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miR-500a-5p regulates oxidative 
stress response genes in breast 
cancer and predicts cancer survival
Davide Degli Esposti1, Vasily N. Aushev   2, Eunjee Lee3, Marie-Pierre Cros1, Jun Zhu   3, 
Zdenko Herceg1, Jia Chen2,4,5,6 & Hector Hernandez-Vargas1

MicroRNAs (miRNAs) are small regulatory non-coding RNAs with a diversity of cellular functions, 
and are frequently dysregulated in cancer. Using a novel computational method (ActMir) that we 
recently developed, the “activity” of miRNA hsa-miR-500a was implicated in estrogen receptor (ER) 
positive breast cancer; however its targets and functional impact remain poorly understood. Here, we 
performed an extensive gene expression analysis in ER+ breast cancer cell lines, to reveal the targets 
of miR-500a-5p after experimental modulation of its levels. We found that among mRNAs targeted by 
miR-500a-5p there was enrichment in oxidative stress response genes. Moreover, in vitro exposure to 
oxidative stress using H2O2 induces miR-500a-5p overexpression and downregulation of the oxidative 
stress targets TXNRD1 and NFE2L2. Finally, expression of several of the identified miR-500a-5p targets 
related to oxidative stress, including TXNRD1, was associated with ER+ breast cancer survival in 
multiple datasets. Overall, we identify miR-500a-5p as an oxidative stress response miRNA whose 
activity may define breast cancer progression and survival.

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression in physiological and patho-
logical conditions by degradation of messenger RNAs (mRNAs) or translational inhibition1,2. The spatial and 
temporal balance between miRNAs and their targets is tightly controlled, and its dysregulation plays a critical 
role in cancer development and progression3. Despite their importance, knowledge of direct and indirect targets 
of miRNAs is still limited, partially due to the technical and bioinformatic complexity of analyzing multiple 
messenger RNAs (mRNAs) targeted by one single miRNA and the redundancy of miRNAs targeting the same 
mRNA. Adding to this complexity, the cellular context influences the activity of a specific miRNA and the pool 
of its functional targets.

Dysregulation of miRNAs has been extensively reported in breast cancer4,5, as well as their potential as 
prognostic and predictive biomarkers6. The conventional way of identifying key regulatory miRNA is through 
examination of miRNA-mRNA relationships based on expression levels; however, such association does not 
imply causal relationship and miRNA expression cannot be equated to functional “activity”. We recently devel-
oped a computational approach, ActMiR, for identifying active miRNAs and miRNA-mediated regulatory 
mechanisms. Leveraging the data from the Cancer Genome Atlas (TCGA) dataset, we identified let-7d and 
miR-18a to be key microRNAs and prognostic markers for estrogen receptor negative and human epidermal 
growth factor receptor 2 negative (ER−/HER2−) breast cancer7. These key miRNAs were functionally defined 
by the association between their activity and the expression levels of a number of genes, and their prognostic 
value for breast cancer survival was confirmed in an independent dataset. Using a similar approach, the “activ-
ity” of miR-500a was also implicated in ER+ breast cancer mortality7. Recently, miR-500a has been linked to 
gastric cancer development8. However, while the “activity” of a miRNA cannot be directly measured but only 
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inferred by its target genes, a complete target screening is not available for miR-500a; such information would 
be useful for understanding the role of miR-500a in breast cancer progression and improving the design of 
breast cancer survival predictors.

Here, we aimed to identify functional targets of miR-500a in breast cancer cell lines as well as to assess the pre-
dictive value of its expression in different breast cancer cohorts. Our data points towards regulation of oxidative 
stress response as a major pathway by which miR-500a influences breast cancer progression.

