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miRDDCR: a miRNA-based method 
to comprehensively infer drug-
disease causal relationships
Hailin Chen1, Zuping Zhang2 & Wei Peng3

Revealing the cause-and-effect mechanism behind drug-disease relationships remains a challenging 
task. Recent studies suggested that drugs can target microRNAs (miRNAs) and alter their expression 
levels. In the meanwhile, the inappropriate expression of miRNAs will lead to various diseases. 
Therefore, targeting specific miRNAs by small-molecule drugs to modulate their activities provides 
a promising approach to human disease treatment. However, few studies attempt to discover drug-
disease causal relationships through the molecular level of miRNAs. Here, we developed a miRNA-
based inference method miRDDCR to comprehensively predict drug-disease causal relationships. We 
first constructed a three-layer drug-miRNA-disease heterogeneous network by combining similarity 
measurements, existing drug-miRNA associations and miRNA-disease associations. Then, we extended 
the algorithm of Random Walk to the three-layer heterogeneous network and ranked the potential 
indications for drugs. Leave-one-out cross-validations and case studies demonstrated that our method 
miRDDCR can achieve excellent prediction power. Compared with related methods, our causality 
discovery-based algorithm showed superior prediction ability and highlighted the molecular basis 
miRNAs, which can be used to assist in the experimental design for drug development and disease 
treatment. Finally, comprehensively inferred drug-disease causal relationships were released for further 
studies.

Most drugs achieve their therapeutic functions by binding to specific molecular targets which are relevant to an 
abnormal state, thereby changing the biochemical and/or biophysical activities of these molecules1. Therefore, it is 
of critical importance to investigate how drugs and diseases form their causal relationships in the molecular level. 
Many evidences suggest that a drug can act on multiple targets rather than one target2,3. More recently, increas-
ing studies revealed that drugs can target microRNAs (miRNAs), which are short (~22 nucleotide) non-coding 
RNAs, and regulate their expressions. For instance, Rossi et al.4 detected that the expression levels of 22 miRNAs 
were altered with the treatment of 5-fluorouracil in human colon cell line.

miRNAs are single-stranded RNAs with post transcriptional regulatory functions. They regulate gene expres-
sions by base pairing to complementary sequences of their target mRNAs5–7. Thus, accumulating researches 
indicated that miRNAs are involved in a broad range of biological processes, such as cellular signaling8, prolif-
eration9,10 and metabolism11. As such, changes in the expression levels of particular miRNAs are related to many 
kinds of critical diseases. For example, the reduced expression level of let-7 was shown to be associated with lung 
cancer progression12. In addition, miRNAs are suitable to be drug targets as they have several attractive features, 
such as specific secondary structures and conserved sequences13. As a result, restoring miRNA expression levels 
with small-molecule drugs offers an innovative and promising approach to human disease treatment13, which has 
brought forward to a new research field of miRNAs in pharmacogenomics14.

With this understanding, studying drug-disease causal relationships under the perspective of their genetic 
basis miRNAs could not only help to unveil mechanisms of action of drugs but also advance public health. 
However, few researches address this question in a systematic view.

Based on chemical descriptors and machine learning algorithms, Jamal et al.15 created computational mod-
els to predict drugs’ biological activities on miRNAs. Jiang et al.16 applied transcriptional responses to identify 
associations between drugs and cancer-related miRNAs. Depending on gene expression signatures of bioactive 
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small molecule perturbation and Alzheimer’s disease (AD)-related miRNA regulation, Meng et al.17 presented a 
systematic computational approach to constructing a drug-miRNA association network in AD. By integrating 
features of drugs and miRNAs, Lv et al.18 proposed an algorithm of Random Walk with Restart (RWR) to infer 
new associations between small molecules and miRNAs. The above four methods all identify only drug-miRNA 
associations, but do not comprehensively provide therapeutic potential for drugs.

