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Novel, one-step synthesis of
zwitterionic polymer nanoparticles
‘via distillation-precipitation
s polymerization and its application
e for dye removal membrane

- G.P.Syed Ibrahim?, Arun M. Isloor*, Inamuddin®**, Abdullah M. Asiri*?, Norafiqah Ismail®,
- Ahmed Fauzi Ismail® & Ghulam Md Ashraf©°®

In this work, poly(MBAAmM-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-
step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)
ethyl]ldimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N’-methylene
bis(acrylamide) (MBAAmM) as cross-linker are used for the synthesis of nanoparticles. As far as our

. knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles

. via DPP.The newly synthesized nanoparticles were further employed for the surface modification
of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane
exhibited the improved permeability (56 L/ m? h bar) and dye removal (>>98% of Reactive Black 5
and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared
membrane can have potential application in textile and industrial wastewater treatment.

In the recent years, the discharge of colored micropollutants into the water stream has elevated widespread con-
. cernas dyes are toxic, non-biodegradable and carcinogenic'~. Anionic dyes are recognized as contaminants in
© wastewater, which are broadly employed in industries like paper, textile, and plastics*. The dyes can be categorized
into three types, viz. azo, anthraquinone and triphenylmethane. Reactive Black 5 and reactive orange 16 are fall-
ing below the category of azo dyes. These acid dyes are used for coloring the cellulose-based fabrics such as cotton.
: Since reactive dyes are accompanying with moderate rates of fixation, dyeing with reactive dyes always associated
. with serious environmental problems®. The complex structure of the acid dyes makes it insensitive to biodegra-
dation and chemical oxidation. Consequently, it produces secondary pollutants during oxidation®’. With the
. intention of solving this environmental pollution, it is critical to eliminate dyes from effluent before discharging.
A number of methods such as flocculation, adsorption, photodegradation and chemical oxidation are available
for the treatment of wastewater®-!2. However, these methods are not cost-effective, less energy efficient produces
solid wastes and so on'®. Therefore, a new method for treating this wastewater is extremely needed. Membrane
separation techniques have been proved to be the potential alternative!*~'® to remove dye from the wastewater. In
addition, it has many advantages like energy efficient, low-cost, non-toxic, easy to scale up, comprising no chem-
ical reaction, high efficiency and produces less solid waste'?. In general, rejection of these low molecular weight
dye molecules are carried out using nanofiltration (NF) and reverse osmosis (RO) membranes?*~2. Nevertheless,
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these separation processes are suffering from some downsides such low flux and high cost?*-?”. Ultrafiltration
(UF) is one of the emerging pretreatment technology for the RO and NF?%. Specifically, hollow fiber UF mem-
branes are dominating over the flat sheet due to their increased surface area per unit of module volume*-*. In
addition, UF membranes are talented to remove suspended solids, bacteria and high molecular weight solute
from water?’.

Polysulfone (PSF) is one amongst the versatile polymeric material for the preparation of hollow fiber (HF)
membranes. It has very high thermal, mechanical and chemical resistance along with outstanding film forming
ability***. The other polymeric materials such polyetherimide (PEI) undergoes hydrolysis under basic condi-
tion*, chitosan (CS) which is insoluble in organic solvents* and polyphenylsulfone (PPSU) is brittle in nature.
Therefore PSF is superior to other polymeric materials. Nonetheless, PSF membrane is vulnerable to severe foul-
ing of very short duration. The fouling is caused by the less hydrophilic nature of the PSF material. Consequently,
the foulant forms a cake-like layer, which reduces the permeation rate of the water as well as increase the hydro-
phobicity and operational cost®”*%. Mauter et al. reported the effect of adding PEI modified silver nanoparti-
cle into PSF UF membranes. The results indicated that surface modified PSF membranes exhibited increased
antifouling and antimicrobial activity*. Fan et al. explored the antifouling and hydrophilicity of the PANI/PSF
nanocomposite membranes. The nanocomposite membrane demonstrated enhanced hydrophilicity and anti-
fouling nature, as a result the nanocomposite membrane exhibited high permeability without losing its rejection
performance®. Joseph et al. reviewed that incorporation of zwitterionic thin or thick film on the surface reduced
the protein adsorption®!. Tao et al. improved the blood compatibility of PSF membrane by the chemical modifi-
cation of PSF with zwitterionic polymer brush. The results also indicated that the introduction of the zwitterionic
functional group increased the surface hydrophilicity*>. Haijun et al. investigated the effect of grafting of the zwit-
terionic molecule on PSF UF membrane. The results showed that surface hydrophilicity and antifouling nature
enhances while increasing the grafting time*’. In current years, it has been reported that incorporation of zwit-
terionic nanoparticles exhibited improved hydrophilicity, permeability, and antifouling performances**~*. The
zwitterionic material has ample ionic groups which provide strong electrostatic interaction with water molecules,
therefore it provides stronger and denser hydration layer over the membrane surface*®. In addition, the polymer
matrix is well miscible with hydrophobic chains of the zwitterionic polymers. Gang et al. employed zwitterionic
polymer brush on TFC membrane to bestow anti-biofouling activity*’. Liu et al. investigated the effect of adding
zwitterionic-CNT for the preparation of ion selective membrane. The added nanomaterial enhanced the mono/
multivalent ion selectivity when compared to the pristine CNT nanocomposite membrane™.

