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Discrimination of CRISPR/Cas9-
induced mutants of rice seeds 
using near-infrared hyperspectral 
imaging
Xuping Feng1, Cheng Peng2, Yue Chen3, Xiaodan Liu1, Xujun Feng2 & Yong He1

Identifying individuals with target mutant phenotypes is a significant procedure in mutant exploitation 
for implementing genome editing technology in a crop breeding programme. In the present study, 
a rapid and non-invasive method was proposed to identify CRISPR/Cas9-induced rice mutants from 
their acceptor lines (huaidao-1 and nanjing46) using hyperspectral imaging in the near-infrared (NIR) 
range (874.41–1733.91 nm) combined with chemometric analysis. The hyperspectral imaging data 
were analysed using principal component analysis (PCA) for exploratory purposes, and a support 
vector machine (SVM) and an extreme learning machine (ELM) were applied to build discrimination 
models for classification. Meanwhile, PCA loadings and a successive projections algorithm (SPA) were 
used for extracting optimal spectral wavelengths. The SVM-SPA model achieved best performance, 
with classification accuracies of 93% and 92.75% being observed for calibration and prediction sets 
for huaidao-1 and 91.25% and 89.50% for nanjing46, respectively. Furthermore, the classification of 
mutant seeds was visualized on prediction maps by predicting the features of each pixel on individual 
hyperspectral images based on the SPA-SVM model. The above results indicated that NIR hyperspectral 
imaging together with chemometric data analysis could be a reliable tool for identifying CRISPR/Cas9-
induced rice mutants, which would help to accelerate selection and crop breeding processes.

Crop breeding has come to the stages of targeted genome editing that has benefited from the development of the 
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9, Cas9) 
gene editing system. CRISPR/Cas9-mediated targeted gene modification was first introduced for plant genome 
editing and crop breeding purposes in 20131. This revolutionary technology allows plant breeders to target very 
specific pieces of DNA without introduction of foreign DNA and to influence key traits accurately and quickly2. 
Although the CRISPR/Cas9 system is an excellent tool for genome editing, the next major challenge is to iden-
tify the resulting mutants due to the extent of off-target mutations and the differences in cleavage specificity 
among species3. Several approaches have been developed for identifying the mutants produced by the CRISPR/
Cas9 system, such as T7 endonuclease I (T7EI) assay, high-resolution melting curve analysis (HRAM), restric-
tion fragment length polymorphism (RFLP) and polymerase chain reaction (PCR)/restriction enzyme (RE) 
assay4–8. However, these DNA- and protein-based techniques need the complex process of extractions are time- 
and labour-intensive, costly, and require expensive capital equipment. Moreover, some precious samples will be 
destroyed by these techniques.

Therefore, a method for the selection of mutants introduced by the CRISPR/Cas9 system without requiring 
any wet chemistry, particularly extraction protocols, would be advantageous where large numbers of samples 
must be analysed. In contrast to biochemical assays, near-infrared (NIR) spectroscopy does not require technical 
expertise or complex techniques, and the spectrophotometer can be installed anywhere with no requirements for 
reagents or complicated protocols9. The radiation from light sources in the NIR region (750–2500 nm) provides 

1Key Laboratory of Spectroscopy, Ministry of Agriculture, College of Biosystems Engineering and Food Science, 
Zhejiang University, Hangzhou, 310058, China. 2Institute of Quality and Standard for Agro-products, Zhejiang 
Academy of Agricultural Sciences, Hangzhou, 310021, China. 3Institute of horticulture, Zhejiang academy of 
agricultural science, Hangzhou, 310021, China. Xuping Feng and Cheng Peng contributed equally to this work. 
Correspondence and requests for materials should be addressed to X.F. (email: njjfxu@163.com) or Y.H. (email: 
yhe@zju.edu.cn)

