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In most sexual, diploid eukaryotes, at least one crossover occurs between each

pair of homologous chromosomes during meiosis, presumably in order to

ensure proper segregation. Well-known exceptions to this rule are species in

which one sex does not recombine and specific chromosomes lacking crossover.

We review other possible exceptions, including species with chromosome

maps of less than 50 cM in one or both sexes. We discuss the idea that low

recombination rates may favour sex–asex transitions, or, alternatively may be

a consequence of it. We then show that a yet undescribed species of brine

shrimp Artemia from Kazakhstan (A. sp. Kazakhstan), the closest known relative

of the asexual Artemia parthenogenetica, has one of the shortest genetic linkage

maps known. Based on a family of 42 individuals and 589 RAD markers, we

find that many linkage groups are considerably shorter than 50 cM, suggesting

either no obligate crossover or crossovers concentrated at terminal positions

with little effect on recombination. We contrast these findings with the pub-

lished map of the more distantly related sexual congener, A. franciscana, and

conclude that the study of recombination in non-model systems is important

to understand the evolutionary causes and consequences of recombination.

This article is part of the themed issue ‘Evolutionary causes and conse-

quences of recombination rate variation in sexual organisms’.
1. Introduction
Genetic linkage maps are invaluable tools for investigating genome structure and

for quantitative trait loci (QTL) mapping. They are based on frequencies of recom-

binant maker genotypes, typically assessed in families or crosses. Genetic map

distances directly reflect the number of crossovers per meiosis (with 50 cM cor-

responding to one crossover, ‘CO’, per meiosis), although this assumes that the

survival of gametes and offspring does not differ between recombinant and

non-recombinant genotypes. Next-generation sequencing techniques, such as

RAD sequencing have rendered the construction of high-density maps relatively

straightforward also in non-model species. As a consequence, many such maps

have been published in recent years. In most diploid, sexual species, chromosomes

have a minimum length of 50 cM, suggesting that at least one CO occurs per biva-

lent during each meiosis [1–4]. Indeed, such an ‘obligate’ CO may be required for

proper segregation of homologues during the first meiotic division. COs establish

physical connections between homologous chromosomes, which may provide

the tension needed for the bipolar spindle to establish [5–7]. Evidence for the

necessity of at least one CO per bivalent comes from studies indicating that biva-

lents without COs have an increased probability of non-disjunction, and often

result in inviable or unfit aneuploid offspring [7,8]. Other indirect evidence

comes from pseudo-autosomal regions of sex chromosomes. In many species,

recombination between sex chromosomes is largely suppressed in the heteroga-

metic sex (between X and Y or between W and Z). Yet in most cases, there is a
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pseudo-autosomal region, which can physically be very small,

but still typically has one CO per meiosis [9,10].

Yet the obligate CO is not universal. In several species

across a wide range of taxa, one sex does not undergo CO

[11–13]. These species have alternative mechanisms to ensure

proper disjunction of achiasmate bivalents [14,15]. Similar

alternative mechanisms have also been identified in species

that do usually have CO [16,17], where they may serve as

back-up mechanisms. Furthermore, in some species, specific

chromosomes do not undergo CO. Examples are the dot

chromosome of Drosophila [18] and the absence of CO between

X and Y in marsupials [19]. Again, alternative mechanisms

ensure their proper segregation [14,17,20,21].

These examples indicate that it is not always obligatory to

have at least one CO per bivalent and meiosis, which suggests

that COs are maintained for reasons other than to ensure

proper disjunction. Conversely, this also suggests that selection

for low recombination is not necessarily constrained by a need

of COs for proper segregation. Indeed, it has been suggested

that the evolution of achiasmy may be the result of selection

for reduced rates of recombination [11], which may occur for

a wide variety of reasons (e.g. [22]).

Particularly strong selection for reduced recombination rates

may occur during evolutionary transitions from sexual to

asexual reproduction. Many asexual organisms produce diploid

eggs that can develop without fertilization (‘parthenogenesis’ in

the animal literature). They do so by either suppressing or by

modifying meiosis. Under most forms of asexual reproduc-

tion, recombination leads to a loss of heterozygosity, with

negative fitness consequences similar to inbreeding depression

[2,23–30]. Recombination is thought to be rare under some

forms of asexuality, especially under mitotic clonality (‘apo-

mixis’ in the animal literature), where offspring are genetically

identical copies of their mothers, barring mutation and rare

mitotic recombination (e.g. [31]). Other forms of asexuality

may more commonly involve recombination. An example is

automixis, which involves the fusion of two haploid products

of a single meiosis, such as fusion of two spores of a single

tetrad (also called within-tetrad mating) or fusion between an

egg cell and one of its polar bodies [32–34]. If this fusion

occurs between products that have separated during the first

meiotic division, one speaks of ‘central fusion’. This maintains

maternal heterozygosity around the centromeres, but loss of

heterozygosity may occur when there is recombination between

a locus and the centromere.