Results and Discussion
miR-500a is variably expressed across human breast cell lines.  Similar to other miRNAs, the miR-
500a precursor (pre-miR-500a) is processed into miR-500a-5p (MIMAT0004773, guide strand) and miR-500a-3p 
(MIMAT0002871, passenger strand). However, few data are currently available to determine a priori which is the 
functional strand. Therefore, we measured the expression of both miR-500a strands in four different ER+ breast 
cancer cell lines (i.e. MCF-7, T47D, BT474, and ZR751) and two non-cancerous immortalized breast cell lines 
(i.e. MCF10A and hMEC). MiR-500a-5p and miR-500a-3p expression levels are quite heterogeneous across the 
different cell lines, with both strands being detectable in all cell lines (Fig. 1a). MCF-7 cells display the highest 
level of expression of both strands, while T47D cells showed the lowest. Therefore, to cover a wider range of bio-
logically relevant targets, we decided to use these two well-known breast cancer cell lines to modulate miR-500a 
expression and further study its role in ER+ cancer cells. In addition, a recent report showed that miR-500a-5p 
promoted gastric cancer cell tumorigenicity and was associated with malignant progression and poor survival8. 
Based on this, we decided to focus on the guide strand for the next analyses.

Our experimental strategy comprised both, suppression and overexpression of miR-500a-5p. Therefore, we 
expected an effect in both, miR500a-High MCF-7 cells and miR500a-Low T47D cells. We experimentally modu-
lated miR-500a-5p levels by transfecting cells with a miR-500a-5p mimic (for overexpression) or a miR-500a-5p 
inhibitor (for silencing). As a negative control, cells were transfected with miRCURY LNA negative control, a 
miRNA designed to lack targets in the human genome (see Methods). MCF-7 cells transfected with the mimic 
miRNA showed increased levels of miR-500a-5p of several thousand-fold compared to the control, while cells 
transfected with the inhibitor miRNA showed decreased levels of miR-500a-5p of 30-fold (Fig. 1b). The efficiency 
of induction and suppression of miR-500a-5p was similar to what was previously reported for miR-30a overex-
pression and silencing in the same cell line9. Transfection with mimic and inhibitor in T47D induced a 100-fold 
overexpression and a 100-fold silencing (Fig. 1b). In both cell lines, modulation of miR-500a-5p expression did 
not affect the expression of the passenger strand miR-500a-3p (Fig. 1b), indicating a high specificity of the mimic 
and miR-500a-5p inhibitor.

Our examination of cell phenotype following transfection with miR-500a-5p mimic or inhibitor showed that 
modulation of miR-500a-5p expression did not influence cell morphology, cell death rate, or cell proliferation 
(data not shown). However, overexpression of miR-500a was associated with an increased ability to grow in 
non-attachment conditions (i.e. mammospheres) in MCF-7 cells (Fig. 1c). Such conditions have been associated 
with “stemness” properties of breast cancer cells. Although a similar trend was observed in T47D, this difference 
was not significant. This can be explained, at least partially, by lower miR-500a levels in this cell line at basal and 
overexpression conditions.

Taken together, these results show that miR-500a is variably expressed in human breast cell lines, and that 
its modulation does not affect cell death or cell proliferation at short time points. An effect in the ability to grow 
under non-attachment conditions is observed in MCF-7 cells.

miR-500a-5p targets common transcripts in two breast cancer cell lines.  Few studies have pro-
vided experimentally validated targets of miR-500a8, and no study is available in the context of breast cancer. 
Therefore, to identify the potential target genes of miR-500a in ER+ breast cancer cells, we adopted an unbiased 
approach by measuring whole transcriptome gene expression following modulation of miR-500a-5p levels by 
transfecting MCF-7 and T47D cells with miR-500a-5p mimic or miR-500a-5p inhibitor. After isolating RNA 
from each transfection condition (mimic, inhibitor or control miR) we interrogated gene expression using the 
Illumina HumanHT-12 v4 bead array, a technology that measures the expression of 31,000 annotated genes with 
more than 47,000 probes.

We next applied unsupervised clustering of the normalized expression data and found that expression profiles 
classify all samples according to the cell type (i.e. MCF-7 or T47D) (Fig. 2a). In addition, by plotting all samples 
according to the most variable probes (multidimensional scaling) we observed that within both cell lines there 
was a stronger effect of miRNA overexpression compared to miRNA inhibition (Figs 2b and S1). The divergent 
effect of mimics is more evident in MCF-7 cells, probably due to the higher efficiency of overexpression (several 
thousand-fold in MCF-7 vs. 100-fold in T47D).