In the meantime, as miRNAs are highly relevant to multiple complex diseases, many computational efforts19–33 
have been devoted to detecting potential miRNA-disease associations for understanding the molecular mecha-
nisms of diseases. These methods mainly relay on the assumption that miRNAs tend to show similar dysfunc-
tional evidences for similar disease clusters34. Generally, for these researches various features were first integrated 
for miRN-miRNA and disease-disease similarity calculation. Network-based or machine learning-based algo-
rithms were then developed to rank the most promising disease-related miRNAs or miRNA-related diseass for 
further biomedical tests. These studies provide reliable guidance for in vivo experiment design. However, one 
limitation lied in these methods is that they could not provide information of disease treatment.

For the above studies, predictions of drug-miRNA associations and miRNA-disease associations were 
treated separately. We argue that by incorporating information of target miRNAs, we can make more insightful 
drug-disease causal relationship predictions. Based on the assumption that drugs will form relationships with 
diseases when they share some significant miRNA partners, Chen et al.35 applied hyper-geometric tests by com-
bining existing drug-miRNA associations and miRNA-disease associations to predict drug-disease associations. 
This is the first computational model proposed to infer drug-disease associations, in which the molecular basis 
miRNAs is explicitly included. Even though a high AUC value could be received, this method is not workable for 
new drugs whose drug-miRNA associations cannot be obtained.

In this paper, we developed a miRNA-based method to extensively predict drug-disease causal relationships 
(miRDDCR). Based on two previous researches18,34, the proposed method miRDDCR relied on the hypothesis 
that similar small molecules tend to target similar miRNAs, and finally treat similar diseases. miRDDCR can pre-
dict drug-disease relationships in a large scale by combining similarity measurements, existing drug-miRNA asso-
ciations and miRNA-disease associations. To evaluate the prediction performance of our method, leave-one-out 
cross validations (LOOCV) were conducted and satisfied AUC values could be received. Compared with existing 
methods, our method miRDDCR shows superior prediction ability. Moreover, case studies of two drugs demon-
strated that our method is powerful in predicting drug-disease causal relationships with a high level of reliability. 
After validating the usefulness of our method, we used miRDDCR to comprehensively infer drug-disease causal 
relationships, which we hope will facilitate further drug discovery and disease treatment.

Figure 1.  The drug-miRNA bipartite graph. The red circles represent drugs and the pink circles denote 
miRNAs. This graph was prepared by using the 630 experimentally confirmed drug-miRNA associations.
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Results
Preliminary analysis of datasets used in this manuscript.  The datasets (Supplementary Dataset S1) 
used in our paper consisted of 831 drugs, 540 miRNAs, 341 diseases, 630 drug-miRNA associations and 6082 
miRNA-disease associations. A whole view of the drug-miRNA bipartite graph and the miRNA-disease bipartite 
graph could be seen in Figs 1 and 2. For the 831 drugs, there were only 51 drugs whose drug-miRNA associations 
exist. Some statistical analysis of the two bipartite networks was listed at Tables 1 and 2, respectively. We could 
observe that both the two bipartite graphs were sparse.

Parameter tuning and performance evaluation of the proposed method miRDDCR.  There exist 
6 parameters involved in our algorithm. The parameters α1 and α2 were decay factors. The other 4 parameters 
l r l, ,1 1 2 and r2 were considered as the numbers of maximal iterations of random walks on the bipartite networks. 
For parameter tuning, we followed ref.36 to set α1 = α2 = 0.8 and = = = =l r l r 41 1 2 2 .

The predicted indication results for the whole 831 drugs were ranked according to the final values received 
from the algorithm miRDDCR. A bigger value indicated a greater probability that a drug forms a causal rela-
tionship with a disease. Experimentally validated drug-disease relationships were extracted from Comparative 
Toxicogenomics Database (CTD)37, DrugBank38 and Therapeutic Targets Database (TTD)39. We collected 13490 

Figure 2.  The miRNA-disease bipartite graph. The red circles indicate diseases and the pink circles denote 
miRNAs. This graph was drawn by using the 6082 known miRNA-disease associations.

No. of 
drugs

No. of 
miRNAs

No. of drug-miRNA 
associations

Average degree of 
drugs

Average degree 
of miRNAs Sparsity

831 540 630 0.76 1.17 0.0014

Table 1.  Statistics of the drug-miRNA bipartite graph.

