glycerophosphocholine and 

phosphocholine were also reduced with higher levels of parasitemia (Fig. 3). In contrast, we 

identified a significant increase in the abundance of the m/z peak 283.2627 (putatively 

annotated as oleic acid) with higher levels of parasitemia (Fig. 3), a fatty acid that is required 

for the intra-erythrocytic proliferation of P. falciparum (Mi-Ichi et al., 2007) and might also 

be essential for the growth of P. vivax. Indeed, malarial parasites scavenge, modify, and 

incorporate fatty acids and phospholipids from the host (Moll et al., 1988; Krishnegowda 

and Gowda, 2003), whereas elevated P. vivax parasitemia correlates with reduced levels of 

low and high-density lipoprotein in the serum of patients (Mesquita et al., 2016). Lipids are 

essential nutrients for parasite’s proliferation, and for the conversion of heme into hemozoin 

(Ambele and Egan, 2012; Pisciotta et al., 2007), which is a detoxification strategy used by 

the parasite to survive inside the RBC while digesting hemoglobin. Our data highlight the 

importance of lipid metabolism during malaria episodes, while supporting the development 

of antimalarial compounds targeting pathways related to the uptake and metabolism of fatty 

acids and phospholipids (Ben Mamoun et al., 2010).

The metabolite tentatively annotated as omega-carboxy-trinor-leukotriene B4 (OCTLB4) 

exhibited decreased abundance with higher levels of parasitemia (Fig. 3). This eicosanoid 

has been associated with peroxisome deficiency disorders and chronic kidney disease 

(Mayatepek et al., 1993; Zhang et al., 2016); more recently it was detected in resting human 

platelets, but not in thrombin activated platelets (Slatter et al., 2016). While leukotriene B4 

(LTB4) is an inflammatory molecule and chemoattractant that mediates the migration of 

neutrophils induced by heme (Monteiro et al., 2011), omega-oxidation is the main pathway 

used by human neutrophils to catabolize LTB4, regulating the inflammatory profiles of these 

cells (Shak and Goldstein, 1984). Taken together, those results suggest that the inflammatory 

stimulus induced by higher levels of parasitemia could impact the metabolism and signaling 

of activated leukocytes or platelets, leading to reduced abundance of OCTLB4.
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Conclusions

In this study, we obtained high-resolution metabolomes of patients with P. vivax malaria, 

and successfully identified metabolites and pathways that are associated with parasitemia. 

Our data indicate that individuals with high parasitemia display increased activity heme 

degradation, and an overall reduction in the abundance of several lipids in the plasma. These 

results provide important insights into the host metabolic responses in P. vivax malaria. 

Despite of relatively low parasitemia, the inflammatory response induced by P. vivax might 

be responsible for the associations identified in this study. Future studies applying high-

resolution metabolomics platforms will further enhance the understanding of the biology of 

infections with P. vivax and contribute to the identification of new drug targets and 

biomarkers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Significant associations between plasma metabolites and P. vivax parasitemia. (A) m/z 
features selected with univariate analysis of variance (ANOVA). (B) m/z features selected 

with linear regression adjusted by age and gender. Significant features were identified with a 

FDR < 0.05 and colored in red. Dashed lines represent a P-value of 0.05.
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Figure 2. 
Dynamics of the abundance of metabolite features associated with P. vivax parasitemia. (A) 

One-way hierarchical clustering based on the intensity of highly significant metabolite 

features selected by ANOVA (FDR < 0.001, 50 m/z features). (B) One-way hierarchical 

clustering based on the intensity of highly significant metabolite features selected by liner 

regression models (FDR < 0.001, 103 m/z features). The yellow to red scale indicates lower 

to higher intensity levels based on a Z-score.
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Figure 3. 
Distribution of top predicted metabolites in patients with low, moderate and high levels of P. 
vivax parasitemia. Additional statistics were performed with Kruskal-Wallis followed by 

Dunn’s pairwise multiple comparisons procedure; mean values, standard deviation (SD) and 

significance levels are shown (*, P < 0.05 and **, P < 0.01).
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Table 1

Demographics and clinical characteristics of the study population

Parasitemia classification Low (n = 50) (10–999 parasites/
μL)

Moderate (n = 61) (1,000–9,999 
parasites/μL)

High (n = 39) (> 10,000 parasites/
μL)

Age, y 37.7 (13.4) 36.2 (16.0) 33.1 (16.2)

Male, n(%) 34 (68) 44 (72) 22 (56)

Female, n(%) 16 (32) 17 (28) 17 (44)

Hemoglobin (g/dL) 13.0 (2.2) 13.0 (2.2) 10.9 (3.0)

RBC (106/μL) 4.7 (0.9) 4.6 (0.8) 3.9 (1.0)

WBC (103/μL) 4.6 (1.8) 5.7 (2.8) 5.6 (2.0)

Platelets (103/μL) 117.5 (96.8) 94.7 (71.4) 94.6 (114.3)

ALT (U/L) 72.1 (58.3 62.6 (75.8) 36.2 (31.2)

AST (U/L) 105.9 (84.3) 77.6 (78.8) 68.5 (62.7)

Creatinine (mg/dL) 0.8 (0.5) 0.8 (0.4) 0.8 (0.4)

Mean values and standard deviation are shown. RBC – red blood cells; WBC – white blood cells; ALT - alanine aminotransferase; AST - aspartate 
aminotransferase.
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Table 2

Metabolic pathway analysis

Features selected with ANOVA Features selected with linear regression

Pathways Overlap size P value Overlap size P value

Porphyrin and heme metabolism 3 0.00427 7 < 0.0001

Carnitine shuttle 4 0.0025 6 < 0.0001

Bile acid biosynthesis 5 0.0022

Glycerophospholipid metabolism 4 0.0025 4 0.00056

Glycosphingolipid metabolism 3 0.00777 3 0.00181

Sialic acid metabolism 3 0.01356 3 0.00334

Fatty acid activation 3 0.00074

De novo fatty acid biosynthesis 3 0.00074

Squalene and cholesterol biosynthesis 3 0.00146

Xenobiotics metabolism 3 0.00484

Tyrosine metabolism 3 0.02098

Only pathways with three or more overlapping features are shown.
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