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Abstract

In this paper, we propose a testing procedure for detecting and estimating the subgroup with an 

enhanced treatment effect in survival data analysis. Here, we consider a new proportional hazards 

model which includes a nonparametric component for the covariate effect in the control group and 

a subgroup-treatment interaction effect defined by a change-plane. We develop a score-type test 

for detecting the existence of the subgroup, which is doubly robust against misspecification of the 

the baseline effect model or the propensity score but not both under mild assumptions for 

censoring. When the null hypothesis of no subgroup is rejected, the change-plane parameters that 

define the subgroup can be estimated based on supremum of the normalized score statistic. The 

asymptotic distributions of the proposed test statistic under the null and local alternative 

hypotheses are established. Based on established asymptotic distributions, we further propose a 

sample size calculation formula for detecting a given subgroup effect and derive a numerical 

algorithm for implementing the sample size calculation in clinical trial designs. The performance 

of the proposed approach is evaluated by simulation studies. An application to an AIDS clinical 

trial data is also given for illustration.
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1. Introduction

Personalized medicine, a practice of medicine tailored to a patient’s genetic and other 

unique characteristic, is a rapidly emerging field of health care. The ultimate goal of 

personalized medicine is to optimize the benefit of treatment by prescribing the right drugs 

for the right patients with minimal side effects. To ensure the success of personalized 

medicine, it is important to identify a subgroup of patients who benefits more from the 

targeted treatment than others based on each patient’s characteristic. For this reason, the 

subgroup analysis, if properly used, can lead to more informed clinical decisions, improved 

efficiency of the treatment, reduced cost and side effects.
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The subgroup analysis has been explored by a number of authors. For the cases of a single 

covariate, [1] used a moving average procedure to estimate treatment effect on the 

overlapping subsets of patients determined by a covariate of interest. [2] proposed a 

selection impact curve (SIC) for the treatment response rate given two subgroups determined 

by a patient’s marker value. Using the SIC function, they identified the optimal division for 

the treatment assignment which maximizes the overall response rate. For the cases of 

multiple covariates, [3] proposed a virtual twins method based on potential outcomes, and 

identified the subgroup with an enhanced treatment effect using machine learning 

approaches. [4] and [5] proposed parametric scoring systems as a function of subject specific 

treatment differences based on multiple baseline covariates. This function can be used for 

identifying a subgroup of patients whose benefits outweigh the risk and cost of the new 

treatment. Other approaches include [6], [7], [8] and [9].

Whatever the plan is for subgroup identification, it should be specified prior to looking at the 

data. However, the statistical concerns about the use of subgroup analysis are well 

recognized. The repeated use of subgroup identification without proper adjustment may lead 

to inflation of type I error, i.e, the observed significant results could arise by chance. The 

other issue is lack of power for clinical trials which are generally designed to test the overall 

treatment effect. Thus, subgroup analysis must be performed with a confirmatory testing and 

careful study design. Recently, [10] proposed a logistic-normal model for the response in 

each subgroup and the latent group membership. Under the parametric assumptions, they 

perform a likelihood ratio test for the existence of a subgroup with differential treatment 

effects, and predict the subgroup membership of each patient. [11] used a semiparametric 

approach in which the baseline mean function is unspecified while the interaction between 

treatment and the change plane indicator explicitly models a subgroup with an enhanced 

treatment effect. They propose a score type test statistics and develop a novel procedure to 

calculate the sample size based on the proposed test. This test enjoys the double robustness 

property, i.e, it is valid when either the baseline mean function or the propensity score is 

correctly specified. These studies mainly focus on uncensored data. [12] extended the 

method of [10] to a logistic-Cox regression for survival data. However, it requires strong 

parametric assumptions for covariate effects as in [10].