No. of 
miRNAs

No. of 
diseases

No. of miRNA-
disease associations

Average degree 
of miRNAs

Average degree of 
diseases Sparsity

540 341 6082 11.26 17.84 0.033

Table 2.  Statistics of the miRNA-disease bipartite graph.
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drug-disease relationships which were relevant to our study from the three databases. These confirmed relation-
ships were used as a gold standard dataset for performance evaluation. Taking the known 13490 relationships as 
the positive instances, a receiver operating characteristics (ROC) curve (see Fig. 3) was drawn by calculating true 
positive fraction (TPR, sensitivity) and false positive fraction (FPR, 1-specificity) at different cutoffs. Finally, a 
value of area under curve (AUC) of 0.7334 was received.

Furthermore, we used leave-one-drug-out cross-validations (LOOCV) to evaluate the performance of miRD-
DCR in predicting drug-disease causal relationships. For the whole 831 drugs, each drug was considered as a test 
drug once and all its drug-miRNA association information was removed. The remaining 830 drugs were taken 
as the training dataset. For the 831 drugs, there existed 201 drugs whose experimentally confirmed drug-disease 
relationships were not available in the gold standard dataset. Therefore, we could not calculate their AUC val-
ues. For the remaining 630 drugs, the distribution of their AUC values, when leave-one-drug-out cross valida-
tions were implemented, could be seen in Fig. 4 with an average AUC value of 0.717. Meanwhile, for about 60% 
(376/630) of the 630 drugs, we received higher AUC values than 0.7, with the highest AUC value of 0.985 for the 
drug CID:3108 (Dipyridamole).

Comparison with existing methods.  Until recently, efforts made on causality discovery-based methods 
for drug-disease relationship predictions were rare. The most related study to ours is the inference model intro-
duced in ref.35, in which drug-disease causality relationship predictions were only based on known drug-miRNA 
associations and miRNA-disease associations. For novel drugs, whose drug-miRNA associations were not avail-
able, their indications could not be inferred by this method. Our method miRDDCR overcame this drawback by 
taking advantage of similarity measurements. In the leave-one-drug-out cross-validation section, we considered 
each drug as a novel drug and reliable prediction ability could be obtained.

With the accumulation of biochemical data, several algorithms40–43 have been put forward to predict poten-
tial drug–disease relationships. They first integrated multiple types of features to construct drug-drug and 
disease-disease similarity metrics. Depending on the similarity values and experimentally verified drug-disease 
relationships, machine learning-based or network-based methods were then developed to predict new indica-
tions for drugs. Different sources of information prevented a direct comparison between these methods and 
miRDDCR. Generally, these methods relayed heavily on known drug-disease relationships for new drug-disease 
association prediction. Obviously, experimentally confirmed drug-disease associations are scarce. The sparsity 

Figure 3.  Performance evaluation of miRDDCR in term of ROC curve.

Figure 4.  The distribution of AUC values received by leave-one-drug-out cross-validations (LOOCV) for the 
630 drugs.
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of data preparation might influence prediction accuracy. Our method did not need known drug-disease associ-
ations for prediction. Moreover, these methods, unlike our method miRDDCR, provided no molecular hints to 
help design experiments to test and confirm the results. Our method made full use of the information of target 
miRNAs and provided valuable resource for drug design and disease treatment.

Case studies.  In this experimental scenario, case studies of the two drugs, CID:33887 (Almitrine) and 
CID:137 (Aminolevulinic acid), were analyzed for further evaluation of the ability of our method miRDDCR to 
predict potential drug-disease causal relationships.