Received: 13 July 2017

Accepted: 8 November 2017

Published: xx xx xxxx

OPEN

mailto:njjfxu@163.com
mailto:yhe@zju.edu.cn


www.nature.com/scientificreports/

2SCIEntIFIC RePorts | 7: 15934  | DOI:10.1038/s41598-017-16254-z

a unique spectral signature in the form of a spectrum corresponding to the energy absorption and consequent 
vibrations of organic molecules based on relative overtones and combinations of O-H, N-H, and C-H functional 
groups10. Previous research in the transgenic field on the application of NIR spectroscopy and chemometrics has 
demonstrated this technique’s capacity to identify mutants mediated by transgenic technology11. García-Molina 
et al.9 applied the NIR spectroscopy combined with partial least square (PLS) analysis to discriminate low gliadin 
wheat grain from non-transgenic wheat lines with excellent classification accuracy (as high as 96%). Luna et al.12  
used NIR and support vector machine-discriminant analysis (SVM-DA) to discriminate completely trans-
genic soybean oils from non-transgenic ones. Additionally, NIRs combined with chemometrics have also been 
employed successfully in the identification of transgenic rice13, corn14 or mutant of barley15. The basis of this 
technology for the detection of mutants generated using transgenic technology is that it could be used to iden-
tify phenotypic changes caused by genotypic changes that ultimately bring about changes in organic molecular 
bonds11. However, until now, no report in the literature has described the application of NIR hyperspectral imag-
ing in CRISPR/Cas9-induced mutant recognition in the efficiency of the plant breeding process. In contrast to 
conventional NIR spectroscopy, NIR hyperspectral imaging has been used to combine traditional optical imaging 
and a spectral method and is capable of capturing images over broad contiguous wavelengths in the NIR region 
and has received much attention in cereal science16–18.

Therefore, the main objectives of this study were (1) to study the feasibility of screening CRISPR/Cas9-induced 
mutant rice seeds using NIR hyperspectral imaging and chemometrics analysis; (2) to identify important wave-
lengths that can be attributed to the differences between wild-type (WT) and mutant rice strains; (3) to build an 
optimal discrimination model based on important wavelengths to simplify the prediction model and to speed 
up the operation; and (4) to visualize the number and locations of mutants by developing imaging processing 
algorithms.

Results and Discussion
The Morphological characterization and thousand-grain weight.  According to Ishimaru et al.19, 
a deletion TGW6 mutant had greater grain length and higher thousand-grain weight (TGW) but did not influ-
ence grain width compared with its transformation receptors. Table 1 shows the mean results of morphological 
features and TGW. The mean values for area, perimeter, length in pixels and TGW were significantly different 
between mutants and the WT at the 0.05 level when using Duncan’s multiple range test. Area, perimeter and 
length in pixels of seeds were increased after the TGW6 editing for both huaidao-1 and Nanjing 46. No significant 
difference of width in pixels was observed between the mutants and the WT (P < 0.05). Increases in TGW of 5.8% 
and 2.3% were detected for mutants from huaidao-1 and nanjing46, respectively. The bright appearance of seeds is 
a stable genetic characteristic and was used as one of the assessments for classification. Grain phenotypic changes 
after gene editing could be acquired by calculating the morphological features from the hyperspectral image of 
each rice seed in this study. However, the phenotypic changes were slight, and it was difficult to identify mutants 
by appearances from the images alone.

Overview of spectra.  Only the spectrum range of 975–1646 nm was used for analysis due to the back-end 
noise caused by the detection instrument. Figure 1(A,C) shows the extracted spectra of the ROI, and Fig. 1(B,D) 
shows the mean and standard deviation spectra of the WT and mutant samples. The patterns of the reflectance 
curves were similar to those of other crop seeds, such grape seeds20, oat and groat samples21, and Jatropha curcas 
L seeds22, although the position and magnitude of the valleys were specific. The NIR spectra information mainly 
described the shell chemical compositions as the rice seeds were unshelled. There was a peak at approximately 
1122.81 nm and valleys at approximately 1200.19 and 1483.46 nm. Two absorption bands at approximately 1122 
and 1200 nm contributed to the second overtone of C-H stretching vibrations of carbohydrates21,23, and the band 
at 1483 nm was related to the N-H stretch first overtone from CONH2