In this paper, we extend the testing procedure of [11] to detect the existence of a subgroup 

with an enhanced treatment effect for survival data. The proportional hazards model is 

widely used for analysis of survival data and for designing clinical trials with time-to-event 

endpoints. In subgroup analysis, the main interest is to study the treatment-covariates 

interactions. Thus, we consider a flexible proportional hazards model which includes an 

unspecified baseline effect model and the interaction between treatment and subgroup 

indicator defined by a change plane. However, as discussed later in the paper, our proposed 

test will have the correct type I error under the null hypothesis even when the proportional 

hazards assumption does not hold. On the other hand, the power and sample size calculation 

derived under the local alternative hinges on the assumed proportional hazards model. In 

particular, the considered change-plane approach for subgroup representation facilitates the 

derivation of sample size calculation, which is useful in clinical trail designs for subgroup 

detection. We propose a doubly robust score-type test using a change-plane analysis 

technique and derive the asymptotic distributions of the proposed test under both the null 

Kang et al. Page 2

Stat Med. Author manuscript; available in PMC 2018 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and local alternative hypotheses. The associated sample size calculation for clinical trial 

designs in subgroup analysis is also investigated. For censored survival data, the derivation 

of the doubly robust score-type test for subgroup detection is more challenging and it 

requires a stronger assumption for censoring times.

The rest of the paper is organized as follows. In Section 2, we introduce the new 

proportional hazards model for subgroup detection and the associated estimating equation 

for treatment-subgroup interaction. In Section 3, we construct the score-type test statistic 

based on the change-plane analysis technique and establish the asymptotic distributions of 

the test statistic under the null and local alternative hypotheses. The associated sample size 

calculation formula and its numerical implementation are also given. Section 4 and 5 are 

devoted to numerical studies including simulations and an AIDS data application. 

Concluding remarks are given in Section 6. All technical proofs are provided in the 

Appendix.

2. Data, Model, and Score Test

2.1. Data and model

Consider a study with n independent subjects. For the ith subject, we observe the p-

dimensional vector of covariates Xi and treatment indicator Ai taking 0 and 1 for control and 

treatment, respectively. Let Ti and Ci denote the survival time of interest and censoring time, 

respectively. Assume that Ti and Ci are independent given covariates and treatment. Then, 

the observed data consists of independent and identically distributed triplets, {(Xi,Ai, T̃
i,Δi), 

i = 1, . . . , n}, where T̃
i = min(Ti, Ci) and Δi = I(Ti ≤ Ci). Define the counting process and at-

risk process as Ni(t) = I( T̃ ≤ t, δi = 1) and Yi(t) = I( T̃
i > t), respectively.

We consider the following proportional hazards model ([13]) for the failure times,

(1)

where λ(t) is an unspecified baseline hazard function and ϕ(Xi) is an unspecified baseline 

effect model of covariates. The change plane I(γ′ Xĩ ≥ 0) defines a subgroup of patients 

with an enhanced treatment effect η. Here, X̃
i = (1,Xi)′ and γ = (γ1, . . . , γp+1)′. For 

identifiability, we assume ||γ|| = 1. Our interest is to test the existence of subgroup with an 

enhanced treatment effect, i.e. H0 : η = 0vs Ha : η ≠ 0. There are several challenges here. 

First, under the null hypothesis H0, the parameters γ are not identifiable. Second, the 

baseline effect model ϕ(·) is unspecified. A testing procedure that is robust to the 

misspecification of ϕ(·) is desired.

2.2. Score test for η

Given the true values of γ, λ(·) and ϕ(·), a score test statistic for η can be constructed as
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(2)

However, when ϕ(·) is misspecified, the above score test statistic is biased. It is of great 

interest to develop a robust test statistic that is insensitive to the misspecification of ϕ(·). For 

uncensored data, [11] developed a doubly robust score-type test statistic, which is consistent 

when either the baseline effect model or the propensity score is correctly specified. For the 

considered model (1), a natural extension is to consider the following test statistic

(3)

where π(Xi; ν) and ϕ(Xi; θ) are the posited parametric models for the propensity score 

π(Xi) = P(Ai = 1|Xi) and the baseline effect model ϕ(Xi), respectively. In clinical trials, the 

propensity score is known by design but the baseline effect model ϕ(·) is generally unknown.