Among the polymerization processes, distillation-precipitation polymerization (DPP) is the facile process and
recently developed by Feng et al.>!. It is a unique method to prepare nanoparticles with uniform size and shape
without adding any surfactant or stabilizer’>**. Additionally, this process can be scaled up since the refluxing sol-
vent can bestow effective mixing and oxygen-free environment®. In comparison with the classical polymerization
processes such as atom-transfer radical-polymerization (ATRP), group transfer polymerization (GTP), catalytic
chain transfer polymerization and radical polymerization, DPP holds superior advantages like lesser reaction
time (typically 2-3h), cheap starting materials, no metal catalyst, and ligand are required, no sophisticated appa-
ratus required, reaction at atmospheric condition, atom economy and easy isolation method. The mechanism
of DPP follows the order of radical initiation of monomer or cross-linker and subsequent chain propagation
by chain addition, which results in precipitation of polymeric nanomaterial. The increased colloidal stability
of the prepared nanoparticles could be attributed to the surface charge, which is affecting through electrostatic
repulsion. Thus, the aggregation of the nanoparticles was circumvented. According to Feng et al. the nanopar-
ticle size increases with the increase of monomer and initiator concentration®. The increased concentration of
cross-linking agent such as MBA Am increases the hydrophilicity of the material®>. Among the solvents, ACN was
chosen as the reaction solvent, however, protic solvents such as ethanol or methanol forms aggregate through
hydrogen bond formation®.

In the present study, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized by
SBMA as monomer and MBAA as cross-linking agent via distillation-precipitation polymerization (DPP). The
as-synthesized nanoparticles were characterized by FT-IR, TEM, SEM, BET, TGA, XRD and zeta potential anal-
ysis. The PSF HF membranes were prepared with the different amount of nanoparticles by dry/wet phase inver-
sion method. Moreover, SEM, contact angle, porosity, water uptake, zeta potential, pure water permeability and
antifouling study characterized the as-made PSF HF membranes. Furthermore, the nanocomposite membrane
explored for the dyes such as reactive black 5 (RB 5) and reactive orange 16 (RO 16) rejection.

Materials and Methods

Materials. Polysulfone (PSE, P-1700) was purchased in the form of pellets from Solvay Specialty Polymers
(China). The solvents N-methyl pyrrolidone (NMP) and acetonitrile (ACN) were obtained from Merck.
Polyvinylpyrrolidone (PVP K-30), bovine serum albumin (BSA), [2-(methacryloyloxy)ethyl]dimethyl-(3-sul-
fopropyl)ammonium hydroxide (SBMA), N,N’-methylene bis(acrylamide) (MBAAm), reactive black 5 (RB 5),
reactive orange 16 (RO 16) and azobisisobutyronitrile (AIBN) were procured from Sigma-Aldrich.