24. The graphic also shows that the curves of 
the spectra from the different genotypes show consistent trends, and they have similar peaks and valleys positions. 
Slight differences could were noted from the average spectra of WT and CRISPR/Cas9-induced mutant rice seeds 
of these two varieties. The mutant rice seeds exhibited higher spectral reflectances throughout the entire NIR spec-
trum than WT for both huaidao-1 and nanjing46. Therefore, the differences in the extents of magnitude of NIR 
reflectance might result from the phonotypic changes that result from the CRISPR/Cas9-medited genome editing.

Classification analysis by PCA.  PCA is an effective algorithm for reducing the dimensionality of data into 
a set of principal components (PCs), solving the problem of multicollinearity and handling potential co-linearity 
between variables. In this case, PCA programmes developed on all of the average wavelengths of rice samples 

Rice varieties Area in pixels
Perimeter in 
pixels length in pixels

Width in 
pixels

Thousand-grain 
weight (TGW)

WT of huaidao-1 61.31 ± 6.32b 29.43 ± 1.53b 11.20 ± 0.61b 5.65 ± 0.44 24.56 ± 0.64b

Mutants of huaidao-1 65.28 ± 6.29a 30.95 ± 1.65a 11.76 ± 0.62a 5.73 ± 0.37 25.99 ± 0.61a

WT of nanjing46 54.73 ± 5.90b 27.96 ± 1.62b 10.34 ± 0.61b 5.33 ± 0.45 25.66 ± 0.54b

Mutants of nanjing46 55.88 ± 7.99a 28.18 ± 2.47a 10.85 ± 0.72a 5.36 ± 0.41 26.25 ± 0.30a

Table 1.  Means of shape features and thousand-grain weight (TGW) from the studied rice seeds. Different 
letters denote significant differences between wild-type (WT) and CRISPR/Cas9-induced mutants (small 
letters) by Duncan’s multiple range test (P < 0.05). Values are presented as the means ± SD.
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were first applied to visualize the possible clusters and trends in a PCA score plot. The three-dimensional (3D) 
principal component score plot of the first three PCs of rice samples is illustrated in Fig. 2. The first three PCs 
explained the most spectral variations at 99.64% (93.95%, 5.31%, 0.38% for PC1, PC2, PC3, respectively) for 
huaidao-1 and 98.61% (94.35%, 4.93%, 0.33% for PC1, PC2, PC3, respectively) for nanjing46. As can been seen 
from Fig. 2, mutants were clustered together from their acceptor lines, but there were still several overlapping 
places in the PCA score plot. The discrimination between WT and mutants was not clear for huaidao-1 and nan-
jing46. It is worth mentioning that the target gene edited by the CRISPR/Cas9 system, TGW6, resulted in a slight 
phenotypic change (TGW and enhanced grain length) without a change in grain quality19. As consequence, the 

Figure 1.  Profiles for raw spectra (A,C) and average spectra (B,D) of wild-type (WT) and CRISPR/Cas9-induced 
mutants from huaidao-1 (A,B) and nanjing46 (C,D) rice seeds. The shaded area represents the standard deviation 
in each wavelength.

Figure 2.  Three-dimensional (3D) principal component score plots of the first three PCs based on the average 
spectrum of each sample. (A: huaidao-1; B: nanjing46).
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discriminant analysis established by the PCA was not sufficiently effective to select the CRISPR/Cas9-induced 
mutants. As none of the PCs alone contained sufficient information to fully segregate whole rice seeds from their 
acceptor lines, SVM and ELM discrimination models were run in the following study.