To identify potential miR-500a-5p targets common to two ER+ breast cancer cell lines, we modeled the 
expression data as a function of cell type and experimental condition (see Methods). With this common design, 
we identified 413 differentially expressed transcripts between miR-500a-5p mimics and inhibitor (FDR-adjusted 
p value < 0.05) (Table S1). Most of these targets were downregulated after miR-500a-5p overexpression (n = 265), 
a fraction of which (n = 18) exhibited downregulation of more than two-fold (Fig. 2c and Table 1). Despite evi-
dent baseline differences between cell lines, the targets identified display a similar degree of downregulation rel-
ative to the non-treated conditions, in each case (Fig. 2c,d). Because of the global expression differences between 
both cell lines, we also performed separate analyses for each of them (Tables S2 and S3). Although more genes 
were differentially expressed in MCF-7 cells, there was a significant overlap between differentially expressed 
(DE) genes from both cell lines (eight times more than expected by chance, hypergeometric test p < 2.2 × 10−22) 
(Figs 2e and S1). The 36 common genes between both cell lines include those identified in the first analysis 
when using a fold-change threshold of at least two. For further discussion, we will refer only to the results of the 
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Figure 1.  Modulation of miR-500a-5p expression in human breast cells. (a) Expression of guide (5p) and 
passenger (3p) strands of miR-500a was assessed by qRT-PCR in different breast cell lines. (b) Two breast 
cancer cell lines (MCF-7 and T47D) were selected for modulation of miR-500a-5p levels (gray barplots) after 
transfection of miR-500a-5p mimic and inhibitor. Expression of the passenger strand, miR-500a-3p (black 
barplots), was studied in parallel to define specificity. (c) Cells transfected with the same overexpression 
conditions shown in (b) were tested for sphere formation ability by growth in non-attachment plates. (*) 
indicates P value < 0.05 for the control vs. mimic comparison.
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Figure 2.  Genome-wide identification of miR-500a-5p target genes. Mir-500a-5p expression was modulated 
in MCF-7 and T47D cells by transfection of mimic and inhibitor, as shown in Fig. 1b. RNA obtained from 
each condition was used to assess gene expression using Illumina’s HT12 whole genome expression arrays. 
Unsupervised clustering (a), and multidimensional scaling (b) of gene expression data shows sample 
discrimination by cell type and treatment condition. Differentially expressed (DE) genes were obtained by 
comparing mimics vs. inhibitor in a linear regression model (see Methods). (c) Significant genes (FDR < 0.05) 
with a fold-change of at least two were used for a heatmap representation, where blue indicates low expression 
and red indicates high expression. T47D samples cluster on the left, while MCF-7 samples cluster on the right 
dendrogram. (d) A selection of DE genes displaying gradual expression across experimental conditions (i.e. 
control, mimic, or inhibitor) in the two cell lines. For PTGR1 and TXNRD1 two independent probes are shown. 
(e) Venn diagram representation illustrating the significant overlap between the targets identified in the two 
cells lines, when data is analyzed separately. (f) Venn diagram representation of the overlap between targets 
identified with our gene expression approach and those predicted with the miRDB web tool.
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combined analysis (modeling both cell types and all experimental conditions simultaneously) (Tables 1 and S1), 
as the robustness of the Bayesian approach applied here is known to benefit from including as many datasets as 
possible in the same analysis.

We compared our list of 413 experimental miR-500a-5p targets (corresponding to 369 gene symbols) to a 
list of 315 predicted targets available at miRDB10. This webtool uses NCBI RefSeq sequences for identification 
of 3′-UTR sequences11, and target prediction with the MirTarget algorithm12. 38 genes overlapped between the 
two lists (six times more than expected by chance, hypergeometric test p value < 2.15 × 10−18) (Fig. 2f). Seven of 
the identified targets also overlapped with the original target list used to determine miR-500a activity7. A similar 
overlap was found with other algorithms for miRNA target prediction (Fig. S2).