Synthesis of poly(MBAAmM-co-SBMA) nanoparticles. In a typical DPP process, SBMA (0.2 g,
0.71 mmol), MBAAm (1.0g, 6.4 mmol), AIBN (0.0225g, 0.13 mmol), ACN (100 mL) were taken in a 250 mL sin-
gle neck round bottom flask (RBF), purged with N, for 30 min to remove the dissolved oxygen. The RBF contain-
ing reaction mass (RM) was connected to the Dean-Stark receiver. The RM was heated to 75°C for 10 min. The
temperature of the oil bath was slowly increased to 100 °C to keep the reaction proceeding under reflux. About
35mL of ACN was distilled out from the RM through Dean-Stark receiver over 1h. Then the RM was cooled
to room temperature and stirred for 1h. The nanoparticles were filtered and washed with (2 x 20mL) ACN to
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Figure 1. Synthetic route to poly(MBAAm-co-SBMA).

M-0 20 1 79 0

M-1 20 1 79 0.02
M-2 20 1 79 0.05
M-3 20 1 79 0.10
M-4 20 1 79 0.20

Spinneret (mm)

1.1/0.55 (OD/ID)

Dope extrusion rate (mL/min)

3.0

Bore flow rate (mL/min)

2.5

Bore fluid Distilled water
Air gap (cm) 1.0

Humidity (%) 60
Coagulation bath Tap water

Coagulation bath temperature (°C) 27.0
Collection drum speed (RPM) 7.0

Table 2. Spinning parameters of PSF/poly(MBAAm-co-SBMA) HF membranes.

remove the unreacted monomer and oligomer. The nanoparticles were dried under vacuum (—25 Hg) at 50 °C for
12h to yield 1.12 g of white powder. The synthetic route of nanoparticles is represented in Figure 1.

Hollow fiber (HF) membrane preparation. The PSF/poly(MBAAm-co-SBMA) HF membranes prepared
by dry/wet phase inversion method®. The dope solution compositions are depicted in Table 1 and spinning
parameters are tabulated in Table 2. For the preparation of M-3, 0.1 g of poly(MBAAm-co-SBMA) nanoparticles
were dispersed in 79 g of NMP by sonicating (40 kHz, 60 W Spectralab) for 30 min. Added 20 g of PSF and 1g of
PVP as a pore-forming agent to the dope solution and stirred at 60 °C for 12h. The dope solution was degassed for
30min using sonication. The HF membranes were spun by keeping the bore and dope extrusion rate constant. The
extruded HF membrane underwent phase inversion in the coagulation bath. The as-made HF membranes were
immersed in distilled water for 24 h by changing the water periodically. The membranes were retained in 20 wt%
glycerol in water for further 24 h to avoid the pore shrinkage. The post-treated membranes were dried at room
temperature for future usage. The illustration scheme of HF membrane preparation has been given in Figure 2.

Nanoparticles and membranes characterizations. Morphology of the synthesized poly
(MBAAm-co-SBMA) nanoparticles was visualized using transmission electron microscopy (TEM) (JEOL JEM-
2200FS) with an accelerating voltage of 200kV, and Field Emission scanning electron microscopy (FESEM)
(HITACHI SU5000). The elemental mapping was carried out using Energy-dispersive X-ray spectroscopy (EDX)
(X-act Oxford Instruments). The functional group identification was done by FT-IR (Bruker Alpha) spectro-
photometer. Each sample was made into KBr pellet and analyzed at the resolution of 2 cm™! with 24 scans in the
range of 4000-500 cm™!. The thermal stability was measured by using thermogravimetric analysis (TGA) (HITA
CHI EXSTAR 6300) in the temperature range of 30-800 °C at a heating rate of 10 °C min~! under N, atmosphere.
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Figure 2. An illustration scheme of HF membrane preparation.

The Bruner-Emmet-Teller (BET) surface area, pore volume and mean pore diameter were measured using Smart
instruments (Smart Sorb 92/93). The surface charge and hydrodynamic diameter of the nanoparticles were meas-
ured by dispersing 5 mg of sample in distilled water (pH ~6.5) using HORIBA SZ-100 nanoparticle analyzer. The
polymorphism of the poly(MBAAm-co-SBMA) nanoparticles was analyzed by benchtop powder X-ray diffrac-
tometer (XRD) (Rigaku, mini Flex 600) with Cu Ko as an X-ray source. The as-prepared membrane samples were
dried at 50 °C for 12 h before the analysis. The cross-sectional images of the membranes were visualized by SEM
(HITACHI TM3000). The samples were sputtered with platinum to bestow conductivity. The surface hydrophilic-
ity of the membranes was measured using water contact angle analyzer (OCA, Dataphysics instrument) at room
temperature. The zeta potential of the membrane surface was analyzed by the electrokinetic analyzer (Surpass
Anton Paar) with 0.001 M KCl as the background electrolyte. The presence of nanoparticles in the membrane
matrix was confirmed by X-ray photoelectron spectroscopy (XPS, THERMO FISHER Scientific K-ALPHA) anal-
ysis. Al Ka radiation (1486.6 eV) was used as an X-ray source and take-off angle was 20°,