Selection of optimal wavelengths.  Hyperspectral imaging data contain redundant information, which 
affects the prediction performance of the model. Variable selection was performed using PCA-loadings and SPA 
wavelength selection-based techniques to facilitate and speed up the classification. Table 2 shows the effective 
wavelengths that were identified using the SPA and PCA-loadings method. By applying the optimal wavelength 
selection method, these two rice varieties showed mainly similar effective wavelengths at 1122.81, 1200.19, 
1227.12, 1314.72, 1402.42, and 1581.51 nm. It is said that NIR spectroscopy is susceptible to the chemical bonding 
of organic matter molecules, such as C-N, C-H and N-H stretching vibrations, which could be caused by geno-
typic changes that result in phenotypic changes11. Absorption bands at approximately 1122, 1200 and 1314 nm 
were related to the second overtone of C-H stretching vibrations21,25–27. The wavelength of 1402 nm presents 
the O-H stretch from carboxyl acids28. A peak in the vicinity of 1580 nm was determined to be associated with 
the first overtone of O-H stretching vibrations29. These wavelengths carrying the discriminant information are 
believed to correspond to the NIR spectral bands relevant to changes in a mutant’s properties caused by TGW6 
gene editing by the CRISPR/Cas9 system.

Classification analysis using a discrimination model.  PCA is a powerful method for finding the pos-
sible clusters of trends among samples; nevertheless, it cannot be applied for building predictive models for clas-
sification. Therefore, discriminant models built on both full and effective spectra were proposed to highlight the 
chemical differences between samples in the latter step (Table 3). The accuracies (in percentages) obtained for 
the calibration and prediction sets were summarized. The SVM and ELM models all achieved good recognition 
results in cases of large samples. For samples from Huaidao-1, better discrimination models using full NIR spec-
tra were obtained from SVM, showing excellent accuracies of 92.38% on the calibration set and 92.50% on the 
prediction set. The classification capacity of the SVM model was also acceptable for Nanjing46, with an accuracy 
close to 90%.

Normally, hyperspectral images contain high-dimensional data with redundancy among contiguous wave-
lengths. According to Wold et al. (1996) discriminant models based on optimal wavelengths might be equally 
or more efficient than full spectra30. Judicious selection of spectra could discard uninformative wavelengths and 
decrease sensitivity to non-linearity, which would improve a model’s robustness and improve the model’s oper-
ating speed. As can been seen from Table 3, optimal wavelength algorithms affected the performance of mutant 
detection for both of these rice varieties. The SPA optimal wavelength algorithm improved the performance of 
the two models, but the PCA loading lines algorithm reduced the models’ recognition capacities. The numbers of 
effective wavelengths decreased to only 6% for nanjing46 and 5.5% for huandao-1 after using SPA method. The 
SPA-SVM was suitable for CRISPR/Cas9-induced mutant identification from both rice varieties, as good results 
were obtained in both the calibration and predication sets. For samples from huaidao-1, correct classifications of 
more than 90% were obtained in the calculation and predication sets, indicating that these selected spectra had 
reliable discrimination power for classification. SPA-ELM was only slightly worse than the SPA-SVM model for 
huaidao-1. For samples from nanjing46, SPA-SVM also improved the classification capacity. The discrimination 
capacity of the SPA-ELM model was slightly worse than that obtained from all of the wavelengths but was still 
rated as acceptable. Nearly all discrimination models built on optimal wavelengths selected by the PCA loading 
lines method yielded worse results than models based on full wavelengths. The overall results indicated that it was 
feasible to discriminate CRISPR/Cas9-induced mutant seeds using hyperspectral imaging and that the SPA-SVM 
recognition model was a reliable and robust model. Therefore, only the SPA-SVM discrimination model was used 
in the further study.