Suppression of meiosis I, which occurs in some groups, has

the same genetic effects as central fusion because homologues

are simply never separated [26,35]. An example is abortive,

non-reductive meiosis in Daphnia, where bivalents are started

to be pulled apart in meiosis I, but the division never follows

through. Rather, the half-bivalents move back to the equatorial

plate, and sister chromatids are subsequently pulled apart as in

normal meiosis II [36]. Ploidy is maintained during this process

because one of the two meiotic division is aborted. We will

group these cases under the name ‘central fusion’ for simplicity,

even if, biologically, they do not include a fusion of cells.

Central fusion automixis is a particularly interesting form

of asexual reproduction because it maintains maternal hetero-

zygosity as long as there is no recombination. In fact, if

recombination is fully suppressed, central fusion automixis

is genetically indistinguishable from mitotic asexuality. Cyto-

logical studies have shown that this situation occurs in some

species that have formerly been thought to reproduce by
mitotic asexuality (e.g. [36]). Finally, some species that regu-

larly reproduce by central fusion automixis do so with low to

very low levels of recombination, thus maintaining maternal

heterozygosity to a large degree [29,34,37–39], although

strong selection against recombinants, such as found during

automictic reproduction in the Cape honeybee [40–42],

may also contribute to low observed recombination rates in

some of these cases.

The fact that at least some asexuals have low recombination

rates, much lower than typically seen in sexual species, has

several puzzling implications. First, it is possible that recombina-

tion rate rapidly evolves to much reduced levels following the

transition to asexuality. However, this poses a problem: Given

that many asexual organisms, and automicts in particular, still

segregate chromosomes during meiosis I, how could recombina-

tion be rapidly reduced if one obligate CO is required for proper

disjunction? Even if many extant asexual organisms probably do

not segregate homologues during meiosis I (e.g. suppressed or

aborted meiosis I), which may reduce this constraint, normal

segregation probably still occurred in many cases immediately

following the transition [2,25,26]. Second, it has been suggested

that very low rates of recombination in certain sexual species

might function as a pre-adaptation to asexuality (i.e. make a

successful transition to asexuality more likely [43]).

To understand these transitions to asexuality it seems

essential to understand how universal and strong the constraint

of the obligate CO really is. Many high-density linkage maps

for a large variety of organisms have been published in recent

years. Indeed, large numbers of genetic markers and cost-

effective genotyping can be obtained with next-generation

sequencing (NGS) even without the need of a reference

genome. Here we review these studies, looking for evidence

for exceptions from the obligate CO constraint. We restrict this

analysis to genetic maps based on moderate to high numbers

of markers (at least a few hundreds of markers per map) and

to maps showing evidence of linkage groups that span less

than 50 cM in chromosome-wide genetic length. We note, how-

ever, that a genetic map length of less than 50 cM does not

necessarily imply the absence of an obligate CO, as terminal

COs may be missed; evidence for this will also be discussed.

Second, we present new data on a linkage map of a yet unde-

scribed Artemia species from Kazakhstan (A. sp. Kazakhstan;

[44]). This species is fully bisexual, and is the closest extant rela-

tive of the diploid Artemia parthenogenetica [45]. The latter

represents a group of diploid and polyploid parthenogenetic

Artemia. Polyploids reproduce clonally, but diploids are auto-

micts: they combine central fusion and low levels of

recombination [29]. We compare this new genetic map with

the published map of a more distantly related, sexual species

of the same genus [46], assessing whether reduced recombina-

tion probably has evolved before or after the separation of

A. parthenogenetica. More generally, we assess the role of the

obligate CO constraint for the evolution of low recombination

in sexual species and during transitions to asexuality.
2. Review: low levels of recombination
in sexual species

Above, we have briefly discussed two well-known exceptions

from the requirement of an obligate CO: achiasmy in one of

the two sexes and achiasmy of specific chromosomes. These

have been discussed elsewhere in detail [11–13], and will not
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be reviewed further here. Besides this, some plants with

holocentric chromosomes and inverted meiosis (separation of

sister chromatids during meiosis I, followed by separation of

homologues during meiosis II) appear to be achiasmate in

both sexes [47]. Inverted meiosis is possibly an adaptation to

holocentric chromosome structure [48,49], and alternative cor-

rect segregation may be achieved in different ways, although

some species with inverted meiosis do have COs [47,50].

(a) Low chromosome numbers
Although not directly related to the obligate CO issue, the

number of chromosomes itself is a strong determinant of

genome-wide recombination: owing to independent segre-

gation of chromosomes during meiosis, genes on different

chromosomes assort independently into gametes, which is

equivalent to free recombination between physically linked

genes that are separated by at least 50 cM [51–53]. There is at

least one animal species with just a single pair of chromosomes,

the ant Myrmecia pilosula [54]. The number of COs during

female meiosis is unknown, but this is almost certainly one of

the species with the lowest genome-wide recombination level,

especially given haplodiploidy and hence absence of recombi-

nation in males. A few animal and plant species are known to

have just two pairs of chromosomes [55–57]. Very variable

chromosome size may have similar effects, if a large majority

of genes is found on just a single or a few chromosomes.