Porosity and water uptake studies. The porosity and water uptake studies were carried out according to
the literature®®®. Briefly, the membrane samples were cut into a length of 2 cm and dipped in distilled water for
24 h. The sample was taken out and water on the surface was wiped out gently with tissue paper. The wet weight of
the sample was noted and dried at 60 °C until the constant weight. The dry weight of the sample noted and water
uptake was calculated using the following equation.

W —
% Water uptake = [W—Wd] x 100
W, 1
Where ‘W, is the wet weight of the membrane and ‘Wy’ is the dry weight of the membrane.
The percentage of porosity (¢) was calculated by using the following equation.
(%) = u % 100
AXxIxp )

Where, I’ is the thickness of the membrane (cm), A’ is the area of membrane (cm?) and ‘p’ is the density of pure
water (0.998gcm ™).

Molecular weight cut-off (MWCO) study. The MWCO of M-3 membrane was determined by filtering a
series polyethylene glycol (PEG) with average molecular weight of 2000, 4000, 6000 and 10,000 Da*. The rejec-
tion coefficient of 500 ppm of PEG solutions were assessed at 1 bar pressure. The solute concentration was meas-
ured in terms of total organic carbon (TOC) with TOC-L SHIMADZU TOC analyzer. The percentage of rejection
was calculated using the following equation.

CP
% of rejection = |1 — o x 100

f (3)

Where ‘C,’ and ‘Cy are the solute concentrations of permeate and feed respectively.

Permeation and antifouling study. In the permeation study, 10 cm length of HF membrane sample was
cut and potted using epoxy adhesive. All the experiments were carried out in the lab made cross flow apparatus.
At first, the membranes were compacted for 30 min at 2 bar pressure. The pure water permeability (PWP) T,,;” was
measured using the following equation at 1 bar for 60 min.

Q
nAAP (4)

le =
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Figure 3. FT-IR spectra of poly(MBAAm-co-SBMA) and MBAAm.

Where ‘Q’ is the amount of water collected (L h™!), ‘n’ is the number of hollow fiber membrane, ‘AP’ is the applied
pressure (bar), A’ is effective area of the hollow fiber membrane (m?) and ;" is expressed in (L /m? h bar).

The percentage dye rejection was calculated by the above equation (3). An aqueous solution of RB 5 and RO
16 were prepared at the concentration of 100 ppm. The solute concentration was measured using UV-Vis spectro-
photometer (HACH DR 5000) at the X\, of 592 nm and 494 nm for RB 5 and RO 16.

The antifouling performance of the membranes was studied by calculating the flux recovery ratio (FRR)®'.
In this study BSA (0.8 gL™') was used as a model foulant. The J,,;” was measured by calculating the clean water
permeability for 40 min. The BSA solution was passed through the membrane surface for another 40 min and J;
was calculated. The membranes after fouling with BSA solution was washed in running tap water for 10 min and
T2 was measured as like ;> The FRR can be calculated using the following equation.

Lo

wl

FRR (%) _[ ] x 100

©)