CRISPR/Cas9-induced mutant visualization.  NIR hyperspectral imaging, known as a chemical imag-
ing system, can collect both spatial and spectral information related to chemical constituents of a sample. As 
described in the Materials and Methods section, discrimination models on the full spectra of all pixels lead to 
heavy computational burdens and require high-profile computer hardware. In such cases, SVM models devel-
oped on optimal wavelengths selected by SPA were applied to the objects’ pixels to predict classes from different 
genotypes of rice. A very uniform set of seeds (size and morphology) were inspected in this step. The mean pixels 
of each object were calculated using the object-wise approach from the outset31. Figure 3 shows some example 
of classification maps for identifying mutants. It is impossible to distinguish WT and CRISPR/Cas9-induced 

Method Rice varieties Number Optimal wavelengths/nm

SPA
Huaidao-1 12 1011.93; 122.81; 1227.12; 1314.72; 1345.06; 1402.42; 

1439.55; 1483.46; 1581.51; 1611.96; 1642.43; 1645.82

Nanjing46 11 1122.81; 1200.19; 1227.12; 1314.72; 1345.06; 1372.05; 
1405.79; 1439.55; 1507.12; 1581.51; 1645.82

PCA-loadings
Huaidao-1 8 1122.81; 1200.19; 1227.12; 1247.33; 1314.72; 1402.42; 

1459.81; 1581.51;

Nanjing46 8 1122.81; 1200.19; 1227.12; 1247.33; 1314.72; 1402.42; 
1459.81; 1581.51

Table 2.  Sensitive wavelengths selected by SPA and PCA-loadings.
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mutant seeds from both genotypes of rice by the naked eye; the differences within the same sample could be easily 
discerned from the final visualization distribution maps. It was noted that some seeds on the classification map 
were fallible. For samples from huidao-1, the misclassified number were 20 (90.50% accurate classification) for 
WT and 23 (89.04%) for mutant, respectively. And the predictive accuracies of nanjing46 were 87% and 91.42% 
for WT and mutant, respectively. That is to say, the SPA-SVM model produced a satisfied classification. The 
morphological characters of seeds in classification map had some changes due to the low resolution of the NIR 
imaging system and the image segmentation algorithm. However, the main shapes of the seeds and their locations 
were clearly shown on the prediction map. The results indicated that NIR hyperspectral imaging together with 
chemometric analysis was a promising technique to identify and locate single CRISPR/Cas9-induced mutant rice 
seeds, which has the potential to be a powerful tool for evaluating large numbers of samples from CRISPR/Cas9 
gene editing performance trials for breeding programmes.

Conclusions
CRISPR/Cas9 genome editing technology has shown great potential for targeting gene editing and facilitating 
crop breeding programmes. However, a time-consuming screening of large populations is required to identify 
mutants because of extensive potential off-target effects and the targeting specificity of the technology. This paper 
focused on the use of NIR hyperspectral imaging (975–1646 nm) combined with discrimination model (SVM 
and ELM) and optimal wavelength selection methods (PCA loadings and SPA) to identify and visualize CRISPR/

Rice 
varieties

Discrimination 
model

Model build on full wavelength
Model build on optimal wavelength selected 
by SPA

Model build on optimal wavelength selected 
by PCA-loadings

Parametera
Calibration 
set

Prediction 
set Parameter

Calibration 
set

Prediction 
set Parameter

Calibration 
set

Prediction 
set

Huaidao-1
SVM 256, 3.0314 92.38% 92.5% 256, 48.5029 93% 92.75% 256, 84.4485 86.13% 81%

ELM 28 90.25% 93.25% 9 91.37% 92% 64 83.38% 81.25%

Nanjing46
SVM 256, 3.0314 89.75% 88% 256, 84.4485 91.25% 89.50% 256, 27.8576 80.5%% 76.50%

ELM 35 88.62% 90.25% 14 88.75% 90% 35 80.13% 80.75%

Table 3.  Discrimination results of different models for differentiating WT and CRISPR/Cas9-induced rice mutants 
based on full wavelengths and optimal wavelengths. apar indicates the parameters of the discrimination models, 
(c,g) for SVM, the optimum number of hidden nodes for ELM.