Finally, we performed an in silico validation of our gene expression approach. To this end, we used the 
MiRonTop mining tool13 to infer the most enriched miRNAs in our expression dataset after miR500a-5p mod-
ulation (see Methods). For this particular analysis, we used the complementarity of the seed sequence to define 
a gene as a miRNA target, either in the UTRs (Fig. S2, left panel) or the coding sequence (CDS) (Fig. S2, right 
panel). Interestingly, miR500a-5p is significantly enriched only in the CDS targets. Importantly, miR500a-5p is 
the top most significant miRNA when taking together UTR and CDS targets. A similar result is obtained when 
using TargetScan14 as the reference dataset to define miRNA targets. In that case, miR500a-5p displays the highest 
enrichment among all human miRNAs.

We therefore identified 369 genes directly or indirectly targeted by miR-500a-5p in two ER+ breast cancer 
cell lines. Although these genes significantly overlap with predicted targets, many of them are described here for 
the first time. Our in silico validation gives strong support to our data. Moreover, they uncover a possible role of 
miR500a-5p in binding coding sequences for gene expression regulation. There is evidence for a biological role 
of miRNAs in such context15,16. A possible functional role, such as in splicing, could be an interesting guide for 
future research.

miR-500a-5p putative transcriptional targets are enriched in oxidative stress pathways.  
Because high miR-500a activity has recently been implicated as a key microRNA in ER+ breast cancer7, we 
next used the transcriptional targets described above in ER+ breast cancer cell lines to identify functional path-
ways that could explain such clinical observation. Gene set enrichment analyses showed that genes differentially 
down-regulated after miR-500a-5p overexpression were enriched in oxidative response pathways, and specifi-
cally in targets of NRF2 (Table 1 and Fig. S3). The transcription factor NRF2 [also known as NFE2L2, nuclear 
factor (erythroid-derived-2)-like 2] induces the transcription of several genes involved in the cellular antiox-
idant response, and is therefore considered as a major regulator of cell survival17. Interestingly, in our list of 
identified miR-500a-5p targets, the top most significant enrichments (all with FDR < 0.05) were found to be 
related to “Oxidative Stress Induced Gene Expression Via Nrf2” (BioCarta), “NRF2 pathway Homo sapiens” 
(WikiPathways), “NFE2L2 ChIP-Seq” (ChEA 2015), and “NFE2L2 CHEA” (ENCODE and ChEA Consensus 
TFs). Enrichment in oxidative stress genes was observed for all significant genes (FDR < 0.05), regardless of the 

Symbol Probe_Id logFC FDR

KM plotter METABRIC

P value HR P value HR

ABCC2 ILMN_1676278 −1.09 1.1E-02 2.10E-07 0.70 (0.61–0.80) 0.115 1.33 (0.93–1.9)

AKR1B10 ILMN_1672148 −1.71 7.0E-04 0.069 0.88 (0.77–1.01) 0.001 1.59 (1.19–2.12)

AKR1C2 ILMN_2412336 −2.71 6.1E-07 0.001 0.72 (0.59–0.87) 0.032 0.8 (0.66–0.98)

AKR1C3 ILMN_1713124 −2.56 2.0E-08 0.120 0.90 (0.78–1.03) 0.031 0.81 (0.66–0.98)

AKR1C4 ILMN_1687757 −2.78 1.5E-07 0.002 0.80 (0.69–0.92) 0.007 0.76 (0.61–0.93)

FAM129A ILMN_1667966 −1.02 2.0E-02 2.20E-13 0.62 (0.55–0.71) 4.39E-03 0.72 (0.57–0.9)

GPX2 ILMN_2133205 −1.32 6.3E-06 6.00E-03 0.82 (0.71–0.94) 0.003 1.4 (1.12–1.75)

HMOX1 ILMN_1800512 −1.13 6.0E-05 0.048 1.14 (1.00–1.29) 0.004 1.5 (1.14–1.97)

KIF18B ILMN_1726682 −1.41 1.8E-03 5.50E-11 1.53 (1.35–1.75) 0.147 1.28 (0.92–1.79)