Results and Discussion

Characterization of poly(MBAAm-co-SBMA) nanoparticles. FT-IR and TEM analyses. FT-IR spec-
tra in Figure 3 represents the functional groups present in the poly(MBAAm-co-SBMA) and MBAAm. The peaks
at 1656 cm ™! and 1529 cm™! designate the stretching vibration of amide C= O and bending vibration of NH-CO.
The peaks at 1722 cm™'and 1043 cm™! indicate the ester (C=O) and sulfonate (S = O) stretching vibrations®>.
The peak at 1626 cm ™! attributed to the alkene C = C stretching vibration of MBA Am, which was not observed
in the poly(MBAAm-co-SBMA) due to the polymerization reaction. This change is one of the reliable confirma-
tion that the reaction had been completed. The peak at 3271 cm ™! indicates the stretching vibration of N-H in
amide group of poly(MBAAm-co-SBMA). The peak at 1229 cm ! due to C-N stretching vibration of the amide
group. However, the peak at 954 cm™! owing to the presence of C-N stretching vibration of quaternary ammo-
nium group®-%°. The above results indicated that the poly(MBAAm-co-SBMA) was comprised by the monomer
SBMA and cross-linker MBAAm. The morphology of the as-prepared poly(MBAAm-co-SBMA) nanoparticles
was visualized using field emission scanning electron microscope (FESEM) and transmission electron micros-
copy (TEM). As depicted in Figure 4, the nanoparticles exhibited comparatively physical uniform shape and
size, with a diameter in the region of around less than 60 nm. Kaiguang et al. reported that in DPP the size of the
nanoparticles does not depend on the amount of solvent removed, whereas the reaction temperature®, AIBN,
and monomer concentration® directly affects the size of the nanoparticles. Figure 4d presents the SAED pattern
of the nanoparticles. It is clear from the picture that, the as-prepared nanoparticles exhibits small spots creating
up a ring. It indicates that the nanoparticles are polycrystalline in nature®. In addition, the nanoparticles show
slight agglomeration, which is clear from the TEM picture. The possible justification for such agglomeration may
be due to the electrostatic attraction between the counterions. Figure 5 depicts the schematic representation of
nanoparticles synthesis and possible mechanism of agglomeration. The similar kind of observation had been
reported elsewhere®”8. Further, the elemental mapping analysis was carried out to confirm the presence of all
the elements. Figure 6a—d show the distribution of C, N, O and S elements on poly(MBAAm-co-SBMA), among
them S is the characteristic element of SBMA monomer. Consequently, Figure 6d confirms the presence of SBMA
and uniform distribution.

Surface properties and hydrodynamic diameter. The surface charge of the synthesized poly(MBAAm-co-SBMA)
nanoparticles was measured. As shown in Figure 7a, the nanoparticles exhibited the zeta (C) potential of —
47.7mV. The negative (-potential of the nanoparticles could be attributed to the presence of sulfonate group.
The pK, value of sulfonate group is 2% and the pK|, value of quaternary ammonium group is 5°. Consequently,
the quaternary ammonium group signifies weaker base than the sulfonate group as acid. Therefore, the overall
surface charges of the as-synthesized nanoparticles exhibit a negative charge in aqueous solution. According to
Dorian et al. the dispersibility of the nanomaterial could be enhanced by coating with the carboxylic acid group,
which provides negative (-potential to the material. As a result, the nanoparticle maintains the suspension over
the extensive range of pH deprived of any agglomeration”". Similarly, the synthesized nanoparticles exhibit the
negative (-potential and develop an electrical double layer, which avoids the nanoparticles from aggregating and
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preserves the stable dispersion in a variety of solvents through electrostatic repulsion. Further, the nanoparticles
exhibited the BET surface area of 89.2 m?/g and mean pore diameter of 37 nm with the pore volume of 0.12 cc/g.
In addition, the hydrodynamic diameter of the nanoparticle was 331 nm, which is presented in Figure 7b. The
increase in the size was due to the slight aggregation of nanoparticles in water. Russell et al. reported that sulfonate
group has strong tendency to form hydrogen bonding’? Therefore, aggregate formation was attributed to the
formation of hydrogen bonding between the sulfonate group and water.

Thermal stability study. The thermal stability of the nanoparticles was analyzed using TGA. The TGA anal-
ysis showed that the synthesized nanoparticle is thermally stable, as the onset of degradation is above 250 °C.
Moreover, the curve contains three-stage degradation. The first weight loss between 25 and 105°C due to the
adsorbed water. The second weight loss from ca. 255 to 333 °C attributed to the degradation of a quaternary
ammonium group. The third stage degradation in the region of ca. 340 to 450 °C ascribed to the removal of more
stable oxygen functionalities. Figure 8 shows the TGA curves of the nanoparticles, along with its differential
thermogravimetry (DTG) curve.
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Figure 7. (a) C-potential and (b) hydrodynamic diameter of nanoparticles.
XRD analysis.  Figure 9 depicts the XRD pattern of the poly(MBAAm-co-SBMA) nanoparticles. Two intense

broad bands centered at 26 of ~11.88° and ~22.68° demonstrates that these nanoparticles are polycrystalline in
nature. This result is well aligned with SAED pattern of the nanoparticles.
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Figure 8. TGA and DTG curves of poly(MBAAm-co-SBMA).
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Figure 9. XRD pattern of poly(MBAAm-co-SBMA).