Figure 3.  Visual prediction map based on the SPA-SVM model as predictors. The colours (olive: huaidao-1 WT 
rice seeds; orange: huaidao-1 CRISPR/Cas9-induced mutant rice seeds; pink: nanjing46 WT rice seeds; navy; 
nanjing46 CRISPR/Cas9-induced mutant rice seeds) correspond to objects identified as class members.
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Cas9-induced mutant rice seeds. PCA was first conducted to find identify clusters between WT and mutants. The 
score images acquired from PCA on the hyperspectral data reveal accredited discriminations between WT and 
mutants from two types of rice varieties. Moreover, a PCA loadings method and SPA were applied to extract effec-
tive features that were valuable for discrimination. After the appropriate data pretreatment, the SPA-SVM model 
had robust and valuable calibration and predication capacities, with a classification accuracy of approximately 
90%. Finally, the classification of mutant seeds could be visualized on prediction maps by predicting the features 
of each pixel on individual hyperspectral images. The use of NIR hyperspectral imaging combined with chemom-
etrics and image processing technology for screening CRISPR/Cas9-induced mutants is a very attractive platform 
and has the potential to be widely used in rapid plant breeding programmes for screening, as it is non-invasive 
and cost-effective and its does not require any pretreatments.

Materials and Methods
CRISPR/Cas9-induced rice samples.  The gene-edited mutant rice seeds and their acceptor lines were 
provided by Zhejiang Academy of Agriculture Science, China. Rice varieties huaidao-1 and nanjing46 were used 
as the genetic transformation receptors. We designed a vector to target the gene THOUSAND-GRAIN WEIGHT 
6 (TGW6)19 for both huaidao-1 and nanjing46. TGW6, the major QTL for thousand-grain weight, encodes a 
protein with indole-3-acetic acid (IAA)-glucose hydrolase activity. Loss of function of the TGW6 allele enhances 
grain weight through pleiotropic effects on source organs and leads to significant yield increases19. The gRNA 
target sequence was inserted into the Cas9/gRNA plasmid. The constructed plasmid and target sites are shown 
in Fig. 4(A,B). There were no other differences in the seeds between their transformation receptors and the cor-
responding mutants.

To detect the effect of the gene-editing, the genome DNA was extracted from each edited plant using the 
SDS method, and the target gene was sequenced. Each PCR mixture (30 μl volume) consisted of 10× PCR buffer 
(Takara Biotechnology Co.), 200 mM dNTP (Takara Biotechnology Co.), 0.5 mM of each primer, 1.25 U Taq DNA 
polymerase (Takara Biotechnology Co.), and template. The PCR programme consisted of a 95 °C/3 min dena-
turation, followed by 35 cycles of 94 °C/30s, 55 °C/30s and 72 °C/30s, with a final elongation step of 72 °C/7 min. 
The resulting amplicons were separated by electrophoresis through 2% agarose gels in 0.5× TBE with GelRed 
staining. As Fig. 4C showed that there were 2 bp and 3 bp missing in the TGW6 gene-edited mutants of huaidao-1 
and nanjing46, respectively.

Near-infrared hyperspectral image acquisition and calibration.  Rice seeds were placed on a con-
trolled conveyer belt and scanned using the NIR hyperspectral imaging system (ImSpector N17E; Spectral 
Imaging Ltd., Oulu, Finland). The devices of this instrument include a high-performance CCD camera 
(Hamamatsu, Hamamatsu City, Japan), an imaging spectrograph (ImSpector N17E; Spectral Imaging Ltd., Oulu, 
Finland) with a wavelength range from 874.41 to 1733.9100 nm, two 150 W tungsten halogen lamps (Fiber-Lite 
DC950 Illuminator; Dolan Jenner Industries Inc., Boxborough, MA, USA) for illumination, a moving platform 
controlled by a stepper motor (Isuzu Optics Corp., Taiwan, China) for sample motion, and a computer.

Before acquiring nondeformable and clear NIR images, the exposure time of camera, the distance between 
the CCD camera and conveyor, and the speed of the conveyor moment were adjusted to 3.2 ms, 28.7 cm and 
23 mm/s, respectively. NIR hyperspectral images form a three-dimensional structure (x, y, λ) of multivariate data 
for processing and analysis, where x and y are the spatial dimensions (numbers of rows and columns in pixels), 
and λ represents the number of wavebands. Hyperspectral images of the rice seeds had a spectral resolution of 
5 nm and 256 spectral channels.