(b) Exactly one crossover per bivalent
Several species appear to have exactly one CO per bivalent, that

is, only chromosomes with a genetic length of 50 cM. The most

well-known example is Caenorhabditis elegans [58], but other

potential examples exist, for instance the midge Clunio marinus
[59] and the fish Hypoplectrus nigricans [60]. The C. elegans
example is particularly interesting as it shows low recombination

rates in chromosomal centres, but these are not associated

with the presence of centromeres. Furthermore, regions with

high gene densities correspond to low-recombination areas,

and the single CO mostly occurs at chromosome ends, where it

has relatively little effect on the recombination among genes on

the same chromosome [61,62]. It might be that there is a general

tendency for species with short genetic maps to have a particular

concentration of COs at the chromosome ends.

A further example comes from a species combining a single

CO with achiasmy. The planarian Mesostoma ehrenbergii has

achiasmate meiosis in females [63]. During male meiosis

three bivalents are formed, which have exactly one CO near

the chromosome ends. However, the remaining two chromo-

some pairs are achiasmate in both male and female meiosis

and are separated as univalents, similar to the dot chromosome

in Drosophila [63–65].

(c) Low crossover numbers in a few chromosomes
In the large majority of species, the number of COs per chromo-

some varies with the physical size of the chromosomes (more

COs on longer chromosomes), but with at least one CO even

on the smallest ones [3,4]. Some chromosomes have a genetic

map length of slightly less than 50 cM, but in many cases,

this is most probably explained by sampling error, insufficient

marker coverage, incomplete assemblies (for maps, in which

single-nucleotide polymorphism (SNP) calls rely on alignment

to a reference genome) and other sources of errors. However,

some high-density maps do show a few linkage groups that
are substantially below 50 cM. Examples are some linkage

groups in the dog, particularly in males, in which the shortest

linkage group is 27 cM [66,67], and in the Zebra Finch, particu-

larly linkage group 4, in both sexes of [68–70]. Interestingly,

both are also examples of species with generally shorter linkage

maps compared to related species [4,71,72], though both have

most chromosomes greater than 50 cM. Furthermore, both

species have COs strongly concentrated towards the ends of

chromosomes, more so than related species with longer maps

[68,73]. A similar example may be the bluefin tuna, although

this was analysed with a moderate number of markers [74].

Also the brown algae Undaria pinnatifida and Saccharina japonica
have two to three linkage groups (of a total of 30–31) that are

considerably less than 50 cM long, with the remaining linkage

groups being rather compact [75,76]. A slightly different

example is the European tree frog, which has strongly reduced

recombination in chromosome centres only in males, and one

linkage group with considerably less than 50 cM in males

[77,78]. Avian ‘micro-chromosomes’ may also have less than

50 cM, though in this case it is more likely that the current

data are explained by insufficient numbers of markers: These

chromosomes show much higher rates of recombination (in

cM/Mb) between the few existing markers than other chromo-

somes, an observation that is usually interpreted as evidence

for the need of an obligate CO [3,72].
(d) Low crossover number in most chromosomes
Finally, very few species were found to have genetic maps with

several or even the majority of linkage groups being less than

50 cM in total length. In some cases this is explained by a com-

bination of a relatively compact map in one sex (but still with at

least one CO per chromosome) and achiasmy in the other sex,

leading to a sex-averaged map with chromosomes of at least

25 cM [79]. In some other cases, however, achiasmy in one sex

does not seem to be the explanation. Two species of killifish,

have genetic maps with 23 and 24 chromosomes, respectively,

each with a total length of less than 50 cM [80]. Although the

longest linkage groups are just slightly less than 50 cM, the

shortest ones are considerably less than 25 cM, even less than

10 cM in one species. The maps are based on a moderate

number of markers, but despite this, it is clear that the genetic

map length of these chromosomes is exceptionally short.

Another species with an exceptionally compact genetic

map is the fungus Agaricus bisporus. Based on a moderate

number of markers, its linkage groups range between 4 and

58 cM [81]. Yet, whole-genome resequencing revealed results

entirely consistent with an obligate CO. The reason why these

COs were not detected was that the large majority of them

occurred in the terminal 100 kb of the chromosomes [81].

Several species of the plant genus Oenothera do not form

bivalents but multivalents, with chromosomes attached to

each other at the ends. Separation is such that recombination

and segregation are suppressed, except at chromosome ends.

Hence, except for the recombined chromosome ends, meiosis

results in parental haplotypes [43,82,83]. Similar systems

occur in a few other plant and animal species [84–90]. Besides

the functionally clonal Oneothera species, the genus also has

bivalent-forming species, which reproduce by normal meiosis.

