Skip to main content
. 2017 Nov 21;7:15934. doi: 10.1038/s41598-017-16254-z

Table 3.

Discrimination results of different models for differentiating WT and CRISPR/Cas9-induced rice mutants based on full wavelengths and optimal wavelengths.

Rice varieties Discrimination model Model build on full wavelength Model build on optimal wavelength selected by SPA Model build on optimal wavelength selected by PCA-loadings
Parametera Calibration set Prediction set Parameter Calibration set Prediction set Parameter Calibration set Prediction set
Huaidao-1 SVM 256, 3.0314 92.38% 92.5% 256, 48.5029 93% 92.75% 256, 84.4485 86.13% 81%
ELM 28 90.25% 93.25% 9 91.37% 92% 64 83.38% 81.25%
Nanjing46 SVM 256, 3.0314 89.75% 88% 256, 84.4485 91.25% 89.50% 256, 27.8576 80.5%% 76.50%
ELM 35 88.62% 90.25% 14 88.75% 90% 35 80.13% 80.75%

apar indicates the parameters of the discrimination models, (c,g) for SVM, the optimum number of hidden nodes for ELM.