Figure 4.  Using CRISPR/Cas 9 to edit the TWG6 gene. (A) The schematic diagram of the vector used in 
this study. pOsU3: U3 promoter; chimeric: gRNA + target; pOsUBQ1/Ubi1: UBI promoter; SpCsn1: Cas9 
protein; Nos: Nos terminater. (B) The sequence of the TGW6, the sequence of target site has been labeled by 
the red colour. (C) DNA PCR analysis and sequencing results from huaidao-1 and nanjing46 rice wild-type 
and mutants.There are 3 bp and 2 bp missing in TGW6 gene-edited mutants of huaidao-1 and nanjing46, 
respectively.
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For correcting the effects of light source and obtaining data reflection percentage (Rho), raw hyperspectral 
images (Iraw) were calibrated with two reference standards using the following equation:

=
−
−

Rho I I
I I (1)

raw dark

white dark

where a dark reference image (Idark) was acquired by turning off the light source together with covering the cam-
era lens completely with its opaque cap to remove the influence of dark current in the camera. The white ref-
erence image (Iwhite) was acquired using a standard white Teflon tile with nearly 100% reflectance. All of the 
corrected hyperspectral images were then used for spectral information extraction, principal component images 
acquisition, discrimination purposes, and image visualization. The key steps for discrimination of the CRISPR/
Cas9-induced mutants and extracting the morphological characterization of rice are presented in Fig. 5.

Morphological characterization and thousand-grain weight analysis.  The TGW6 gene is believed 
to change rice seed shape and organ size32, therefore, the morphological characterization from the sample was 
extracted from the hyperspectral image using an image processing technique. A total of four features (area, 
perimeter, length, width) from 130 seeds of each rice varieties were extracted. The hyperspectral image at a wave-
length of 1139.26 nm was transformed to a greyscale image for later morphological characterization. The four 
morphological characterizations are as follows:

Perimeter: the number of contour pixels for each seed;
Area: the total number of pixels inside the seed contour pixels;
Length: the number of pixels that specifies the major axis length of the seed;
Width: the number of pixels that specifies the minor axis length of the seed.
�Five independent samples of 100 seeds were measured, and the means were converted to thousand-grain 
weight (TGW).

Spectral data extraction and pretreatment.  Before spectral data extraction, the whole rice seed was 
segmented from the background and defined as the region of interest (ROI). The reflectance of the rice samples 
in the ROI was averaged and was taken as the mean spectrum of the relative sample. Spectra were obtained from 
all hyperspectral images of seeds and were saved in a spectral matrix (X). To improve the signal-to-noise ratio and 
the distinguishing capacity of the models, raw spectra were subjected to noise suppression by wavelet transforma-
tion33 using Daubechies 8 with decomposition scale 3.

A total of 660 intact samples of each variety were selected for image acquisition. The dataset of each variety 
was divided into a calibration set and a predication set at a ratio of 2:1 using the Kennard-Stone algorithm34. 
Thus, there were 440 seeds used as the calibration set, and the remaining 220 seeds were used as the prediction 
set for each variety. All rice seeds were given a category assignment; the wild-type seeds were assigned 1, and the 
mutants were assigned 2.

Chemometrics and data analysis.  Because there is a large amount of hyperspectral image data contain-
ing hidden information, a reliable method is needed to process and extract the features of the spectra. The first 
step involving analysis was performed using an exploratory principal components analysis (PCA)35. The PCA 
was applied to reduce the spectral dimensions of the hyperspectral image data by projecting the data into a low 
dimensional subspace, and each of the spectrums was projected in an alternative set of coordinates called the 
principal components (PCs). The scores of the most significant PCs corresponding to each NIR spectrum were 
used. The number of PCs was less than or equal to the number of original variables. From the PCA score plot, it 
is possible to observe the clusters and trends from the different samples.