Interestingly, their linkage groups (assessed with a moderate

number of markers) have been found to be very short, between

2 and 20 cM, with recombination almost entirely restricted to

chromosome ends [43].
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3. Genetic map of Artemia sp. Kazakhstan
(a) Material and methods
(i) The mapping population
The mapping population was produced using a pseudo-

testcross design [91], which involves a cross between two

heterozygous parents and their F1 offspring. From such a

cross, the male recombination map can be established using

markers that are heterozygous only in the father, the female

map using markers that are heterozygous only in the

female, and the two maps can be linked using markers that

are heterozygous in both parents [92].

Following [93], cysts were hatched by incubation in saline

water (salinity 5 g l21), and once hatched, the larvae (nauplii)

were progressively transferred to higher salinity (100 g l21)

and fed every two days with a 50 : 50 mixture of marine

algae and yeast. Throughout, the animals were kept at

208C+18C with a 12 L : 12 D cycle. Larvae were first cultured

together, but were separated individually into 50 ml beakers at

the last larval stage, in order to assure that the animals chosen

for the crosses were unmated. Once adult, their sex was visu-

ally determined (based on the conspicuous claspers of adult

males) and 36 pairs were placed in 50 ml beakers (one pair

each) in order to start families. Adults were sampled once a

substantial number of live-born larvae had been produced,

and the heterozygosity of all adults was determined using a

panel of 12 microsatellite markers [94,95]. The larvae were

raised to adulthood so that their sex could be visually deter-

mined (sexual dimorphism is only visible at the adult stage).

One family with two highly heterozygous parents (6 and 4

loci for the female and male, respectively) and a sufficient

number of offspring was selected for genetic mapping. The

two parents of that family and 40 of their F1 offspring (20

males and 20 females) were analysed using RAD sequencing.

(ii) DNA extraction
To minimize contamination of samples with non-specific

DNA, live individuals were washed for 20 min in a 10%

sodium hypochlorite solution, followed by 10 min in sterile

salt water prior to sampling. Furthermore, following sampling,

the animals were dissected, and their digestive tracts were dis-

carded. Genomic DNA was extracted from the remaining

tissue using the Qiagen ‘DNEasy Blood & Tissue’ kit with

some modifications: before extraction, each sample was

added to a vial containing glass beads, 180 ml of ATL buffer,

and 20 ml of Proteinase K. Subsequently, each vial was vor-

texed vigorously for 15 s and then incubated for 8 h at 568C
on a 700 rpm shaker. After proteinase K digestion, extraction

proceeded using the instructions provided with the kit.

(iii) RAD sequencing
We used the RAD-sequencing protocol developed by [96] with

a few modifications. Genomic DNA was digested with SbfI
(New England Biolabs), barcoded with individual-specific P1

adapters, and pooled to create a single library containing

2100 ng DNA. Each parent was added as two independent

samples (i.e. with two different P1 adaptors), and hence the

library contained a total of 44 samples. After pooling, the

library was randomly sheared on a Bioruptor using six cycles

(30 s ON, 1 min OFF per cycle), and fragments between 200

and 500 bp were selected using agarose gel electrophoresis.

The fragments were then blunted, and a P2 adapter was

ligated. The library was amplified by polymerase chain
reaction (PCR) (30 s at 988C, followed by 18 cycles of 10 s at

988C, 30 s at 658C and 30 s at 728C; a final elongation step

was performed at 728C for 5 min.). A final electrophoresis

was performed to purify fragments, and the library was

sequenced on a single lane of an Illumina HiSeq 2000, using

single-end 100 cycle sequencing by a commercial company

(GenoScreen, Lille, France).

(iv) Filtering, single-nucleotide polymorphism calling and
genotype calling

The quality of the raw sequencing reads (library-wide and per-

base) was assessed with FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). Reads with ambiguous

barcodes and/or absent SbfI cut sites were removed, as were

low-quality reads (average read quality , 10, assessed using a

15 bp sliding window). The retained reads (96% of total) were

sorted according to the barcode and the barcode sequences,

as well as the restriction site, were trimmed (leaving 89 bp of

experimental sequence per read). Two progeny were removed

because of considerably lower sequence depth. These pro-

cedures resulted in 65.5 million reads (mean: 1.6 million

reads, standard deviation: 0.6 million reads per sample).

For SNP calling, we used the de novo pipeline of the pro-

gram ‘Stacks’ (v. 1.20; [97]). For each individual, the ustacks

procedure was used to identify identical reads and to group

them together under a single ‘RAD locus’ if their alignment

included two or fewer differences (Stacks options M ¼ 2,

m ¼ 3, N ¼ 2, n ¼ 2). A catalogue of RAD loci and alleles

was generated using data of the two parents, and progeny

data were compared with this catalogue, determining

which progeny inherited which parental alleles. These pro-

cedures resulted in a total of 130809 RAD loci, sequenced at

an average depth of 111� per locus and individual (without

counting individuals with missing genotypes). However, a

large number of these loci were either monomorphic or the

two parents were homozygous for different alleles and all off-

spring heterozygous. The script ‘genotypes’ within stacks

was used to remove these non-informative markers and to

organize loci into a set of mappable markers. During further

filtering, we discarded individual genotypes based on fewer

than 20 reads and then removed markers with missing geno-

type information for more than seven offspring (out of 38).