Test statistic (3) is unbiased under the null when the baseline effect model ϕ(·; θ) is correctly 

specified. However, it is generally biased under the null when the propensity score is 

correctly specified but the baseline effect model is misspecified as commonly seen in 

clinical trials. A main reason is that Ai and Yi(t) are not independent given Xi under the null. 

To ensure the doubly robust property of test statistic (3), we make the following assumption 

for the censoring time: Ci is independent of Ai given Xi. In fact, this assumption only needs 

to hold under the null. Under this assumption, Ai and Yi(t) are independent given Xi under 

the null. Then, it can be shown that (3) is unbiased when either the baseline effect model or 

the propensity score is correctly specified, i.e. the so-called doubly robust property. The 

assumed assumption for censoring is a little stronger than the usual conditional independent 

censoring assumption, where Ci and Ti are assumed independent given Xi and Ai. That is Ci 

is allowed to depend on both Xi and Ai; while in our assumption, Ci is allowed to depend on 

Xi but not Ai. This assumption usually holds in a well followed clinical trial. In the next 

section, we derive a supremum test statistic based on the doubly robust score-type test 

statistic (3).

3. Proposed Test and Sample Size Calculation

3.1. The proposed test

From now on, we consider a randomized clinical trial, where the propensity score π(Xi) is 

known. Define

(4)
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where θ̂ and Λ̂(t) are estimators of θ and Λ(t) under the null, respectively. Specifically, the 

estimating equations for θ and Λ(t) are given by

(5)

(6)

respectively. In our numerical studies, we always consider a linear model ϕ(Xi; θ) = θ′Xi.

Note that the score-type test statistic (4) depends on the unknown parameters γ, which are 

not identifiable under the null. To deal with the nonidentifiability issue, following [11], we 

consider a supremum of normalized squared score-type test statistic. That is

(7)

where Γ = {γ ∈ ℝp+1 : ||γ|| = 1} and Sn(γ) is a consistent estimator for the variance of 

. The derivation of Sn(γ) is given in the Appendix.

Next, we derive the asymptotic distributions of Wn under the null and local alternative 

hypotheses. For the local alternative hypothesis, we consider , where δ ≠ 0.

Theorem 1: Assume either the baseline effect model or the propensity score model is 

correctly specified. Under the null hypothesis and regularity conditions given in the 

Appendix, as n→∞, we have Wn converges in distribution to supγ∈ΓH2(γ), where H(γ) is a 

mean-zero Gaussian process with the asymptotic covariance given by

Here θ* and Λ*(t) are the limits of θ̂ and Λ̂(t), respectively.

Theorem 2: Assume either the baseline effect model or the propensity score model is 

correctly specified. Under the local alternative hypothesis and regularity conditions given in 

Appendix, as n → ∞, we have Wn converges in distribution to supγ∈ΓH2(γ; δ), where H(γ; 
δ) is a Gaussian process with the mean function μ(γ) and covariance function Σ(γ1, γ2). 

Here, the mean function is given by
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where γ0 is the true value of γ.

To obtain the critical values of the proposed test statistic, we propose a resampling method. 

As shown in the Appendix, when the propensity score π(·) is known, we have

Therefore, the perturbed test statistic is given by

(8)

where {ξi, i = 1, . . . , n} are n i.i.d. standard normal random variables. It is easy to show that 

the perturbed test statistics has the same limiting distribution as the original test statistic. 

Thus, by repeatedly generating {ξ1, . . . , ξn}, we can obtain a large set of W̃
n’s. The critical 

value, cα for a level-α test can be estimated by the empirical (1 − α)100th quantile of W̃
n’s. 

Then we reject the null when Wn > cα. If the null is rejected, the change plane parameter is 

estimated by

(9)

and the corresponding estimated subgroup is {i : γ̂′ X̃
i ≥ 0}.