For the drug CID:33887 (Almitrine), there was no target miRNA information in the prepared drug-miRNA 
dataset. After the first round of bi-random walks in miRDDCR on the drug-miRNA bipartite network, potential 
target miRNAs were ranked, in which the top 5 miRNAs were hsa-mir-21, hsa-mir-27b, hsa-mir-23a, hsa-mir-
27a and hsa-mir-155. With the second round of bi-random walks on the miRNA-disease bipartite network, the 
indications of the drug Almitrine could be received. The top 10 predicted diseases were breast neoplasms, hepa-
tocellular carcinoma, stomach neoplasms, colorectal neoplasms, melanoma, lung neoplasms, neoplasms, ovarian 
neoplasms, heart failure and prostatic neoplasms. The 9th (9/341) disease heart failure was the only indication 
available for the drug in the gold standard dataset and we successfully predicted this relationship with a high rank. 
It should be noted that 4 (hsa-mir-21, hsa-mir-23a, hsa-mir-27a and hsa-mir-155) out of the top 5 target miRNAs, 
when expressed abnormally, were involved in the development of heart failure44.

For the drug CID:137 (Aminolevulinic acid), its potential indications were ranked according to the scores 
received by our algorithm miRDDCR. We selected the top 5, top 10, top 20, top 30 and top 40 predicted diseases 
and found that there were 5, 9, 17, 21 and 23 results supported by the gold standard dataset, respectively. We took 
the top 1 predicted disease breast neoplasms as an example to explain the inference ability of our algorithm. For 
the drug CID:137 (Aminolevulinic acid), there was no target miRNA information in the 630 drug-miRNA associ-
ations. After the first round of random walk, we chose the top 10 predicted target miRNAs and discovered that the 
3rd target (hsa-mir-450a-2), the 5th target (hsa-mir-23a), the 6th target (hsa-mir-29b-2), the 7th target (hsa-mir-
320b-1) and the 10th target (hsa-mir-375) were associated with the predicted disease breast neoplasms44.

As currently confirmed drug-disease associations were not complete, we think the other predicted diseases 
with high ranks could be potential indications for the drugs.

Comprehensive drug-disease causal relationship predictions.  After verifying the prediction power 
of our method by cross-validations and case studies, all the known associations were used as training data to 
comprehensively predict potential drug-disease causal relationships. Moreover, as causal factors in the molecular 
level, the top 20 predicted target miRNAs for each drug (Supplementary Dataset S2 online) was available for 
further experiment tests. For each of the 831 drugs, we published the top 50 predicted candidate indications for 
future studies. The full list of the whole inferred relationships can be obtained from the Supplementary Dataset S3 
online. To be more accurate, we suggested taking the prediction results for the 376 drugs, whose AUC values were 
greater than 0.7 in leave-one-out cross validations, into consideration.

Discussion
Exploring the molecular mechanism behind the curative effects of drugs is crucial for drug development and 
disease treatment. Recent researches suggested that drugs can achieve their therapeutic functions by targeting 
miRNAs because the abnormal expression of miRNAs could lead to a lot of complex diseases and drugs can bind 
miRNAs to restore their expression levels. As a relatively new discipline in biomedical research, our understand-
ing of drug-targeted miRNAs and miRNA-related diseases is lacking. Furthermore, few studies attempted to 
systematically discover drug-disease causal relationships through the target miRNAs.

Figure 5.  A three-layer drug–miRNA-disease heterogeneous network.



www.nature.com/scientificreports/

6Scientific Reports | 7: 15921  | DOI:10.1038/s41598-017-15716-8

In this paper, we developed an approach miRDDCR to revealing the causal relationships between drugs 
and diseases under their molecular basis miRNAs. Our method makes full use of similarity measurements, 
known drug-miRNA and miRNA-disease associations to infer indications for drugs. As current drug-miRNA 
and miRNA-disease associations are insufficient, two rounds of bi-random walks are implemented to reveal the 
hidden associations in the drug-miRNA-disease heterogeneous network. We have applied our method to real 
datasets and the results showed that our method could successfully discover the causality underlying drugs and 
diseases. Compared with other algorithms, our method provided a straightforward strategy for causality discov-
ery and showed superior prediction performance.

As similarity values provide a vital role in the prediction procedure, we need to further investigate the types 
of features collected for similarity measurements. Meanwhile, the predicted drug-disease relationships might 
be biased as the numbers of known drug-miRNA associations and miRNA-disease associations were rare. We 
expect the prediction power of our method can be improved by integrating more experimentally confirmed 
drug-miRNA and miRNA-disease associations.