Furthermore, loci for which segregation patterns among off-

spring did not match the parental genotypes were removed

(typically loci that were monomorphic among offspring

despite being called heterozygous in one of the parents;

note that alleles not present in the parents were not retained

during the above genotype-calling procedure). There was a

7% genotype-calling mismatch between the two replicates

of the father. These loci were only retained for further

analysis when the correct genotype of the father could unam-

biguously be identified, based on the genotypes of the

offspring. One of the replicates of the mothers was sequenced

at much lower depth than the other samples (14% genotype-

calling mismatch, mostly due to false homozygote calls in the

replicate sequenced at lower depth). Hence the replicate

sequenced at higher depth was used for all analyses. Markers

were also tested for distorted segregation ratios (using x2

tests). Segregation distortion was observed in 10.4% of

male-informative and in 8.8% of female-informative markers

(individual p-values , 0.05, testing for deviations from

Mendelian 1 : 1 segregation ratios). However, in no case was dis-

tortion very strong (using sequential Bonferroni correction for

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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multiple testing, not a single marker remained significantly dis-

torted), and, according to current practice, distorted markers

were kept in the maps. Altogether, these procedures resulted

in a total of 733 informative markers, of which 333 female-

informative markers were used to construct the female linkage

map (genotype ab in the mother and aa or bb in the father).

The male map was based on 315 male-informative markers,

and the 84 biparental markers (genotype ab in both parents)

were used to integrate the male and female maps.

(v) Linkage analysis and map construction
The linkage analysis and map construction was carried

out using the R/qtl package [98]. First, to assign markers to

linkage groups (done separately for male and female maps),

pairwise recombination frequencies between all markers and

the corresponding LOD scores were estimated using the func-

tion est.rf(). LOD scores correspond to the logarithm of the

likelihood that the two markers are linked with a recombina-

tion fraction of ,50% divided by the likelihood that they are

unlinked. The maximum pairwise recombination frequency

allowed between adjacent markers was 0.4 and the minimum

LOD score was 4.0. Note that the relatively high maximum

recombination frequency was chosen in order for linkage to

be determined by LOD scores. The actually achieved maxi-

mum recombination frequency between adjacent markers

with minimum LOD ¼ 4 was 0.2. The female-specific and

male-specific markers (type ab � aa) were analysed with the

back-cross procedure, which infers phase automatically. The

phase of the bi-parental markers was inferred from a corre-

lation analysis of each of the bi-parental markers against the

whole set of sex-specific markers.

We then used the order.markers() function to determine the

most likely order of the markers along each linkage group.
To improve the order of the markers, the ripple() function

was used with a window size of 7 markers. Genetic distances

were estimated using the Kosambi mapping function. For the

final maps, we manually removed individual genotype calls

suggesting a double recombination event (one immediately

before and one immediately after a given marker). This

occurred only in 1% of all cases and is probably explained by

errors in genotype calling. Hence, these genotype calls were

replaced by missing values. Finally, we estimated the length

of the unmapped chromosome ends, using the mean value of

the two methods described in [99]. These correction methods

make many simplifying assumptions and should thus be

interpreted with care.

(b) Results
The female linkage map (electronic supplementary material,

figure S1 and table S2) is based on 333 female-informative mar-

kers of which 273 grouped together in 21 linkage groups,

which fits the karyotype of Artemia [100]. The remaining

markers could not be assigned to any linkage group nor

grouped together (based on a minimal LOD score of 4), and

were, therefore, left unassigned. The number of markers per

linkage group ranged from 4 to 22 (average: 12.8) with the

size of linkage groups ranging from 4.9 cM to 47 cM (average:

23.12, figure 1). The total length of the 21 linkage groups is

478.6 cM with a median inter-marker distance of 2.7 cM

(electronic supplementary material, table S2).

The male linkage map (electronic supplementary material,

figure S3 and table S2) is based on 315 male-informative

markers, of which 268 grouped together in 21 linkage

groups. The number of markers per linkage group varied

from 5 to 23 (average: 12.8) with the length of linkage groups

ranging from 5.1 to 55 cM (average: 20.1). The total size of
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the 21 linkage groups was 423.9 cM and the median distance

between markers was 2.8 cM.