LOC344887 ILMN_3210914 −1.25 3.1E-03 1.30E-09 0.56 (0.46–0.68) NA NA

FTLP2 ILMN_3288717 −1.04 2.2E-06 NA NA NA NA

HGD ILMN_3239725 −1.10 8.9E-07 0.003 1.23 (1.07–1.41) 0.194 1.14 (0.94–1.38)

PTGR1
ILMN_1704531 −1.17 5.5E-06

1.90E-06 0.63 (0.52–0.76) 1.30E-04 0.7 (0.6–0.8)
ILMN_2225537 −1.09 8.9E-07

SLC7A11 ILMN_1655229 −1.40 2.1E-05 0.074 0.89 (0.78–1.01) 0.007 1.37 (1.09–1.72)

TXNRD1
ILMN_1717056 −1.36 2.0E-08

<1E-16 1.72 (1.52–1.96) 1.12E-05 1.6 (1.3–1.9)
ILMN_2324421 −1.17 4.5E-06

UGT1A6 ILMN_1752813 −1.06 3.7E-05 0.001 0.73 (0.60–0.88) NA NA

Table 1.  miR-500a targets. List of differentially expressed probes (FDR < 0.05) after miR-500a modulation 
(miR-500a mimics vs. miR-500a inhibitor) in two breast cancer cell lines (i.e. MCF7 and T47D). Only 
transcripts with a fold change of at least 2 (|logFC| ≥ 1) are shown (n = 18 probes, corresponding to 16 genes). 
Transcripts belonging to oxidative stress/NRF2 pathways are underlined (n = 9). The last four columns show 
the P value and hazard ratios (HR) for the Kaplan Meier (KM) analysis of ER+ breast cancer survival using 
KMplotter and METABRIC datasets. KM p values below 0.05 are in bold.
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fold-change filter (i.e. no filter, or two fold-change filter). Within the 18 transcripts (16 annotated genes) with 
more than two-fold change after miR-500a-5p overexpression, nine are known NRF2 targets (corresponding to 
seven annotated genes: SLC7A11, TXNRD1, GPX2, PTGR1, HMOX1, ABCC2, and UGT1A6) (Table 1). These 
results show that oxidative stress response genes are major targets of miR-500a-5p in ER+ breast cancer cell lines.

miR-500a-5p activity is modulated under oxidative stress conditions.  We next aimed to charac-
terize a functional effect of miR-500a in modulation of oxidative stress response. To this end, we exposed T47D 
and MCF-7 cells to different concentrations of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and 
monitored miR-500a-5p expression thereafter. Our results showed that non-lethal concentrations of H2O2 in both 
cell lines induced miR-500a-5p overexpression of more than two-fold (Fig. 3a). Of note, we used lower H2O2 con-
centrations in MCF-7 cells due to higher toxicity in this cell line (Fig. 3a and data not shown). Interestingly, the 
passenger strand miR-500a-3p was also overexpressed, although to a lower degree, in response to H2O2 treatment 
(Fig. 3a). Moreover, we also studied the expression of two of the oxidative stress targets of miR-500a-5p identified 
above, TXNRD1 and NFE2L2. In both cases, miR-500a-5p induction in response to H2O2 was associated with 
downregulation in both cell lines, although this was only significant in T47D cells (Fig. 3b).

These data suggest that miR-500a-5p does not only target oxidative stress response genes, but it is itself mod-
ulated under oxidative stress conditions.

miR-500a-5p target expression is associated with ER+ breast cancer survival.  We examined 
associations between miR-500a-5p targets discovered above and ER+ breast cancer survival using multiple pub-
lished datasets: METABRIC (n = 1852, 77% ER+)18 and combination of datasets provided by KM plotter19 (see 
Methods) (n = 2862, 72% ER+). We focused our analyses on the 16 miR-500a target genes with at least two 
fold-change in expression after miR-500a-5p modulation (Table 1). Consistent with previous findings of positive 
association between mortality and miR-500a activity7, many of miR-500 targets displayed inverse association with 
breast cancer mortality (i.e. hazard ratios (HRs) below one) (Table 1). Six miR-500 target genes were consistently 
associated with mortality in the two datasets (i.e. AKR1C4, AKR1C2, TXNRD1, PTGR1, HMOX1 and FAM129A) 
(Figs 4a and S4a). However, two of them, the oxidative stress genes TXNRD1 and HMOX1, were associated with 
increased mortality (HRs > 1). This is contrary to expectations for a direct miR-500a target, and suggests that 
dissociation between miR-500a-5p activity and degradation of some of its targets may be involved in breast cancer 
progression. Of note, this analysis also shows that the predictive power of several miR-500 targets is restricted to 
ER+ breast cancer (no significant association in ER− breast cancer subjects) (Figs 4b, S4 and S5), as expected 
from the reported specific association between miR-500a activity and ER+ breast cancer.