M-0 80.0 29.5 41.6
M-1 76.1 48.2 53.1
M-2 71.4 53.1 61.4
M-3 67.0 61.7 66.5
M-4 65.2 56.4 62.2

Table 3. Membrane properties.

Characterization of membranes.  Surface hydrophilicity. The hydrophilicity of the as-prepared mem-
branes was evaluated by measuring the contact angle and water uptake capacity. In general, it is believed that
lower the contact angle higher will be the hydrophilicity””*. Since the pristine membrane (M-0) is less hydro-
philic in nature, it exhibited the higher contact angle of 80.0°. However for the nanocomposite membranes such
as M-1, M-2, M-3 and M-4, the contact angle was observed 76.1°, 71.4°, 67.0° and 65.2° respectively (Table 3). The
decrease in contact angle was attributed to the incorporation of hydrophilic poly(MBAAm-co-SBMA) nanopar-
ticles. The hydrophilic functional group such sulfonate and amide group present in the nanoparticles was changed
the interfacial free energy of the membrane. In addition, the sulfonic acid group has a greater water uptake capac-
ity, which increases the surface hydrophilicity of the membrane.

Membrane Morphology. 'The change in the morphology of the membranes upon the addition of nanoparticles
was characterized using SEM. As shown in Figure 10, the nanocomposite hollow fiber membranes exhibit asym-
metric structure with top skin layer, sub-layer, and fingerlike macrovoids. The sub-layer is sandwiched between
the top and bottom fingerlike layer. As stated by McKelvey et al. the growth of macrovoids depends on the change
in diffusion rate between non-solvent and solvent during phase inversion”. Since the pore-forming agent such
as PVP was added to all the membranes invariably, the change in fingerlike projection between the prepared
membranes was not observed distinctly upon the addition of nanoparticles. In addition, the air gap 1 cm was
maintained throughout the spinning process to increase the flux. Subsequently, the phase inversion occurred
on both outer and inner side of the membranes at a nearly concurrent rate and led to the formation of two
layers of the finger-like structure. The reported results are consistent with the literature’®. The normal digital
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Figure 10. Cross-sectional SEM images of (a) M-0, (b) M-1, (c) M-2, (d) M-3 and (e) M-4 membranes
magnified at 800X and digital photographic image of (f) M-3 membrane.

photographic image of the HF membrane is depicted in Figure 10F. Besides, the MWCO of M-3 membrane is
9242 Da (Figure 11), which suggests that the as-prepared membrane is UF membrane””.

XPS analysis. The M-3 membrane surface was analyzed by XPS and depicted in Figure 12. As shown in
Figure 12a, the peaks at 168.38 ¢V, 285.18 ¢V, 400.18 ¢V and 532.18 eV were attributed to S 2p, C 1s, N 1 s and
O 1s elements. Additionally, the deconvoluted peaks of C 1s and N 1s are presented in Figure 12b and c. In
Figure 12b, the peaks at 285.21 ¢V, 286.14 eV, 286.36 eV, 287.11 eV and 288.15 eV were corresponding to C-C,
C=0, C-N*/C-SO;™ and O-C=0. For N 15, N-C=0, N-C, and "™NR, were observed at 400.28 eV, 398.18 ¢V,
and 402.68 V. The elemental composition (atomic %) of the nanocomposite HF membrane was observed as
77.35%, 15.81%, 2.76% and 4.08% for C, O, S and N elements respectively. Thereby, the existence of the nanopar-
ticles in the membrane matrix was confirmed.