In fact, it is difficult, if not impossible, to analytically obtain the supremum in (7), (8), and 

(9). Thus, we use the maximum as a numerical approximation of the supremum. We find the 

maximum of the test statistics and perturbed test statistics over a common set of finitely 

many γ, Γ = {γ1, γ2, . . . , γM}, where γj is a (p + 1) × 1 vector. To generate γj with the 

unit-norm restriction, we use a spherical coordinate transformation. The details are given in 

the simulation study.

3.2. Sample size calculation

In this section, we propose an algorithm for calculating the required sample size numerically 

based on Monte Carlo simulations. Based on the asymptotic distribution of the test statistic 

under the local alternative hypothesis, for a given effect size η, the sample size for a level-α 
test to achieve 1 − β can be obtained from the following equations
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(10)

(11)

To be specific, we first find δ to satisfy equation (10) and then the sample size is determined 

by (11). For simplicity of computation, we assume that ϕ(X; θ*) = ϕ(X). With some 

algebras, the mean and covariance function of H(γ; δ) can be written as

(12)

(13)

We propose to use the following algorithm to numerically find δ as the solution to (12).

Step 1. Generate Z = (Z1, , , ZM) from multivariate normal distribution with mean 

zero and the covariance Σ(γ1, γ2), and compute . By repeatedly 

generating Z = (Z1, , , ZM) many times, we can obtain a large sample of 

. The critical value cα can then be estimated by referring to the 

empirical (1 − α)100th quantile of the sample.

Step 2. Given δ, generate Y = (Y1, . . . , YM) from multivariate normal distribution 

with μ(γ) and the covariance Σ(γ1, γ2), and compute the maximum  to 

approximate supγ∈ΓH2(γ; δ).

Step 3. Repeat step 2 B times, where B is a large number, and estimate 

P(supγ∈ΓH2(γ; δ) > cα) by .

Step 4. Do a grid search for δ and find δ such that the corresponding probability 

.

4. Simulation Study

4.1. Testing and estimation

4.1.1. Type I error—We have carried out several simulation studies to evaluate the 

performance of the proposed test under various scenarios. Under the null hypothesis, the 
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failure times are generated from the proportional hazards model (1) with η = 0. Two 

independent covariates are considered; X1 following a uniform distribution on [−1, 1] and 

X2 following a Bernoulli distribution with a success probability of 0.5. We assume the 

baseline hazard function λ(t) ≡ λ0, a positive constant. The censoring times are generated 

from a uniform distribution on [0, c0], where λ0 and c0 were chosen to yield the desired 

censoring level 15% and 25%.

We consider a randomized clinical trial with the propensity score π(Xi) = 0.5. For the 

baseline effect model, we consider the following models.

i. ϕ1(Xi; θ) = θ1X1 + θ2X2, θ = (θ1, θ2) = (0.1, 0.1),

ii. , θ = (θ1, θ2, θ3) = (0.2, 0,−1),

iii. ϕ3(Xi; θ) = θ1 sin(θ2X2 + θ3πX2), θ = (θ1, θ2, θ3) = (0.2, 1, 1).

For model (i), the posited linear baseline effect model is correctly specified, while for model 

(ii) and (iii), it is misspecified.

To generate Γ, we consider the spherical coordinate (ρ, ψ), where 0 ≤ ρ ≤ π and 0 ≤ ψ ≤ 2π. 

For each coordinate, we generate 100 grid points. Then, for γj, j = 1, . . . , 10000, the 

spherical transformation from (ρ, ψ) to (γj0, γj1, γj2) is given by γ0j = cos(ρ), γ1j = sin(ρ) 

cos(ψ) and γ2j = sin(ρ) sin(ψ). In addition, the critical values of the test statistics were 

computed based on 1000 resampling statistics. Under each scenario, we performed 500 

simulations.