Large scale unbiased methods of miRNA target identification are a well-known strategy to uncover biological 
networks. In the present study, we performed a systematic identification of miR-500a targets. This miRNA is 
located in chromosome X, which is known to be heavily enriched in miRNA sequences (about 7% of miRNAs, 
or 113 miRNAs in total)20. Mir-500a is close to an estrogen receptor binding site, and within an intron of the 
chloride voltage-gated channel 5 (CLCN5) gene. It is clustered (within 10 kb) with hsa-mir-532, hsa-mir-188, 
hsa-mir-362, hsa-mir-501, hsa-mir-500b, hsa-mir-660, and hsa-mir-502 (miRDB). In addition to estrogen recep-
tor, the expression of this whole cluster can be under the control of IL421 which is a cytokine linked to breast 
cancer metastasis22. Currently, only three genes which are negative regulators of NF-kB signaling (namely CYLD, 
TAX1BP1 and OTUD7B) have been discovered as validated targets for miR-500a in gastric cancer8. Of these, 
only TAX1BP1 was common to our target list (Table S1), a finding potentially explained by differences in cellular 
context. Overall, we show that miR-500a-5p controls the expression of multiple oxidative stress genes, and is itself 
overexpressed under oxidative stress conditions. Such targets include NFE2L2, a gene whose downregulation has 
been associated with poor outcome in breast cancer patients23. Among differentially oxidative stress targets we 
found Prostaglandin Reductase 1 (PTGR1) and Thioredoxin Reductase 1 (TXNRD1), one target predicted by in 
silico tools. Expression of these and five additional miR-500a targets identified here was able to independently pre-
dict overall breast cancer survival. This capacity of risk prediction was limited to ER+ breast cancers in five out of 
seven targets, in line with the described association between miR-500a activity and this subtype of breast cancers7.

Differential response to oxidation may represent a key factor in breast cancer prognosis. Alternatively, differ-
ences in oxidative stress could be the result of intrinsic characteristics of more aggressive tumors. In either case, 
our validated list of targets provides an insight into the potential role of miR-500a-5p in breast cancer survival.

Methods
Cell lines, cell culture conditions, and transfections.  MCF-7, T47D, ZR751 cells (ER+ breast cancer 
cell lines), BT474 cells (ER+/HER2+ breast cancer cell lines) and hMEC and MCF10A cells (ER−, immortalized 
breast epithelial cells) were grown in standard (10% fetal calf serum, 1% penicillin/streptomycin, 1% sodium 
pyruvate and 1% glutamine) medium. Slightly attached cells from semi-confluent culture dishes were centri-
fuged and plated in mammosphere conditions, as previously described24. Refractive spheres of at least 10 cells 
(total diameter of approximately 50 μm) were considered as mammospheres. Alternatively, cells were counted 
and tested for viability with Trypan blue after trypsinization, and plated under non-attachment conditions with 
mammosphere medium.

In order to simulate oxidative stress conditions, we added H2O2 (Sigma Aldrich) to the media during one 
week. H2O2 100 mM was freshly prepared in PBS and then added to the media at final concentrations ranging 
from 0 to 100 uM.

hsa-miR-500a-5p sequence (miRCURY LNA™ microRNA mimic, Exiqon) and knock-down sequence (miR-
CURY LNA™ microRNA inhibitor) locked nucleic acid (LNA) (Exiqon) were used for overexpression and inhi-
bition of miR-500a-5p, respectively. miRCURY LNA™ microRNA control (Exiqon) was used as negative (mock) 
control.
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qRT-PCR.  Extraction of total RNA, reverse transcription to cDNA and quantitative PCR (qPCR) were per-
formed as previously described25. The miRNA fraction was collected separately from the total RNA. GAPDH was 
used as housekeeping gene in qPCR assays for gene expression, while SNORD44 was used as housekeeping miRNA.