Of the 84 biparental markers, 44 could be associated to one

of the linkage groups and allowed us to link male and female

maps (electronic supplementary material, figure S4), except

for linkage groups 2 and 18 in both sexes, for which the pairwise

homology thus remains unknown (LG2 may be homologous to

LG2 or LG 18 of the other sex). Integrating these biparental mar-

kers into the sex-specific linkage groups does, in some cases,

increase map lengths of the linkage groups (electronic sup-

plementary material, figure S4). However, the overall picture

remains unchanged, with average map lengths still being

much below 50 cM in both sexes. In addition, as these markers

are informative only in some offspring, (in heterozygotes it is

unknown which allele came from the father and which one

from the mother), we could not apply the same correction tech-

niques as in the sex-specific markers. Hence map length may be

increased by genotyping error, and, therefore, figure 1 as well as

electronic supplementary material, figures S1, S3 and table S2

are based on the sex-specific maps without the biparental mar-

kers. No cross-linkage was found between linkage groups,

except for weak ‘pseudo-linkage’ [101] between linkage group

3 and the sex chromosome in females (electronic supplementary

material, figure S5), which remains unexplained.

Eighteen of the female-informative markers but none of the

male-informative markers were strongly linked with phenoty-

pic sex, confirming that females are the heterogametic sex [46].

One bi-parental marker mapped to the same linkage group and

thus allowed identification of the Z-linkage group in the male

map. Both male and female maps of the sex chromosomes are

short, but non-zero (figure 1). Non-zero recombination

between W and Z was also found in A. franciscana [46].

When corrections for chromosome ends without marker

coverage were employed (see Material and Methods), the

total corrected female map length was estimated at 564 cM

and the male map length at 478 cM. Considering that the esti-

mated haploid genome size of A. sp. Kazakhstan is 2.4 Gbp

[102], the recombination rate corresponds to 0.23 cM/Mbp

in females and to 0.20 cM/Mbp in males, on average.
4. Discussion
Despite the moderate number of markers employed, the map

of A. sp. Kazakhstan is clearly an exceptionally short map for

a fully sexual species. With an average genetic map length of

just over 20 cM per linkage group in both sexes (and just one

linkage group in each sex being greater than 40 cM, figure 1),

A. sp. Kazakhstan is similar to the few known species with

exceptionally short linkage maps discussed under point 2.4

above. By contrast, the map of the congener, A. franciscana, is

considerably longer [46]. Even though it is based on a smaller

number of markers, the linkage map of A. franciscana has aver-

age map lengths per linkage group of 52 cM in males and

60 cM in females [46] and is thus more than twice as long as

the map of A. sp Kazakhstan. This map length might be

inflated because the methodology used is typically associated

with high genotyping errors. However, this difference in

methodology is unlikely to explain the large difference

between the two maps. First, the A. franciscana map length is

typical of many sexual species. Second, many genotyping

errors would be required to explain a two-fold difference.

This is contradicted by the observation that the male and
female maps in A. franciscana show full marker collinearity

for bi-parental markers and good correlation of homologous

inter-marker distances [46]. Note that A. franciscana also has

some linkage groups that are considerably shorter than

50 cM, but this may well be explained by insufficient numbers

of markers on these linkage groups [46].

It is possible that in our A. sp. Kazakhstan map, some of the

short linkage groups are explained by insufficient numbers of

markers. In addition, a substantial number of markers did not

show significant linkage to any of the 21 linkage groups nor

among them. Some of these markers may represent missing

chromosome ends. However, this group may also contain mar-

kers that are not truly segregating, for instance paralogs that

were lumped together during the stacks analysis (they may

appear to be segregating for instance if lumping only occurred

in a fraction of individuals). Also genotype-calling errors may

have contributed both to the inability to map these markers,

and also to some degree of uncertainty about map length. Erro-

neously called genotypes often resemble recombinants and

have the tendency to upwardly bias map lengths. We removed

genotypes that suggested a double recombination event (one

immediately before and one immediately after the marker),

but this procedure cannot be used for unmapped markers or

for terminal markers. Removal of these genotypes may have

led to the removal of some true double recombinants, especially

if there was some degree of negative interference [103]. How-

ever, only 1% of genotypes were removed, and a possible

inflation of map length due to remaining errors in genotype call-

ing is conservative with respect to the main conclusion that the

map is exceptionally short (i.e. it would be even shorter without

those errors). Hence it seems unlikely that the very short map of

A. sp. Kazakhstan can be explained by technical issues.

For similar technical issues, the ‘obligate CO’ rule is often

difficult to evaluate with precision in most other available

maps. There are many errors and filtering biases in NGS-

based maps that can lead to upwards or downwards biases

in map length [104,105], and in most cases it is impossible

to judge this from the published data, especially as most of

these studies were not conducted with the aim of precisely

estimating map length. Apart from these technical issues, a

biological difficulty is that in some species most COs occur

at chromosome ends. With genetic mapping, these terminal

COs can be easily missed. This is best exemplified by the

Agaricus map [81] discussed above, which has chromosomes

of similar map length as A. sp. Kazakhstan. However, whole-

genome resequencing showed that an obligate CO occurs on

all or almost all chromosomes, but is located in the large

majority of cases in the terminal approximately 100 kb por-

tion of chromosomes [81]. The occurrence of an obligate CO

at such terminal positions cannot be safely excluded, neither

in A. sp. Kazakhstan, in any of the other maps discussed

above, nor in automictic species with central fusion (e.g.