For type I error analysis, we consider sample size N = 1000 for the 15% censoring rate while 

N = 1000 and 2000 for the 25% censoring rate. In Table 1, we report the type I errors of the 

proposed test for various combinations of baseline effect models and censoring rates. When 

the censoring rate is 15%, the type I errors are close to the nominal level under all chosen 

baseline effect models. When the censoring rate is 25% with N = 1000, the type I errors are 

lower than the nominal level, especially at level of α = 0.1. This may be due to information 

loss caused by the censoring. Note that the type I error calculation is based on the 

asymptotic distribution of the supreme statistic given in Theorem 1. When the sample size is 

not large enough, the asymptotic representation may not be accurate. From our numerical 

experiences, when the sample size is only hundreds, the type I error obtained by the 

resampling algorithm may be a little conservative. However, as the sample size increases to 

N = 2000, the type I errors are close to the nominal level under all scenarios. This implies 

that the proposed test has the correct size but it may require larger sample sizes to achieve 

the nominal level when the censoring rate increases.

4.1.2. Power and estimation of change plane—Under the alternative hypotheses, the 

failure times are generated from the proportional hazards model (1) with η = ±0.2,±0.5,±0.8 

and the true change plane parameter γ0 = (−0.15, 0.3, 0.942). The empirical powers of the 

proposed test with sample size N = 1000 are given in Table 2. We observe that the power 

always increases with the increase in the treatment effect size |η|. When the censoring rate is 

15%, with the smaller value of |η|, the powers of model 3 are slightly lower than those of 

models 1 and 2, but the differences get smaller as |η| increases. The powers under the 
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censoring rate 25% are slightly lower than those under the censoring rate 15%. Also, we 

estimate the change plane parameters based on (9) and the results are given in Table 3. The 

results for the 15% and 25% censoring rates are comparable, thus we only report the results 

for the 15% censoring rate here. To evaluate the performance of the proposed test for 

estimation of the change plane parameter, we reported biases and standard deviations of the 

estimators and misspecification rates. Here, the misspecification rate is the proportion of 

patients whose true and the estimated subgroup do not match, and is computed by 

. We observe that as |η| increases, the biases, standard 

deviations, and misspecification rates decrease. In addition, we reported the sensitivity and 

specificity of our proposed method for subgroup identification and the average size of 

identified subgroups. The results are given in the Supplementary Appendix. As the 

magnitude of treatment effect increases, sensitivity and specificity increase, and the 

estimated subgroup size becomes closer to its true value.

4.1.3. Comparisons with the method of [12]—We have conducted simulations to 

compare with the method of [12] (denoted by EM Test). We consider simulation settings 

with the baseline models B1 and B2, η = 0, 0.2, and 0.5, and sample size N = 1000. Note 

that under the baseline model B1, the considered logistic-Cox mixture model of [12] is 

correctly specified while it is misspecified under B2. The simulation results are summarized 

in Table 4. We observe that when the baseline effect model is correctly specified under B1, 

the EM Test gives the correct type I errors, and the power of the EM test is slightly smaller 

than the proposed test. However, under B2, the EM test has inflated type I errors since the 

considered logistic-Cox mixture model is misspecified. Our proposed test gives the correct 

type I error under both baseline models B1 and B2, showing its robustness.

4.1.4. More simulations—We have conducted additional simulations for the cases with a 

heavier censoring rate of 75% and with p = 4 covariates. For saving the space, the detailed 

descriptions and simulations results are given in the Supplementary Appendix. For the cases 

with 75% censoring rate, the type I errors of the proposed test are slightly lower than the 

nominal level with the sample sizes N = 1000 and N = 2000. However, as the sample size 

increases to N = 3000, the type I errors are close to the nominal level. In addition, the power 

increases as the sample size increases. For the cases with p = 4 covariates, the type I errors 

are close to the nominal level and the powers are comparable to those with two covariates. In 

addition, the computational time increases drastically as the number of covariates increases. 