Variable (wavelength) selection was performed using wavelength selection-based techniques to facilitate and 
speed up the classification in the next stage of this study. The spectral bands in hyperspectral images are highly 
correlated; thus, contiguous spectral bands may contain redundant information. Therefore, it is advantageous to 
extract feature components to perform better predictions and a simpler process. However, inspection of char-
acteristic spectra allows the analysis of similarities and differences between WT and mutants. The PCA loading 
lines method and a successive projections algorithm (SPA)36 were applied to select optimal wavelengths. Loading 
values resulting from the PCA of the raw spectral data represent the regression coefficient and indicate the most 
dominant wavelength. Therefore, peaks and valleys based on the wavelength-loading map were selected as impor-
tant wavelengths. SPA is a forward variable selection algorithm that is designed to select optimal wavelengths with 
minimal redundancy to address collinearity problems. The optimal wavelengths are finally determined according 
to the minimum root mean square error of validation (RMSEV) in the validation set of an MLR calibration. The 
SPA was described in detail in the literature37.

In successive stages, support vector machine (SVM) and extreme learning machine (ELM) discrimination 
models were applied on the raw spectral data, and optimal wavelengths were then selected to screen and distin-
guish the WT and mutant strains. SVM is a supervised learning model that has been widely used for classifica-
tion38. Compared with other machine learning methods, this method can develop models with fewer training 
samples and can overcome the local minimum in a neural network. Detailed information on this popular model 
can be found in the literature38. An SVM model with the radial basis function (RBF) as a kernel function was used 
in this case, and different penalty parameters (c) and kernel function parameters (g) were chosen to achieve the 
highest recognition rate. ELM, a feedforward neural network, can also be applied in binary classification applica-
tions39. ELM operates with a single layer of hidden nodes, where the weights connecting inputs to hidden nodes 
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are randomly assigned and never updated. In this paper, optimal numbers of hidden nodes for training were 
determined from 1 to 80 in steps of 1 to have the best discrimination capability. The performances of the discrim-
ination models were evaluated based on the classification accuracies of the calibration set and the prediction set.

CRISPR/Cas9-induced mutant visualization.  Finally, a very uniform set of seeds from different gen-
otype were presented to the optimal classification model and tested in order to inspect the robustness of the 
model. To acquire these validation data, the exposure time of camera, the distance between the CCD camera and 

Figure 5.  Flowchart of image processing and data analysis for discrimination of CRISPR/Cas9-induced 
mutants of rice.
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conveyor, and the speed of the conveyor moment of the NIR hyperspectral imaging system were adjusted to 4 ms, 
15.1 cm and 16 mm/s, respectively. The major advantage of hyperspectral imaging is to provide spatial and spec-
tral information simultaneously, which facilitates visualizing the distribution of the features in the tested sample. 
In the current study, an optimal classification model combined with hyperspectral image processing was used 
to map and visualize each pixel of the hyperspectral images to demonstrate mutants. This visualization model 
was run by calculating the dot product between the spectrum of each pixel in the image and the accuracy rate 
obtained from the optimal model base on particular wavelengths. The classification prediction map is displayed 
in colours, where each colour represents the corresponding rice varieties.

Software tools.  NIR hyperspectral images were analysed using the ENVI version 4.6 Hyperspectral image 
analysis soft package (ITT, Visual Information Solutions, Boulder, CO, USA). Shape features extraction, NIR 
spectral extraction, multivariate data analysis and all stages involved in image visualization purposes were 
applied using MATLAB version R2010b (The Math-Works, Natick, MA, USA). Statistical comparisons were 
made using a one-way analysis of variance (ANOVA). The differences between means were established using the 
Student-Newman-Keuls tests (p < 0.05) in the SPSS version 18.0 statistical programme (SPSS Inc., Chicago, IL, 
USA). In addition, graphs were prepared using origin Pro 8.5 SR0 (Origin Lab Corporation, Northampton, MA, 
USA) software.
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