It should be noted that the mechanism of action of drugs has not been completely investigated. The most 
recent studies indicated that drugs may also target other non-coding RNAs, including circular RNAs, long 
non-coding RNAs and Piwi-interacting RNAs (see ref.45 for more details). At the same time, complex diseases are 
multi-factor driven. For example, the study conducted by Wang et al.46 suggested that DNA mutations and other 
genomic alterations, which were valuable biomarkers and could be used to construct disease hallmark networks, 
provided significant roles in cancer clonal evolution and associated clinical phenotypes. Therefore, more rele-
vant biochemical information is needed for deepening our knowledge of drug-disease causal relationships, even 
though our study provided a feasible strategy for discovering the causality.

Methods
Datasets.  The 831 drugs used in our manuscript were downloaded from ref.18. Similar to ref.18, the pairwise 
similarity values of those drugs were calculated by integrating information of chemical structures47, functional 
consistency48 and side effects40. The integrated similarity Sd was defined as:

Figure 6.  Description of workflows of the algorithm miRDDCR.
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Here, Sd
c, Sd

f  and Sd
s denoted the similarity measurements based on chemical structures, functional consistency 

and side effects, respectively.
The 540 miRNAs employed in this paper were also collected from ref.18. Similar to ref.18, the pairwise similar-

ity SmiR of those miRNAs was based on functional consistency48.
We obtained 341 diseases and their pairwise similarity measurements Sp from ref.26. The similarity Sp was 

calculated by incorporating disease semantic similarity and disease functional similarity.
Experimentally validated drug-miRNA associations and miRNA-disease associations were selected from the 

latest versions of SM2miR49 and HMDD44, respectively. For drug-miRNA association retrieval, we restricted the 
species to Homo sapiens. After removing duplicate records stored in the databases of SM2MiR and HMDD, we 
finally received 630 drug-miRNA associations and 6082 miRNA-disease associations.

Method Description.  We defined the drugs, miRNAs and diseases as = ...D d d d{ , , , }i1 2 , 
= …miR miR miR miR{ , , , }j1 2  and = …P p p p{ , , , }k1 2 . Experimentally confirmed drug-miRNA associations 

were modeled as a bipartite graph =G V E1 { 1, 1}, where =V D miR1 { , } and = ∈ ∈E a d D miR miR1 { : , }ij i j . 
For E1, its values were 1 or 0 which indicated the presence or absence of each association. Similarly, existing 
miRNA-disease associations were considered as another bipartite graph =G V E2 { 2, 2}, where =V miR P2 { , } 
and = ∈ ∈E r miR miR p P2 { : , }mn m n . For E2, its values were also 1 or 0 which represented the presence or 
absence of each association.

We connected the drug-miRNA bipartite graph and the miRNA-disease bipartite graph together to construct 
a three-layer drug-miRNA-disease heterogeneous network. For each layer, an edge was drawn between two nodes 
when the similarity of the two nodes was bigger than 0. The weight of the edge was set to be the similarity value. 
An example of the heterogeneous network was illustrated in Fig. 5. The objective of this research is to predict 
drug-disease causal relationships based on the three-layer heterogeneous network.

Previously, random walk36,50–53 has been widely used in bipartite graphs for bilateral association prediction in 
bioinformatics. For example, bi-random walk (BiRW)36 was successfully applied on both gene network and phe-
notype network simultaneously, with an averaged output from the two networks in each step, to infer potential 
gene-phenotype associations. Inspired by the successful application of BiRW, we extended the algorithm to the 
three-layer drug–miRNA-disease heterogeneous network to predict potential drug-disease causal relationships.

In this study, a three-layer heterogeneous network, including a layer of causal factors of miRNAs, was constructed 
and the drug-disease causal relationship prediction process mainly included three steps. First, bi-random walks were 
applied on the two-layer drug-miRNA network. Second, another round of bi-random walks was established on the 
two-layer miRNA-disease network. Finally, the prediction results were received by combining the outcomes from 
the two previous steps. The whole pipeline of the algorithm miRDDCR could be outlined in Fig. 6.
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