The surface charge of the membrane. ~ As shown in Figure 13, the membranes M-0 and M-3 exhibited the negative
charge over the entire pH range 4-10, and the absolute (-potential value was decreased to acidic pH values. The
isoelectric point (IEP) of PSF neat (M-0) membrane was observed at pH 3.0, which is similar to the literature’s.
However, the IEP of M-3 membrane was detected at pH 3.4. The change in the IEP could be attributed to the
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Figure 11. The MWCO curve of M-3 membrane.
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Figure 12. XPS spectra of M-3 membrane.

incorporation of nanoparticles. In addition, the incorporated zwitterionic nanoparticles are negatively charged
at pH 6.5. However, the (- potential of M-3 was less at pH 7 when compared to M-0 membrane. The reduced
(- potential could be attributed to the intervention of cation adsorption from background electrolyte (KCl) on
the surface, which decreases the negative charge density of the sulfonate group. As a result, the (- potential of the
nanoparticle becomes less negative, that directly reduces the net charge of the membrane surface. Overall, the
as-prepared membrane could exhibit negative charge over the large range of pH.

Permeability and antifouling performances. The permeation of water through the membrane is deter-
mined primarily by the surface hydrophilicity and pore size’. In order to evaluate the effect of the different
poly(MBAAm-co-SBMA) nanoparticles content on the filtration performance of the as-made membranes, the
pure water permeability (PWP) of all the UF membranes was measured; the results are presented in Figure 14.
As shown, the PWP of the membranes increases with the enhancement of the concentration of nanoparticles.
The pristine (M-0) exhibited the lowest PWP of 22 L/ m? h bar. The membrane M-3, embedded with 0.5 wt%
of nanoparticles exhibited the PWP of 56 L/ m? h bar. A plausible explanation is that the added nanoparticles
could be increased the surface hydrophilicity of the membranes. The increased hydrophilicity would enhance
the rate of demixing during phase inversion. Further, the non-solvent inflow and solvent outflow would be more.
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Figure 14. PWP of M-0, M-1, M-2, M-3 and M-4 membranes.

Consequently, the porosity showed the increasing trend. As shown in Table 3, the porosity and water uptake
increase as the concentration of nanoparticles increases. The membrane M-3 showed the highest porosity of
66.5% and water uptake of 61.7% compared to the pristine membrane M-0 of 41.6 and 29.5%. However, for the
membrane M-4 with 1 wt% of nanoparticles, the porosity and water uptake reduced to 62.2 and 56.4%. The simi-
lar trend had been observed in PWP of M-4 membrane. The PWP was reduced to 35L/ m? h bar. The convincible
reason for the reduction in porosity, water uptake, and PWP is that the embedded nanoparticles may lead to
partial agglomeration, consequently blocking the pores of the membranes and increase the resistance towards the
water permeation®®®. Figure 15 represents the time-dependent water permeability of the membranes at different
conditions. The initial decline in the permeability of the water was due to the mechanical deformation of the
membrane matrix®!. In addition, Figure 15 indicates the increase of water permeability as the concentration of
nanoparticle increases. However, during the BSA filtration, there was a sudden decline in the water permeability.
The sudden decline was attributed to the adsorption of BSA molecules on the membrane surface, which blocks
the polymeric membrane pores. The antifouling capacity of the as-made membranes was measured in terms of
flux recovery ratio (FRR) and it is depicted in Figure 16. The membrane M-3 exhibited the FRR of 73% compared
to the pristine membrane M-0 of 24%. The increased FRR of the M-3 was due to the increased hydrophilicity. It
has been accepted widely that membrane surface decorated with zwitterionic substances can bestow outstanding
antifouling ability®2-%. Further, it forms the hydration layer over the membrane surface, which avoids the adsorp-
tion of foulants on the membrane surface. Moreover, the prepared nanocomposite membranes are exhibiting
negative charge at the neutral pH. As a result, the BSA molecules are poorly adsorbed via electrostatic repulsion
as the BSA molecules are negatively charged at pH 7.4. However, the membrane M-4 exhibited the reduced FRR
of 67%. The reduced FRR was owing to the agglomeration of the nanoparticles, which encourages the adsorption
of the foulant. In summary, the membrane with 0.5% of nanoparticle loading is the optimal concentration for the
preparation of membrane.