[40]). It can be excluded in some of the achiasmate examples,

where the absence of CO was confirmed using cytological

methods. Such terminally positioned COs also largely invali-

date correction methods for unmapped chromosome ends,

such as the two methods employed here (see above).

It is thus clear that the constraint of an obligate CO cannot be

assessed with genetic maps alone and that cytological and other

alternative methods are needed to reach a final answer. How-

ever, COs near the tips of the chromosomes have very little

influence on the levels of recombination within the chromo-

somes and even on genome-wide recombination rate. Their
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only effect with respect to recombination is that chromosome

tips recombine relatively freely with the rest of the genome.

Hence, the recombination levels of a large majority of the

genome, probably including also a large majority of genes, are

still well characterized by maps based on a moderate-to-large

number of markers. Conversely, this means that the total map

length of a genome (even if 50 cM is added per chromosome

pair to account for between-chromosome recombination) is

not always a good measure of genome-wide recombination

[106]. From an evolutionary point of view, a better measure of

average genome-wide recombination would account for the

average likelihood that a CO occurs between two randomly

chosen genes. Such a measure could be derived from current

maps from the distribution of recombination frequencies

between pairs of markers (either making assumptions on uni-

form gene densities along chromosomes if this distribution is

unknown, or restricting the analysis to markers within genes).

If markers on different chromosomes as well as markers

on the same chromosome were included, this would allow

combining the effects of random assortment with those of

recombination within chromosomes. It seems likely that such

a measure could be relatively easily derived from the mean of

all pairwise recombination frequencies, though its statistical

properties would need to be studied in more detail.

Selection for reduced recombination may often result in a

more terminal placement of COs rather than a reduction of

chromosome map length below 50 cM. Consistent with this,

more terminal placement of COs has been found in many

of the examples of species with low recombination rates

(either of single chromosomes or genome-wide) discussed

above. In species without a reference genome, a terminal

placement of COs is more difficult to assess. However, we

do note that the A. sp. Kazakhstan map does contain on

almost every chromosome one or a few groups of markers

without recombination, flanked by a low number of markers

with high genetic distances. This appears to be much less pro-

nounced in the A. franciscana map [46]. A more terminal

placement of COs might also play a role in the evolution of

sex differences in recombination rates and recombination

landscapes [107].

Another striking observation from the above literature

review and from the two Artemia maps is that several of the

species with particularly short maps are close sexual relatives

of asexual species. Besides automictic parthenogenesis in

A. parthenogenetica, asexual reproduction is known in killifish

[119], and the unusual reproduction of Oenothera involving

chromosome rings also leads to largely clonal genome trans-

mission [43]. Even some Agaricus strains are apparently

maintained by within-strain mating, which, in these fungi, is

equivalent to central fusion automixis [81]. Whether or not low

recombination in these cases and asexuality in closely related

species are causally related is currently difficult to determine.

These observations could be consistent with the hypothesis

that a low recombination rate in sexual species may represent a

pre-adaptation for a transition to asexuality [43]. In other

words, transitions to asexuality might occur more easily in

species with already-low recombination rates because, in these

cases, the deleterious effects of recombination in asexuals

(e.g. loss of heterozygosity) are expected to occur less often

than in species with higher rates of recombination. Nonetheless,

there are counter-examples: either of sexual species with low

recombination rates but without close asexual relatives or of

asexual species whose sexual relatives have high recombination
rates. First, not all sexual species with low recombination rates

have asexual relatives. For instance, no asexual species are

known in the genus Tigriopus, and although a number of

moths and at least one species of Drosophila do reproduce parthe-

nogenetically, asexuals do not appear to be particularly common

among relatives of achiasmate species (note though that substan-

tial amounts of recombination usually occur in the other sex in

these species). Second, not all close relatives of asexual species

have short linkage maps. For instance, Daphnia species have

substantial amounts of recombination during sexual reproduc-

tion [99,120], though obligate asexuals exist in the genus [121].

Finally, one of the most striking examples is the honeybee.

Sexual honeybees, Apis mellifera, have one of highest numbers

of COs per chromosomes known among all organisms

[4,122,123]. Nonetheless, Cape honeybees, Apis mellifera capensis,
which reproduce by central fusion automixis, have reduced

levels of recombination. This is in part explained by strong selec-

tion against recombinants [40–42]. Hence, this example shows

two important points. First, reduced levels of recombination

are likely to have evolved during the transition to asexuality in

this sub-species. Second, the strong selection against recombi-

nants is an illustration of the strong costs that recombination

may induce in asexuals due to loss of heterozygosity.