However, it took less than one minute on average for one simulation with p = 4. In general, 

for any fixed p, the test should be valid by our asymptotic theories. However, as the number 

of covariates increase to a big number, say p = 20, it usually requires a large sample size and 

a large number of griding points for good empirical performance of the proposed supreme 

test statistic. Thus, the computation can be intensive.

4.2. Sample size calculation

In this section, we calculate the sample size using the proposed procedure and compute the 

empirical power based on the obtained sample size. We consider a single covariate which 

follows a uniform distribution with [−1, 1]. The failure times are generated from λ(t|Ai,Xi) = 
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λ(t)eXi+ηAiI(Xi>γ0) and λ(t|Ai,Xi) = λ(t)esin(πXi)+ηAiI(Xi>γ0) for setting 1 and setting 2, 

respectively. Other settings are chosen in the same way as for the type-I error and power 

simulation studies.

To estimate the mean (12) and covariance function (13), we generate the grid points γ from 

−1 to 1 and the true change plane parameter γ0 is set to be −0.5, 0 or 0.5. In Table 5, we 

calculate the sample size that gives 90% power at the 0.05 level of significance. Based on 

the obtained sample size, we compute the empirical power of the proposed test.

Under all scenarios in Table 5, the empirical powers are close to the nominal level. The 

required sample size increases as the treatment effect size η and the proportion of subjects in 

the subgroup decrease, which means we need a larger number of subjects to detect a smaller 

treatment effect or a smaller subgroup.

4.3. Power and subgroup identification with smooth treatment effect

In our proposed model, the subgroup is defined by a change-plane. This implies that there is 

a discontinuity in the treatment effect between the treated group (A = 1) and the control 

group (A = 0). In practice, people may be interested in a model with smooth treatment effect 

among subjects. For example, we may consider the following model:

(14)

where F(·) is a smooth cumulative distribution function.

Note that under the null hypothesis H0 : η = 0, models (1) and (14) are the same. In this 

Section, we want to evaluate the performance of the proposed test when the true failure 

times were generated from model (14). The other settings are chosen the same as in the 

previous simulation study for type-I error and power calculation. For the baseline effect 

model, we chose ϕ = ϕ1. For the smooth treatment effect function F, we consider the 

cumulative distribution function for the standard normal and uniform distribution. We only 

considered censoring rate 15% with sample size N = 1000.

Since models (1) and (14) are the same under the null, the type-I errors of the proposed test 

are the same here. In Table 6, we only present the powers and subgroup identification 

results. The results show that we can obtain comparable power as in the simulation study for 

the change-plane model (1). Since there is no true subgroup defined in model (14), we use 

the restricted mean survival time (RMST) to evaluate the treatment effect in the estimated 

subgroup. Specifically, based on the survival data for subjects in the estimated subgroup, we 

estimate the RMST of treatment groups 0 and 1, respectively. Here, the estimated RMST is 

computed by the R package “survRM2”. We report the mean of the estimated RMST over 

500 simulation runs. For the negative value of η, patients in the estimated subgroup have 

larger mean RMST when given treatment 1 than given treatment 0; while for the positive 

value of η, patients in the estimated subgroup have smaller mean RMST when given 

treatment 1 than given treatment 0. We also compute the p-value of the two-sample t-test 

comparing the estimated RMST of A = 1 and A = 0 in the estimated subgroup using the R 
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package “survRM2”, and report the mean and standard deviation of the p-values over 500 

simulation runs. It can be seen that the p-values are all significant, and as the magnitude of η 
increases, the difference in the mean RMSTs between two treatment groups increases and 

the p-value becomes more significant. This indicates a significant treatment effect in the 

estimated subgroup. Finally, we also report the mean of the proportion of patients in the 

estimated subgroup, which increases as the magnitude of η increases. These results imply 

that the proposed test still performs well for finding the subgroup with an enhanced 

treatment effect under the smooth treatment effect model.