Dye removal study. The filtration ability of the M-3 membrane for the different dye solutions as a function of
pH is depicted in Figure 17. In the pH range of 3-10, the membrane performance varies with the solution pH.
As shown in Figure 17, in acidic pH the permeability of the dye decreases and rejection increases. In general, the
sodium salt of dye molecules is highly soluble in water. However, while decreasing the pH to highly acidic side,
the sulfonate groups present in the dye molecules are getting protonated and become a sulfonic acid group. As a

SCIENTIFICREPORTS |7: 15889 | DOI:10.1038/s41598-017-16131-9 11



www.nature.com/scientificreports/

60 Pure water BSA solution | Pure water
2%900950000000 i —=—M-0
—k—M-1
50 | M ——M-2
—o—M-3

5

Water permeability (le2 h bar)
S 8
1 1

-
o
1

Time (min)

Figure 15. Time depended PWP in different conditions.

90 100
-.
N \.\ “
- ..
T l I o5
70
&
= 60 720 3
= =
= 8,
& 8
w %0 l8s 5
=
40 - =
I 80
30 -
20 - L 75
M-0 M-1 M-2 M-3 M-4
Membrane

Figure 16. FRR and BSA rejection of membranes.

55 100

70 4

Rejection (%)
4 2 g
: L 2
-
-‘
!: T T
3 2 8 % 8 & & &
Permeability (L /m* h bar)
Rejection (%)
® 3
o o
il 1
i
T T T
3 g &
Permeability (L. /m” h bar)

- 10

pHT pH 10 pH3 pH T pH 10 pH3

Figure 17. Permeability and rejection of (a) RB 5 and (b) RO 16 dyes at different pH.

result, the solubility and polarity of the dye molecules are decreased. Thus, the dye molecules are precipitated and
aggregated largely at pH 3. In summary, the increased rejection owing to the aggregation of dye molecules and
declined permeability due to the precipitation of dye, which is in good agreement with the reported literature”.
At pH 10, the permeability of dye was reduced to a smaller extent. The reduced permeability could be due to
the swelling of the membrane at the basic pH. The swelling could increase the thickness of the membrane®.
Consequently, the permeability of the dye molecules was reduced to a smaller extent. Further, the rejection of
RB 5 was high as compared to RO 16 at pH 7. The reason for the enhanced rejection was due to size exclusion
mechanism i.e., the higher molecular weight of the former compared to later. In conclusion, the optimum pH for
the removal of both the dye molecules is 7. The digital photographs of the feed and permeate of RB 5 and RO 16
are depicted in Fig. 18. The comparison of dye removal capacity of polymeric membranes from recent literature
and the present study is illustrated in Table 4. Generally, the effluent from the textile and dyeing industry usually
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PES/GO-PSBMA Loose NF Reactive black 5 11.98 9.4 99.2 46
PAEK-COOH Tight UF Congo red 29.5 25 99.0 77
Sepro NF 6 Loose NF Direct red 80 13.7 13.2 99.95 87
UH004 (Hydrophilic PES) Tight UF Direct red 80 27 26 99.9 88
SeproNF2 A Loose NF Direct red 80 10.5 9.6 99.98 87
PSf-poly(MBAAm-co-SBMA) | UF peactive gi‘;‘; PR 51/51.8 98/80.7 This study

Table 4. Comparison of dye removal ability of polymeric membranes from recent literature and this study.
*PWP, pure water permeability. "DPF, dye permeate flux.

consist of dyes and salts*. In that respect, salts such as NaCl and Na,SO,rejection studies were carried out. The
M-3 membrane exhibited the rejection in following order Na,SO, (11%) > NaCl (7%), signifying that the nano-
composite membrane was negatively charged, which is consistent with the zeta potential result.

Conclusions

The zwitterionic polymer nanoparticles were synthesized via distillation-precipitation polymerization. The
as-synthesized nanoparticles exhibited high surface area (89.2 m?/g), thermal and colloidal stability. The syn-
thesized nanoparticles were successfully incorporated into polysulfone membrane matrix and the membranes
were prepared by dry/wet phase inversion method. The M-3 nanocomposite membrane showed high pure water
permeability of 56 L/ m? h bar, rejection of reactive black 5 (>98%) and reactive orange 16 (>80.7%) with the
dye permeability of 51 L/ m? h bar and 51.8 L/ m? h bar at dye concentration of 100 ppm, which has the molecular
weight cut-off of 9242 Da. These results clearly reveal that the as-prepared membrane can be an attractive candi-
date for the treatment of industrial and textile wastewater treatment.
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