A possible alternative explanation is that short genetic maps

in sexual relatives of asexual species may be a consequence of

the transition to asexuality rather than a pre-adaption. Many

asexual species retain some residual capacity of sexual repro-

duction, and this may even be more common during early

stages of sex–asex transitions [2,26]. Residual sexual reproduc-

tion occurs in particular in species with so-called contagious

asexuality, such as A. sp. Kazakhstan, where partheno-

genetically reproducing females rarely produce sons, which

are able to fertilize closely related sexual females [124]. In this

way, asexuality-determining genes are transmitted to new

genetic backgrounds, and new asexual lineages are formed

[125–130]. Though details depend on the exact mode of inheri-

tance of asexuality (especially the number of genes involved

and the dominance of the asexuality-conferring alleles), a part

of the offspring of such back-crosses are sexuals [127]. Hence,

males produced by asexual females are also able to transfer

parts of genomes with an asexual history back to a sexual back-

ground. If there is strong selection for reduced recombination in

asexuals, this may lead to repeated introgression of low-

recombination alleles into the sexual lineage. Selection against

recombination is for instance expected to be strong in central-

fusion automicts, as reduced recombination allows preserving

heterozygosity and the masking of deleterious mutations

[26,128,131]. This may provide an alternative scenario explain-

ing, why sexual species that are closely related to asexuals have

low recombination. This scenario is particularly intriguing as

gene flow is usually thought to occur exclusively in the other

direction, from sexuals to asexuals. Hence low recombination

might facilitate transitions to asexuality, but selection for low

recombination in asexuals and gene flow back to sexuals via

rare sex seems to be a viable alternative hypothesis for the

observations that many species with short genetic chromosome

maps are closely related to asexual species.
5. Conclusion
The currently available data do not allow for conclusive tests,

neither of the obligate CO constraint, nor of the correlation
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between low levels of recombination and the evolution of

asexuality. Our review and the A. sp. Kazakhstan map show

that recombination is sometimes very low in chiasmate

sexual species; and lower than expected from the ‘obligate

CO constraint’. In addition to the many achiasmate species,

these cases tend to support the view that the obligate CO con-

straint is not universal, although the occurrence of distal COs

appears to explain short chromosome maps in at least some

cases. Another conclusion is that the placement of the CO

seems to be less constrained: our review tentatively suggests

that low intra-chromosome recombination evolves by moving

COs towards the tips. Hence it appears that the one-CO con-

straint should better be assessed by alternative methods (e.g.

cytological studies) that do not have a reduced likelihood of

detection of terminal COs. A broad phylogenetic analysis of

the occurrence of species with no ‘obligate CO’ may also help

determining the degree to which the evolution of alternative

mechanisms to ensure proper segregation is constrained. For

the correlation between low levels of recombination and the

evolution of sexuality, we see several ways forward: First,

data on a larger number of species are needed for a meaningful

comparative analysis. Ideally, these data should be based on

more meaningful measures of genome-wide recombination

than the genetic map length of chromosomes. Second, different

modes of asexuality are often lumped, though the fitness

effects of recombination may strongly differ among different

kinds of asexuality. Moreover, the different forms may not be

static, but evolve via evolutionary intermediates, and selection

pressures during these intermediate stages are not well under-

stood. Third, contagious asexuality may offer a way to study

whether the decreased rates of recombination observed in

many asexuals are governed by different genes than asexuality.
This may also help to elucidate whether there has been second-

ary evolution of reduced recombination in asexuals following

the transition to asexuality. Fourth, similar insights might be

obtained from studying recombination within asexual species,

but using lineages of different ages. Finally, more data similar

to the studies in the Cape honeybee are needed to better dis-

tinguish between reduced numbers of COs and selection

against recombinants.
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the Institut Écologie et Environnement of the CNRS (APEGE grant
ARTASEX, and the Swiss National Science Foundation (grant no.
31003A_138203).

Acknowledgements. We thank D. Berner, F. Brunet, D. Charlesworth, L.-M.
Chevin, A. Cutter, B. De Massy, T. de Meeûs, J.-F. Flot, D. Jeffries,
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120. Dukić M et al. 2016 A high-density genetic map
reveals variation in recombination rate across the
genome of Daphnia magna. BMC Genet. 17, 137.
(doi:10.1186/s12863-016-0445-7)

121. Hebert PDN, Crease T. 1980 Clonal coexistence in
Daphnia pulex (Leydig): another planktonic paradox.
Science 207, 1363 – 1365. (doi:10.1126/science.207.
4437.1363)

122. Wallberg A et al. 2015 Extreme recombination
frequencies shape genome variation and evolution
in the honeybee, Apis mellifera. PLoS Genet. 11,
e1005189. (doi:10.1371/journal.pgen.1005189)

123. Rueppell O, Kuster R, Miller K, Fouks B, Rubio
Correa S, Collazo J, Phaincharoen M, Tingek S,
Koeniger N. 2016 A new metazoan recombination
rate record and consistently high recombination
rates in the honey bee genus Apis accompanied by
frequent inversions but not translocations. Genome
Biol. Evol. 8, evw269. (doi:10.1093/gbe/evw269)
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