Finally, we evaluate the performance of the proposed change-plane model-based sample size 

formula for subgroup detection when the true model has smooth treatment effects. The 

detailed descriptions and simulations results are given in the Supplementary Appendix. As 

expected, the required sample size increases as the treatment effect magnitude and the 

subgroup size decrease. In addition, under all scenarios, the empirical powers are close to 

the nominal level even when the true model is not from the change-plane model, showing 

certain degree of robustness of the proposed sample size formula to the misspecification of 

the change-plane model.

5. Data analysis

We illustrate the application of the proposed method to data from 2139 HIV-infected patients 

in Clinical Trials Group Protocol 173 (ACTG175), which randomized patients to four 

different antiretroviral treatment regimes; Zidovudine(ZDV) plus monotherapy, ZDV plus 

didanosine (ddI), ZDV plus zalcitabine (zal), and ddI monotherapy ([14]). Following [15], 

we focus on two treatment groups, one receiving zidovudine (ZDV) monotherapy denoted as 

A = 0and the other receiving the other three treatments denoted as A = 1. The number of 

patients in the treatment group and control group are 1607 and 532, respectively, so that 

π(Xi) = 0.75. The primary endpoint is the time to one of the following events; having a 

larger than 50% decline in the CD4 count, or progressing to AIDS, or death. Among n = 

2139 patients, about 75% of them are censored. As in [15], we consider two covariates 

baseline covariates; age and homosexual activity (0=no, 1=yes).

Since our method requires the censoring time Ci is independent of Ai given Xi, we first test 

this assumption by fitting a proportionals hazard model for the censoring time with 

treatment, age and homosexual activity included as covariates. From the results in Table 7, 

after adjusting for age and homosexual activity, treatment effect on the censoring time is not 

significant. This suggests the assumed censoring assumption may be reasonable for the 

considered data.

Next, we performed the proposed test based on Wn. The maximum is taken over {γ1, . . . , 

γM}, where M = 10000 as in the simulation. The obtained test statistic is 38.099 and the p-

value is < 0.0001 based on 1000 resamplings, which supports the existence of the subgroup 

with an enhanced treatment. The number of patients in the estimated subgroup is 2095, 

among them, 1576 and 519 patients are in the treatment and control group, respectively. The 

estimated change plane is γ̂ = (−0.142, 0.047,−0.989) and the subgroup estimate is I(−0.142 

+ 0.047age − 0.989homo > 0). For the patients with homo=1, age> 24.06, while for those 
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with homo=0, age> 3.02. Considering the minimum age is 12, the patients with homo=0 are 

always included in the subgroup. Also, the estimate for the subgroup with an enhanced 

treatment is η̂ = −0.61, which implies treatment results in better survival than control in the 

estimated subgroup.

To examine the treatment effect for patients in and outside the estimated subgroup, we plot 

the Kaplan-Meier curves for two treatments in Figure 1. The left panel is for patients in the 

estimated subgroup, while the right panel is for those outside the estimated subgroup. It can 

be seen that for patients in the estimated subgroup, the treatment group has clearly better 

survival than the control group while for those outside the subgroup, theres is no difference 

in survival between two groups. This partly supports our finding.

To obtain the sample size required for 0.9 power test at a 0.05 significance level, we generate 

a data set with age and homo following a normal distribution and a binomial distribution, 

respectively. We assume a linear function for the baseline effect model and the coefficient is 

set to be (0.01, 0.15). The censoring times are generated from uniform distribution (0, 0.7) to 

achieve 0.75 censoring rate as in the dataset and 1000 resamplings are used to obtain the 

critical values. We report the required sample for various treatment effect sizes in Table 8. 

As in the simulation study, we can observe that the required sample size increases as the 

effect size decreases.

6. Discussion

In this paper, we propose a testing procedure for detecting and estimating the subgroup with 

an enhanced treatment effect for survival data using a flexible proportional hazards model. 

The proposed test has the desired doubly robust property. The asymptotic distributions of the 

proposed test statistics under the null and local alternative are established, and the associated 

sample size calculation for clinical trial design is derived.