Figure 3.  Role of miR-500a-5p in the response to oxidative stress. (a) MCF-7 and T47D cells were exposed 
to increasing concentrations of H2O2 within their respective sublethal range. RNA extracted under these 
conditions was reverse-transcribed and tested for expression of miR-500a-5p guide strand (upper panels), and 
miR-500a-3p passenger strand (bottom panels). (b) Two selected targets of miR-500a-5p (i.e. TXNRD1 and 
NFEL2L) were studied under the same experimental conditions. (*) indicates P value < 0.05.
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Expression bead arrays.  Total RNA was extracted using TRIzol (Sigma) according to the manufacturer’s 
instructions. For transcriptome analyses, total RNA from cells transfected with Pre-miR-500a-5p, miR-500a-5p 
inhibitor, or miRCURY LNATM microRNA control (Exiqon) was reverse-transcribed (Ambion Illumina Total 
Prep) and hybridized on HT12 Human bead chips (Illumina), as previously described9.

Figure 4.  Survival analysis with identified miR-500a-5p targets (KM Plotter dataset). The breast cancer dataset from 
Kaplan Meier Plotter (Gyorffy B. et al.) was used to test for survival prediction capacity of miR-500a-5p oxidative 
stress targets (Table 1) in ER+ (a) ER− (b), and ER−/HER2− (c) breast cancer samples. Cox regression model was 
used for each gene to predict relapse-free survival. The three most significant associations (lowest p values) are shown 
(remaining four associations are shown in Fig. S1). Samples are divided into Low (black) and High (red) expression 
groups for each gene. Hazard ratio (HR) and P value for each association are shown within each plot.
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Raw expression data was imported and processed using R/Bioconductor packages26. Data quality was inspected 
using boxplots for the distribution of expression signals, and inter-sample relationship using multidimensional scaling 
plots and unsupervised clustering. To define differentially expressed (DE) genes, we modelled experimental condition 
(i.e. control, miR-500a-5p overexpression or inhibition) and cell type (i.e. MCF-7 or T47D) as categorical variables in 
a linear regression using an empirical Bayesian approach27. Comparisons with an FDR-adjusted P value below 0.05 
were considered statistically significant. DE genes were further analyzed to determine functional pathways and ontol-
ogy enrichment using EnrichR28,29 and DAVID30 web tools. miR-500a in silico predictions were obtained with the 
online database miRDB10. MiRonTOP13 was used for predictions of miRNA enrichment on the gene expression dataset 
(in silico validation) using the following parameters of significance: AVEEXP > 4, abs(LOGFC) > 0.15, and B > 0. All 
expression data have been deposited to the Gene Expression Omnibus repository (GEO accession number GSE92564).

Statistical analyses.  R/Bioconductor packages were used for bead array analysis, as described above. For sur-
vival analyses the METABRIC dataset18 was downloaded from cBioPortal (www.cbioportal.org). Survival analysis 
was performed using the R package survival. For each gene, Cox survival model was built, using coxph() function 
for an interval of cutoff thresholds (from second to eighth decile) and the threshold with the lowest p-value was used 
(approach similar to the one used in31). Hazards ratio of high-vs-low expression and p-value were further used as main 
characteristics of the correlation of a given gene with survival. In addition, survival analysis was performed using the 
breast cancer dataset hosted at the KM plotter website19 (kmplot.com/analysis). This dataset contains expression data 
for 54,675 genes and survival information for 5143 breast cancer cases. For other comparisons, means and differences of 
the means with 95% confidence intervals were obtained using GraphPad Prism (GraphPad Software Inc.). Two-tailed 
student t test was used for unpaired analysis comparing average expression between classes. P values < 0.05 were con-
sidered statistically significant. Error bars in the graphs represent the standard deviation.
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