The proposed model does not include the main effect of treatment for convenience. One 

motivation for this is that in many clinical applications, treatment only has an effect for a 

subset of patients but has no effect for others. However, the proposed method can be 

extended to accommodate the main effect of treatment. Then, the null hypothesis becomes 

that there is not a subgroup such that the treatment effect is different from the main effect. 

Under such a situation, the estimation of the null model becomes more complicated. To 

demonstrate this, we have conducted simulations with a nonzero main effect of treatment. 

The results are presented in the Supplementary Appendix. They look comparable to those 

when the treatment main effect is not included.

Our proposed method assumes a proportional hazards model. However, our proposed test 

will have the correct type I error under the null hypothesis even when the proportional 

hazards assumption does not hold, as long as the censoring time C is assumed to be 

independent of A given X. On the other hand, the power and sample size calculation derived 

under the local alternative hinges on the assumed proportional hazards model. To 

demonstrate this, we have conducted simulations under the proportional odds model. In our 

implementation, we still fit a proportional hazards model under the null. The results are 
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presented in the Supplementary Appendix. They are comparable to those under the 

proportional hazards model, however, the powers are slightly lower than those under the 

proportional hazards model.

The validity of the proposed test relies on the assumption that the censoring time C is 

independent of A given X. In many well designed and followed clinical trials, such an 

assumption for censoring times look reasonable. We have conducted some simulations to 

examine the robustness of the proposed test to the violation of this assumption. The results 

are presented in the Supplementary Appendix. Based on the limited results, our proposed 

test still gives reasonable performance. However, in general, the proposed test may not be 

valid when this assumption is violated. To relax this assumption, a time-dependent 

propensity score can be incorporated. The time-dependent propensity score can be non-

parametrically estimated using a kernel method as in [16]. However, it entails a huge 

complexity in theoretical derivation and computation, especially for sample size calculation. 

This warrants future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

To establish the asymptotic results given in Theorems 1–2, we assume the following 

regularity conditions.

(C1) The following limiting estimating equations have unique solutions, denoted by 

θ* and Λ*(t).

(C2) The probability P{Y (τ) = 1} > 0, where τ is a fixed constant; the function Λ0(t) 
is continuously differentiable with Λ0(τ ) < ∞.

(C2) The function g(X, θ, Λ; η) is twice continuously differentiable with respect to θ. 

The first and second derivatives are bounded.

Proof of Theorem 1

Under the null hypothesis H0 : η = 0, from (6), given θ̂, we obtain dΛ̂(t). Plugging it into (4) 

gives

where
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With a simple algebra and Taylor expansion, we have

where

Also, it can be shown that

where . Therefore,

(15)

where

From (15),  converges weakly to a zero-mean Gaussian process. The 

asymptotic covariance function at (γ1, γ2) is then E{g(X, θ*,Λ*; γ1)g(X, θ*,Λ*; γ2)}. Thus, 
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for γ, the asymptotic variance of  is given by 

, which can be consistently estimated by 

Proof for Theorem 2

Under the alternative hypothesis, Ha : η = n−1/2δ, . We 

have

Since  as n → ∞, the first summation converges weakly to a zero-mean 

Gaussian process with the covariance function E{g(X, θ*,Λ*; γ1)g(X, θ*,Λ*; γ2)} at (γ1, 
γ2). Moreover, the second summation converges in probability to

This proves Theorem 2.
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Figure 1. 
Kaplan Meier Plot of Survival Probability for the estimated subgroup
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Table 7

Fitted Cox model for censoring times

Est Z P-value

age −0.007 −2.50 0.012

hsa −0.246 −4.62 0.001

trt −0.049 −0.81 0.419

†
hsa, homosexual activity; trt, treatment; Est, Estimators of Cox proportional hazards regression; Z, z-value of the estimator.

Stat Med. Author manuscript; available in PMC 2018 December 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kang et al. Page 25

Table 8

Effect and sample size

η Sample Size

−0.6 1003

−0.4 2094

−0.2 7225
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